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Abstract

In this paper, a new Phase II control chart based on weighted likelihood ratio test (WLRT)
is proposed for monitoring polynomial profiles. The new chart can be easily designed and
constructed. Due to the good properties of the likelihood ratio test, computation results show
that it provides quite satisfactory performance in various cases, including the detection of the
decrease in variance which is very important in many practical applications but may not be well
handled by the existing approaches in the literature. Average run length (ARL) comparisons
between some other procedures and the new chart are presented. The effect of parameter
estimates on WLRT chart is considered. The application of our proposed method is illustrated
by a simulation example.
Keywords: Statistical process control (SPC); Polynomial profiles; Weighted likelihood ratio
test (WLRT); Average run length (ARL); parameter estimates

1 Introduction

Statistical process control (SPC) plays a very important role in product quality management and
improvement. In many SPC applications, the quality of a process or product can be described as a
function between a response variable and one or more explanatory variables. This relationship was
referred to as profile by Kang and Albin [1]. Many researchers have studied the applications of
profiles [2, 3, 4, 5, 6]. The “profile monitoring” methods use statistical methods to check whether
such functional relationships are stable or not over the time. The research on profile monitoring in
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the SPC field is relatively new in recent years, and the most effective tool for profile monitoring is
the control chart. Some researchers have proposed designed methods of control charts for moni-
toring different profiles in both Phase I and Phase II. The control charts in Phase I are designed to
check the statistical stability of the process and to estimate the parameters. However, the control
charts in Phase II are adopted to detect parameter changes as quickly as possible.

Early research on profile monitoring mainly assumes that the profile is linear when the process
is in control (IC). Various linear profile monitoring charts have been proposed. Kang and Albin
[1] introduced two control charts for Phase II monitoring of simple linear profiles. One of these is
a multivariate T 2 chart and the other is a combination of an exponentially weighted moving aver-
age (EWMA) chart and a range (R) chart. Kim et al. [7] used the centralized x values to ensure
the independence of regression parameters, and then detected shifts of regression parameters by
three separate EWMA charts. Mahmoud and Woodall [4] suggested a Phase I control chart in
combination with F-test method to monitor the error standard deviation and regression parame-
ters. Noorossana and Amiri [8] recommended the combined use of multivariate cumulative sum
(MCUSUM) method of Healy [9] and R chart of Kang and Albin [1] to monitor simple linear
profiles in Phase II. Woodall et al. [5] gave an overall review on profile monitoring and pointed
out the research directions in the future. Change point methods were adopted by Zou et al. [10]
and Mahmoud et al. [11] for Phases I and II monitoring with simple linear profile data, respec-
tively. Noorossana and Amiri [12] employed a combined MCUSUM/χ2 control chart. A new
review paper on profile monitoring research was summarized by Woodall [13]. Ghahyazi et al.
[14] considered the monitoring methods for linear profiles when the processes are multistage. Lin-
ear mixed models were suggested by Jensen et al. [15] to explain the autocorrelation within linear
profiles. The monitoring approach was provided by Noorossana et al. [16] when autocorrelation
exists in the linear profiles. Zhang et al. [17] used Gaussian process models for monitoring linear
profiles with within-profile correlation. The application of nonlinear profiles were introduced by
some scholars [18, 19, 20, 21].

A Phase II multivariate EWMA (MEWMA) chart was proposed by Zou et al. [22] to monitor
the parameters of general linear profiles. Eyvazian et al. [23] suggested four schemes to monitor
multivariate multiple linear regression profiles. Khedmati and Niaki [24] considered a monitoring
method for general linear profiles when autocorrelation is presented in Phase II. Zhang et al. [25]
suggested an EWMA type chart on the basis of likelihood ratio test (LRT) to monitor simple linear
profile parameters. Li et al. [26] used a variable sampling intervals (VSI) EWMA chart to monitor
linear profiles. Noorossana et al. [27] provided more details about profile monitoring. Xu et al.
[28] proposed a generalized likelihood ratio (GLR) chart for detecting linear profiles. Zhang et al.
[29] employed an EWMA chart based on score-test to monitor the changes in linear profiles. In
addition, Awad [30] used profile monitoring approach for fault detection of fuel systems. Nie et al.
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[31] suggested a method of identifying change-point of nonlinear profiles by data-segmentation.
Yang et al. [32] applied dynamic probability control limits to monitor nonparametric profiles. A
weighted score test was used by Liu et al. to monitor surgical outcomes [33].

In many practical situations, a profile can be modeled as a polynomial regression profile. Some
charts used for monitoring linear and general linear profiles can be modified and used to moni-
tor polynomial profiles. Besides the T 2 chart introduced by Kang and Albin [1], MCUSUM/χ2

chart proposed by Noorossana and Amiri [12], MEWMA chart suggested by Zou et al. [22],
Kazemzadeh et al. [34] suggested a Phase I control chart based on change point. Kazemzadeh et
al. [35] proposed a Phase II control chart based on orthogonal polynomial transformation, which is
referred to as Ortho chart hereafter. Because three separate EWMA charts and their control limits
are needed separately for monitoring parameters, this method is very inconvenient in application
for higher order polynomial profiles. In addition, the decrease of variance can not be detected by
Ortho chart.

The weighted likelihood ratio test (WLRT) scheme was introduced to monitor the Poisson rates
by Zhou et al. [36]. Qi et al. [37] proposed WLRT idea for monitoring generalized linear profiles.
Qi et al. [38] also proposed WLRT chart for statistical monitoring of queueing systems. Zhang
et al. [39] proposed a weighted-likelihood scheme to monitor censored lifetime data. Song et al.
[40] suggested a synthetic chart for monitoring the parameters of a normally distributed process
based on the WLRT method. In this paper, we propose a new Phase II control chart to monitor
polynomial profiles based on WLRT scheme. The new chart is easily designed and constructed.
Some numerical results and comparison have been given. It has been shown that the new chart has
an average run length (ARL) performance that is superior to other procedures.

The remainder of this paper is organized as follows. The new WLRT chart for monitoring
Phase II polynomial profile is described in Section 2. The control limits and performance of the
proposed chart are presented in Section 3. The performance comparisons between our new chart
and some other existing charts are given in Section 4. The effect of parameter estimates on WLRT
chart is considered in Section 5. The application of our new chart is illustrated by a simulated
example in Section 6. Conclusion remarks are given in Section 7.

2 The proposed WLRT scheme

Denote by {(xi, yit), i = 1, 2, · · · , n} the tth random sample collected over time. When the process
is in control (IC), the relationship between the response and explanatory variables is assumed to be

yit = a(t)
0 + a(t)

1 xi + a(t)
2 x2

i + · · · + a(t)
m xm

i + εit, i = 1, 2, · · · , n, t = 1, 2, · · · , (1)

The error terms between profiles εit(i = 1, 2, · · · , n, t = 1, 2, · · · ) are independent and identically
distributed as N(0, σ2) and the explanatory variable xi, i = 1, 2, · · · , n can be designed to be fixed
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from profile to profile.
In order to eliminate the effect of multicollinearity, the explanatory variable xi can be central-

ized as x∗i , i = 1, 2, · · · , n and the equivalent model of equation (1) can be rewritten as

yit = b(t)
0 + b(t)

1 x∗i + b(t)
2 x∗2i + · · · + b(t)

m x∗mi + εit, i = 1, 2, · · · , n, t = 1, 2, · · · , (2)

where

b(t)
l =

m∑

s=l

a(t)
s

(
s
l

)
xs−l, l = 0, 1, · · · ,m, x∗i = xi − x, x =

1
n

n∑

i=1

xi, εit ∼ N(0, σ2) (3)

and

yit ∼ N(b(t)
0 + b(t)

1 x∗i + b(t)
2 x∗2i + · · · + b(t)

m x∗mi , σ2). (4)

The probability density function of yit is

f (yit) =
1√
2πσ

exp
{
− 1

2σ2 (yit − b(t)
0 − b(t)

1 x∗i − b(t)
2 x∗2i − · · · − b(t)

m x∗mi )2
}
.

The parameters b(t)
0 , b

(t)
1 , b

(t)
2 , · · · , b(t)

m for the models (2) and (4) are assumed to be known and
σ2 = σ2

0 when the process is IC. It should be pointed out that at least one of the parameters is
changed when the process is out-of-control (OC).

Given a sample (x∗i , yit), i = 1, 2, · · · , n, consider the following hypothesis test:

H0 : b(t)
0 = B0, b

(t)
1 = B1, · · · , b(t)

m = Bm, σ
2 = σ2

0,

H1 : b(t)
0 , B0 or b(t)

1 , B1 or , · · · , or b(t)
m , Bm or σ2 , σ2

0. (5)

For convenience, let θ = (B0, B1, · · · , Bm, σ
2
0). The log-likelihood function of response variable

yi j can be expressed as:

l j(θ) = log
n∏

i=1

f (yi j)

= log

(2πσ2
0)−

n
2 exp

−
1

2σ2
0

n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )2




= −n
2

(log 2π + logσ2
0) − 1

2σ2
0

n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )2, (6)

where i = 1, 2, · · · , n, j = 1, 2, · · · .
For simplicity, ignoring the constant term log 2π, a new equation can be obtained:

l j(θ) = −1
2

n logσ2
0 +

1
σ2

0

n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )2

 . (7)
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The exponentially weighted log-likelihood function is defined on the basis of l j(θ):

Yt(θ, λ) =

t∑

j=0

ω j,λl j(θ), (8)

where λ is a smoothing parameter which can be chosen from (0, 1), the weights ω0,λ = (1 −
λ)t, ω j,λ = λ(1−λ)t− j, j = 1, 2, · · · , t, and the sum of all the weights is equal to 1. Obviously, all the
samples from time point 1 to t are considered to derive Yt(θ, λ). For j = 0, any observation values
in the IC sample dataset can be regarded as the values of (xi, yi0), and the first observation (xi, yi1)
is used in this paper.

The weighted maximum likelihood estimate (WMLE) of θ at time t is defined as

θ̂t = arg max
θ

Yt(θ, λ). (9)

As

Yt(θ, λ) =

t∑

j=0

ω j,λl j(θ)

=

t∑

j=0

ω j,λ(−1
2

)

n logσ2
0 +

1
σ2

0

n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )2



= −1
2


t∑

j=0

ω j,λn logσ2
0 +

t∑

j=0

ω j,λ

n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )2 1
σ2

0



= −1
2

(
Yp,t logσ2

0 + Yc,t
1
σ2

0

)
, (10)

where Yp,t = n
t∑

j=0
ω j,λ = n,Yc,t =

t∑
j=0
ω j,λ

n∑
i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )2.

According to the necessary condition of the extreme value, letting the partial derivative of
Yt(θ, λ) on θ be 0, the −2×logarithm of the WLRT statistic can be obtained as follows (see the
Appendix for the detailed derivation process):

Rt,λ =
Yc,t

σ2
0

+ n log

nσ2

0

Ŷc,t

 − n. (11)

In order to simplify the algorithm, Yc,t, Ŷc,t can be calculated by the following formulations:

Yc,t = (1 − λ)Yc,t−1 + λ

n∑

i=1

(yit − B0 − B1x∗i − · · · − Bmx∗mi )2, (12)

Ŷc,t = (1 − λ)Ŷc,t−1 + λ

n∑

i=1

(yit − B̂0 − B̂1x∗i − · · · − B̂mx∗mi )2, (13)
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where Yc,0 = n, Ŷc,0 = n.
The WLRT statistic Rt,λ can be used as the monitoring statistic. When Rt,λ exceeds a specified

value UCL, i.e. upper control limit , we can say the model parameter θ = (B0, B1, B2, · · · , Bm, σ
2
0)

has changed. The value of UCL is chosen to achieve a specified IC ARL (ARL0).

3 The performance of WLRT chart

In this section, the performance of the proposed WLRT chart is evaluated. In order to be consistent
with other methods, the underlying IC model is considered as follows:

yit = A0 + A1xi + A2x2
i + εit = 3 + 2xi + x2

i + εit, (14)

i = 1, 2, · · · , 10, t = 1, 2, · · · , εit ∼ N(0, σ2
0).

The fixed explanatory variables are xi = 1, 2, · · · , 10. In order to eliminate the effect of multi-
collinearity, all the xi values are centralized as x∗i by subtracting the mean of x-values 5.5, then the
fixed values are x∗i = −4.5(0.5)4.5 and the transformed model is as follows:

yit = B0 + B1x∗i + B2x∗2i + εit =
177

4
+ 13x∗i + x∗2i + εit, (15)

i = 1, 2, · · · , 10, t = 1, 2, · · · , εit ∼ N(0, σ2
0).

Assume that when the process is OC, the shift form of the parameters are given as follows:

A′0 = A0 + ασ0, A′1 = A1 + βσ0, A′2 = A2 + γσ0, σ
′ = δσ0.

Without loss of generality, in our simulation, we assume that σ2
0 = 1. Noting that the monitor-

ing statistic Rt,λ does not have an explicit IC distribution, and there is no direct and simple method
to compute the transition matrix, the ARL values are obtained by 50,000 Monte Carlo simulations.
The methods have been implemented in a FORTRAN program (available from the authors upon
request) that uses the routines “rnnor” to generate Normal random variables.

In order to illustrate the effectiveness of the WLRT chart with different λ, the OC ARL compar-
isons are shown in Figure 1 (y-axis in log-scale). All of the charts are designed to have the overall
IC ARL of 200. The corresponding UCL values are 0.434, 0.975, 2.18, 3.53, 6.69 , respectively,
when λ=0.05, 0.1, 0.2, 0.3 and 0.5. From Figure 1, we can see that the proposed WLRT chart
performs well on detecting various parameter shifts. In general, a smaller λ leads to a quicker
detection of smaller shifts.

[Insert figure 1 about here]
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In order to further demonstrate the performance of our new chart, Table 1 presents the OC ARL
values when any two parameters shift in the case λ = 0.1. From Table 1, we can see that the OC
ARL of the WLRT chart decreases gradually as the shifts increase. Overall we can see that the
WLRT chart can detect any changes in the parameters.

We also conduct some simulations for other choices parameters, including A0, A1 A2 and the
degree of polynomials, i,e. m, the preceding findings still hold. Generally speaking, the WLRT
chart provides a satisfied performance for various types of shifts. By taking the consideration
of its easy design and implementation, we think the WLRT scheme is an alternative in practical
applications.

[Insert table 1 about here]

4 Performance comparisons

In this section, we compare our WLRT chart with the other four charts in the literature, called as
T 2 chart by Kang and Albin [1], MCUSUM/χ2 chart by Noorossana and Amiri [12], MEWMA
chart by Zou et al. [22] and Ortho chart by Kazemzadeh et al. [35]. Next, we give a brief review
of these methods.

First of all, we assume that when the process is IC, the underlying model is given as:

yit = A0 + A1xi + A2x2
i + · · · + Amxm

i + εit, εit ∼ N(0, σ2
0), (16)

where i = 1, 2, · · · , n, t = 1, 2, · · · . Let Ât = (XT X)−1XT Yt be the parameter estimator vectors
with mean A = (A0, A1, · · · , Am)T and covariance matrix Σ = σ2

0(XT X)−1 where X is the sample
observation matrix, and Yt is the tth response vector.

4.1 T 2 chart proposed by Kang and Albin [1]

According to Kang and Albin [1], the T 2 charting statistic is defined as follows:

T 2
t = (Ât − A)T Σ−1(Ât − A). (17)

Then T 2
t follows a central chi-squared distribution with m+1 degrees of freedom when the process

is IC. The corresponding UCL of T 2 chart is χ2
α(m+1), where χ2

α(m+1) is the 100(1−α) percentile
of the chi-squared distribution with m + 1 degrees of freedom.

4.2 MCUSUM/χ2 chart proposed by Noorossana and Amiri [12]

According to Noorossana and Amiri [12], the MCUSUM statistic is defined as follows:

S t = max{S t−1 + aT (Ât − µG) − 0.5D, 0}, (18)
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where aT = (µB − µG)T Σ−1/
√

(µB − µG)T Σ−1(µB − µG), D =
√

(µB − µG)T Σ−1(µB − µG), µG = A is
the IC known parameter vector, and µB is the OC parameter vector which is related to the minimum
shift of parameter. A signal is given when the MCUSUM statistic S t exceeds a given UCL.

In order to monitor the error variance in combination with the MCUSUM chart, the proposed
χ2 statistic is defined as

χ2
t =

1
σ2

n∑

i=1

e2
it, (19)

where

eit = yit − A0 − A1xi. (20)

The UCL for χ2 chart can be chosen as χ2
α(n), where n is the number of fixed designed points

of explanatory variable, and χ2
α(n) is the 100(1 − α) percentile of the chi-squared distribution with

n degrees of freedom. This method can be easily used for monitoring polynomial profiles in Phase
II. The residuals in this case are calculated as follows:

eit = yit − A0 − A1xi − A2x2
i − · · · − Amxm

i . (21)

4.3 MEWMA chart proposed by Zou et al. [22]

According to Zou et al.[22], they first define

Zt(A) = (Ât − A)/σ0 (22)

and

Zt(σ0) = Φ−1{F((n − m)σ̂2
t /σ

2
0; n − m)}, (23)

where σ̂2
t = 1

n−m (Yt − XÂt)T (Yt − XÂt), Φ−1(·) is the inverse of the standard cumulative distribution
function, and F(·; v) is the chi-squared distribution function with v degrees of freedom. Denote Zt

by (Zt(A)T ,Zt(σ0))T . When the process is IC, the m+1-dimensional random vector Zt is distributed

as multivariate normal distribution Nm+1(0,ΣZ), where 0 and ΣZ =

(
(XT X)−1 0

0 1

)
are the mean

vector and covariance matrix, respectively.
The EWMA charting statistic is defined as

Wt = λZt + (1 − λ)Wt−1, t = 1, 2, · · · , (24)

with the starting vector value W0. The MEWMA chart signals when

Ut = WT
t Σ−1

Z Wt > LU
λ

2 − λ, (25)

where LU > 0 is a control limit parameter and can be chosen by simulation to achieve a specified
ARL0.
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4.4 Ortho chart proposed by Kazemzadeh et al. [35]

According to Kazemzadeh et al. [35], under IC situation, the transformed model is as follows:

yit = B0P0(xi) + B1P1(xi) + B2P2(xi) + · · · + BmPm(xi) + εit, εit ∼ N(0, σ2
0), (26)

where i = 1, 2, · · · , n, t = 1, 2, · · · , P0(xi), P1(xi), · · · , Pm(xi) are orthogonal polynomials defined

such that
n∑

i=1
Pr(xi)Ps(xi) = 0, r , s, r, s = 0, 1, · · · ,m. P0(xi) = 1, and B0, B1, · · · , Bm are

orthogonal regression parameters.
The least squares estimators of Bl in each profile are computed by

B̂lt =

n∑
i=1

Pl(xi)yit

n∑
i=1

P2
l (xi)

, t = 1, 2, · · · , l = 1, 2, · · · ,m. (27)

Then they use univariate EWMA charts to monitor the parameters of regression model separately.
In order to monitor the error variance σ2

0, eit and MS Et are defined as follows:

eit = yit − B0P0(xi) − B1P1(xi) − · · · − BmPm(xi), i = 1, 2, · · · , n, t = 1, 2, · · · , (28)

MS Et =
1
n

n∑

i=1

e2
it , (29)

where E(MS Et) = 1, Var(MS Et) =
2σ4

0
n . Then, the EWMA statistics are defined as follows,

respectively:

EWMAl(t) = λB̂lt + (1 − λ)EWMAl(t − 1), (30)

EWMAE(t) = max{λ(MS Et − 1) + (1 − λ)EWMAE(t − 1), 0} (31)

with the starting values EWMAl(0) = Bl, EWMAE(0) = 0, where t = 1, 2, · · · , l = 1, 2, · · · ,m.
The control limits for EWMAl in equation (30) and EWMAE in equation (31) are calculated as

follows, respectively:

UCL = Bl + Kl

√√√√√ λ

2 − λ ·
σ2

0
n∑

i=1
P2

l (xi)
, (32)

LCL = Bl − Kl

√√√√√ λ

2 − λ ·
σ2

0
n∑

i=1
P2

l (xi)
, (33)
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UCL = LE

√
λ

2 − λ ·
2σ4

0

n
, (34)

where regression multiplier Kl > 0 and error multiplier LE > 0 are obtained in order to achieve a
specified ARL0.

4.5 Simulation comparisons

In this section, the WLRT chart is compared with four charts mentioned above in terms of ARL.
The control limits or the corresponding design parameters of the above five charts are obtained
by simulation. Both the T 2 chart and the MEWMA chart are single chart schemes to monitor the
model parameters and error variance, while the MCUSUM/χ2 chart and Ortho chart are combined
control chart schemes.

In order to be consistent with Kazemzadeh et al. [35], we consider the IC model defined
by equation (14). The control limits and the corresponding design parameters are presented in
Table 2 when ARL0 = 200 and λ = 0.1. In the MCUSUM/χ2 chart, we use two one-sided
charts for a fair comparison, and we set the OC vectors values equal to (3.1, 2.025, 1.01) and
(2.9, 1.975, 0.99), respectively. The control limits for these two one-sided charts (named as
MCUSUM1 and MCUSUM2) are 6.25 and the control limit for the χ2 chart is 28.2. Note that
this choice of control limits makes the single chart IC ARL approximately 600, and when the com-
bined charts used, the IC ARL approximately 200. Numerical computations based on 50,000 runs
are used to determine ARL values and the shift form of parameters considered are the same as that
of Kazemzadeh et al. [35].

[Insert table 2 about here]

It should be pointed out that Kazemzadeh et al. [35] only considered the upward shift of error
variance and did not consider the downward shift. However, it is also important for monitoring the
decrease of variance in practice, because the decrease of variance means enhancement of product
quality and improvement. To this end, we also consider the decrease of variance in this paper. The
comparison results of OC ARL for detecting any single shift in A0, A1, A2, and σ0 are presented in
Table 3. In addition, simultaneous parameter changes are also considered. In order to save space,
the OC ARL values for detecting parameters shift simultaneously are summarized in Table 4-6, as
representative examples for illustration (Other kinds of shift results are available from the authors
upon request).

[Insert table 3 about here]

[Insert table 4 about here]
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[Insert table 5 about here]

[Insert table 6 about here]

According to Tables 3-6, we can draw the following conclusions:

• When the intercept A0 is changed to A0 +ασ0, the T 2 chart performs worst among all charts.
The other four charts perform roughly the same. When α < 0.25, the MCUSUM/χ2 chart
performs best, but for several larger shifts (α ≥ 0.25), the Ortho chart performs best.

• When the second parameter A1 is changed from A1 to A1 +βσ0, the performance of the Ortho
chart and our WLRT chart is similar and both of them perform much better than the other
three charts. Our WLRT chart performs best for smaller shifts (β < 0.03), while the Ortho
chart performs a little better than our WLRT chart for moderate shifts (0.03 < β < 0.12).
They have the same performance for larger shifts (β > 0.12).

• When the third parameter A2 is changed from A2 to A2 + γσ0, our WLRT chart performs
best in most cases. The Ortho chart performs nearly the same as our WLRT chart for detect-
ing medium and large shifts. The T 2 chart does not perform well in this situation as well,
and the OC ARL is nearly 200 for smaller shifts, that is to say the T 2 chart can not detect
smaller shifts of parameter A2. The MEWMA chart and the MCUSUM/χ2 chart have similar
performance.

• When the error standard deviation σ0 is changed to δσ0, both upward shift and downward
shift of σ0 are considered. First, in detecting the upward shift of σ0, the Ortho chart performs
best for small and medium shift (1 < δ < 1.7), and our WLRT chart has better performance
than the other three charts when δ > 1.45. Second, in detecting the downward shift of σ, our
WLRT chart performs best for small and medium shift (0.65 < δ < 0.95), and the MEWMA
chart performs best for larger shifts (δ < 0.65). Note that our WLRT chart and MEWMA
chart are ARL unbiased, but the other three charts are ARL biased, that is OC ARL is even
larger than 200. Yang and Arnold [41] found that the ARL biased control chart would take
longer time to detect shifts in the parameter than to trigger a false alarm. So the detection
capability of ARL unbiased WLRT chart and MEWMA chart are better than the other three
charts.

• When A0 and A2 are changed to A0 +ασ0 and A2 +γσ0 simultaneously, the T 2 chart performs
worst in all the charts. The Ortho chart performs best for medium and large shifts of A0, and
our WLRT chart has better performance than the other three charts for small shift of A0 in
the case of γ ≤ 0.01. With the increase of γ values, our WLRT chart performs best in the
case of γ > 0.01.
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• When A0, A1 and A2 are changed to A0 + ασ0, A1 + βσ0 and A2 + γσ0 simultaneously,
α = 0.025 is taken for example. The T 2 chart performs worst in all the charts. Our WLRT
chart and the Ortho chart perform roughly the same, they are the best for all the shifts. For all
the γ values, the performance of the MCUSUM/χ2 chart is better than the MEWMA chart’s
for β ≥ 0.005. But when β < 0.005, the MEWMA chart performs a little better than the
MCUSUM/χ2 chart.

• When A0, A1, A2 and σ0 are changed to A0 +ασ0, A1 +βσ0, A2 +γσ0 and δσ0 simultaneously,
α = 0.025 and β = 0.005 is taken for example. The T 2 chart also performs worst in all the
charts. Our WLRT chart and the Ortho chart still perform nearly the same, they are also
the best for all the shifts. For all the γ values, the performance of the MCUSUM/χ2 chart
is better than the MEWMA chart’s for δ ≥ 1.4. But when δ < 1.4, the MEWMA chart
performs just a little better than the MCUSUM/χ2 chart.

From the comparison results we can see that our new method performs better than the other
methods in small to medium shifts. However, we also observe that no chart performs uniformly
better than the other charts. To this end, Han and Tsung [42] proposed using relative mean index
(RMI) value to evaluate the overall performance of the charts over a range of shifts. The RMI value
of a given control chart is calculated by

RMI =
1
N

N∑

l=1

ARLδl − MARLδl

MARLδl

, (35)

where N is the total number of parameter shifts considered. When a parameter shift δl is considered
to be detected, ARLδl and MARLδl represent the OC ARL of the specified control chart and the
smallest OC ARL of all the control charts to be compared, respectively. The smaller the RMI
value is, the better the overall performance of the control chart will be. The RMI values of each
control chart are computed according to the OC ARL values in Table 3, Table 4, Table 5, and Table
6, respectively. Note that, N = 65 and 60 are considered in Table 3 and Table 4-6 respectively.
In order to save space, only a small part of shifts are presented in the Tables. The notation “*”
in Table 3 means the corresponding OC ARL values are larger than 1000 and the corresponding
ARLδl value is taken as 1000 in stead.

According to Table 3, the RMI results are 33.07, 1.51, 30.85, 35.64, 0.18 for the MCUSUM/χ2,
MEWMA, Ortho, T 2 and WLRT charts, respectively. For these charts, the corresponding RMI
values for Table 4 are 1.96, 2.37, 0.00, 8.29, 0.05, the RMI values for Table 5 are 3.88, 4.17, 0.00
12.36, 0.01, the RMI values for Table 6 are 1.67, 1.86, 0.02, 3.63, 0.14, respectively. From the
RMI values we can see that the WLRT chart has the best overall performance when only a single
parameter shifts. However, when more than two parameters shift simultaneously, the Ortho chart
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has the smallest RMI value and then the WLRT chart, respectively, but the difference is almost
negligible.

5 The effect of parameter estimates on WLRT control chart

In the above WLRT control chart, the parameters of model (14) are assumed to be known as
A0 = 3, A1 = 2, A2 = 1, σ2 = 1. But in many practical applications, the model parameters are
unknown, the IC Phase I sample data are needed to estimate the model parameters. In this section,
we study the effect of parameter estimates on our WLRT chart.

For the model

yit = A0 + A1xi + A2x2
i + εit, εit ∼ N(0, σ2), i = 1, 2, · · · , n, t = 1, 2, · · · ,

the least square estimates of parameters A0, A1 and A2 for sample t are


Â0t

Â1t

Â2t

 = (XT X)−1XT Yt.

where

X =



1 x1 x2
1

1 x2 x2
2

...
...

...
1 xn x2

n


,Yt =



y1t

y2t
...

ynt


.

The variance σ2 of εit is estimated by the tth mean squared error MS Et, where

MS Et =
S S Et

(n − 3)
,

S S Et =
∑n

i=1 e2
it is the residual sum of squares, and eit = yit − Â0t − Â1txi − Â2tx2

i , i = 1, 2, · · · , n.
When the parameters of model (14) are unknown, k groups IC Phase I samples are needed to

estimate the model parameters. Usually the averages of Â0t, Â1t, Â2t, and MS Et are considered as
the parameter estimates of A0, A1, A2, σ

2, respectively, i.e.

Â0 =
1
k

k∑

t=1

Â0t, Â1 =
1
k

k∑

t=1

Â1t, Â2 =
1
k

k∑

t=1

Â2t, σ̂
2 = MS E =

1
k

k∑

t=1

MS Et.

Without loss of generality, the underlying IC model (14) yit = 3 + 2xi + x2
i + εit, i =

1, 2, · · · , n, t = 1, 2, · · · is considered, where the εit ∼ N(0, 1). The run length performance of
WLRT control chart with estimated parameters depends on the values of k, n, and λ. For simplicity,
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we only consider the case of n = 10 in our simulation study, and xi = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are
chosen so that x = 0. The five values of k (10, 30, 50, 70, 100) and three values of λ (0.05, 0.10, 0.20)
are considered. The IC ARL and SDRL values of WLRT control chart with estimated parameters
for different values of k and λ are given in Table 7. From Table 7 we can see that the IC perfor-
mance of WLRT control chart when estimated parameters are used in designing the control chart
statistics is strongly affected if we use the corresponding upper control limits designed based on
known parameters. This serious effect is caused by ignoring the variability added by estimating
the unknown parameters, this will lead to substantial increase of false alarms as shown in Table 7.

[Insert Table 7 about here]

In order to achieve a desired in control ARL as in the case of model parameters are known,
many authors have recommended that the number of Phase I samples m should be increased to
an appropriate level to reduce the effect of parameter estimates. So we give the sufficient number
of IC Phase I samples needed to produce an IC ARL of 200 for different values of the smoothing
parameter λ as follows: λ = 0.05, k = 350, λ = 0.10, k = 120, λ = 0.20, k = 100. The results
show that a larger number of Phase I samples is required when smaller λ is used.

In order to achieve the desired IC ARL but without waiting a long time to obtain the IC Phase
I sample data, we can use the corrected control limits for different λ and k values. The corrected
control limits with estimated parameters are given in Table 8 by simulation. From Table 8, we can
obtain that all the corrected control limits are more than the control limits with known parameters.

[Insert Table 8 about here]

So in practical applications, we have two choices to achieve the desired IC ARL when the
parameters are estimated. First we can choose appropriate number of IC Phase I samples for
different λ. Second we can use the corrected control limits for different λ and k values.

6 An illustrative example

In this section, we demonstrate the application of the proposed WLRT chart by a simulated exam-
ple. The IC model is the same as equation (14) and σ2

0 = 1. First, 20 groups of IC sample data are
generated, and then a shift of intercept A0 is artificially added on the IC model. When the process
is OC, it is assumed that the intercept A0 is shifted from 3 to 3.5, then 20 OC profiles are generated
through Monte Carlo simulation. In order to save space, the simulated data are not presented in the
paper but available from the authors.

We use this simulated dataset to illustrate the efficiency of the control charts mentioned above.
The design parameters of all charts are the same as in Table 2. The charting statistic values are
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calculated, and they are shown as plot (a)-(h) in Figure 2. From Figure 2 we can see that the
WLRT chart and the MEWMA chart first signal at the 16th and 24th sample respectively, and all
the charting statistic values are above the corresponding UCLs after the first signal occurs. The
T 2 chart only signals at sample number 18 and 21. In the MCUSUM/χ2 chart, two MCUSUM
statistic values exceed the UCL line for the first time from sample number 22 and 14 respectively.
The χ2 chart never gives a signal. In the Ortho chart, all the EWMA1 statistic values after sample
22 exceed the UCL, except for sample 23, and only the EWMAE statistic value of sample 22 is
above the UCL. Both the EWMA2 and EWMA3 statistic values are in the corresponding control
limit intervals. This shows that our WLRT chart is quite a useful alternative tool for practitioners
by taking into account its performance of detecting various shifts.

[Insert figure 2 about here]

7 Conclusion remarks

A new Phase II WLRT chart is proposed for monitoring polynomial profiles. The new chart is
easily designed and more competitive than the other existing charts in terms of ARL, especially
for detecting the decrease of variance. The introduced WLRT chart is a synthetic chart, so it is
unable to determine which parameter or parameters have been changed when the WLRT control
chart signals. There have been some testing methods for diagnosing simple linear profiles in the
literature. For example, Hawkins and Zamba [43] proposed two-sided F test and asymptotic t test.
These methods can be applied in diagnosing polynomial profiles.
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Appendix

The derivation of equation (11):
As

Yt(θ, λ) =

t∑

j=0

ω j,λl j(θ)

= −1
2

(
Yp,t logσ2

0 + Yc,t
1
σ2

0

)
,

where Yp,t = n
t∑

j=0
ω j,λ = n,Yc,t =

t∑
j=0
ω j,λ

n∑
i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )2.

Taking a partial derivative of Yt(θ, λ) on θ , and letting the values of the partial derivative be 0,
we can obtain



∂Yt(θ, λ)
∂σ2

0

= −1
2

[
n

1
σ2

0

− Yc,t
1

(σ2
0)2

]
= 0

∂Yt(θ, λ)
∂B0

=
1

2σ2
0

t∑

j=0

ω j,λ · 2
n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi ) = 0

∂Yt(θ, λ)
∂B1

=
1

2σ2
0

t∑

j=0

ω j,λ · 2
n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )x∗i = 0

∂Yt(θ, λ)
∂B2

=
1

2σ2
0

t∑

j=0

ω j,λ · 2
n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )x∗2i = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∂Yt(θ, λ)
∂Bm

=
1

2σ2
0

t∑

j=0

ω j,λ · 2
n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )x∗mi = 0.

Then

σ2
0 =

1
n

Yc,t =
1
n

t∑

j=0

ω j,λ

n∑

i=1

(yi j − B0 − B1x∗i − · · · − Bmx∗mi )2,

16



and 

nB0 +

n∑

i=1

x∗i B1 +

n∑

i=1

x∗2i B2 + · · · +
n∑

i=1

x∗mi Bm =

t∑

j=0

ω j,λ

n∑

i=1

yi j

n∑

i=1

x∗i B0 +

n∑

i=1

x∗2i B1 +

n∑

i=1

x∗3i B2 + · · · +
n∑

i=1

x∗m+1
i Bm =

t∑

j=0

ω j,λ

n∑

i=1

yi jx∗i

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
n∑

i=1

x∗mi B0 +

n∑

i=1

x∗m+1
i B1 +

n∑

i=1

x∗m+2
i B2 + · · · +

n∑

i=1

x∗2m
i Bm =

t∑

j=0

ω j,λ

n∑

i=1

yi jx∗mi .

Let A be the coefficient matrix of the above non-homogeneous linear equations, i.e.,

A =



n
n∑

i=1
x∗i

n∑
i=1

x∗2i · · ·
n∑

i=1
x∗mi

n∑
i=1

x∗i
n∑

i=1
x∗2i

n∑
i=1

x∗3i · · ·
n∑

i=1
x∗m+1

i

...
...

...
. . .

...
n∑

i=1
x∗mi

n∑
i=1

x∗m+1
i

n∑
i=1

x∗m+2
i · · ·

n∑
i=1

x∗2m
i



.

Then, according to Cramer’s rule, the WMLE of B̂0, B̂1, · · · , B̂m, can be described as follows:

B̂0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t∑
j=0
ω j,λ

n∑
i=1

yi j

n∑
i=1

x∗i
n∑

i=1
x∗2i · · ·

n∑
i=1

x∗mi

t∑
j=0
ω j,λ

n∑
i=1

yi jx∗i
n∑

i=1
x∗2i

n∑
i=1

x∗3i · · ·
n∑

i=1
x∗m+1

i

...
...

...
. . .

...
t∑

j=0
ω j,λ

n∑
i=1

yi jx∗mi

n∑
i=1

x∗m+1
i

n∑
i=1

x∗m+2
i · · ·

n∑
i=1

x∗2m
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|A| ,

B̂1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n
t∑

j=0
ω j,λ

n∑
i=1

yi j

n∑
i=1

x∗2i · · ·
n∑

i=1
x∗mi

n∑
i=1

x∗i
t∑

j=0
ω j,λ

n∑
i=1

yi jx∗i
n∑

i=1
x∗3i · · ·

n∑
i=1

x∗m+1
i

...
...

...
. . .

...
n∑

i=1
x∗mi

t∑
j=0
ω j,λ

n∑
i=1

yi jx∗mi

n∑
i=1

x∗m+2
i · · ·

n∑
i=1

x∗2m
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|A| ,

· · ·
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B̂m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n
n∑

i=1
x∗i

n∑
i=1

x∗2i · · ·
t∑

j=0
ω j,λ

n∑
i=1

yi j

n∑
i=1

x∗i
n∑

i=1
x∗2i

n∑
i=1

x∗3i · · ·
t∑

j=0
ω j,λ

n∑
i=1

yi jx∗i
...

...
...

. . .
...

n∑
i=1

x∗mi

n∑
i=1

x∗m+1
i

n∑
i=1

x∗m+2
i · · ·

t∑
j=0
ω j,λ

n∑
i=1

yi jx∗mi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|A| .

The WMLE of σ̂2
0 can be obtained as

σ̂2
0 =

1
n

Ŷc,t =
1
n

t∑

j=0

ω j,λ

n∑

i=1

(yi j − B̂0 − B̂1x∗i − · · · − B̂mx∗mi )2.

Let θ̂t = (B̂0, B̂1, B̂2, · · · , B̂m, σ̂
2
0), θ = (B0, B1, B2, · · · , Bm, σ

2
0). Then the −2×logarithm of WLRT

statistic can be given as:

Rt,λ = 2
[
Yt (̂θt, λ) − Yt(θ, λ)

]

= 2 · (−1
2

)
(
Yp,t log σ̂2

0 + Ŷc,t
1
σ̂2

0

− Yp,t logσ2
0 − Yc,t

1
σ2

0

)

= −
Yp,t log

 Ŷc,t

σ2
0Yp,t

 + Yp,t − Yc,t

σ2
0



=
Yc,t

σ2
0

− Yp,t + Yp,t log

σ2

0Yp,t

Ŷc,t



=
Yc,t

σ2
0

+ n log

nσ2

0

Ŷc,t

 − n.
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Figure 1: The OC ARL comparisons of the WLRT chart with varying parameters λ
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Table 1: The OC ARL comparisons under two terms of A0, A1, A2 shift

α
β 0.0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.4

0.0 199.8 183.7 142.1 103.1 74.7 54.4 41.7 32.7 26.9 22.3 19.1 16.6 14.6 9.9
0.01 123.3 90.4 66.0 49.8 38.3 30.7 25.3 21.3 18.4 16.1 14.3 12.8 11.5 8.4
0.02 56.1 43.1 34.3 28.1 23.4 20.0 17.4 15.4 13.7 12.3 11.2 10.2 9.5 7.2
0.03 29.9 24.8 21.4 18.5 16.3 14.5 13.0 11.8 10.8 10.0 9.2 8.5 8.0 6.3
0.04 19.3 17.1 15.0 13.6 12.3 11.3 10.3 9.5 8.9 8.3 7.8 7.3 6.9 5.6
0.05 14.1 12.7 11.6 10.6 9.9 9.2 8.5 8.0 7.5 7.1 6.7 6.4 6.0 5.0
0.1 5.7 5.4 5.2 5.0 4.8 4.6 4.4 4.3 4.1 4.0 3.8 3.7 3.6 3.2
0.2 2.4 2.3 2.3 2.2 2.2 2.1 2.1 2.1 2.0 2.0 2.0 1.9 1.9 1.8

α
γ 0.0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.4

0.0 200.8 181.9 142.7 103.8 74.7 54.6 41.4 32.6 26.7 22.3 19.0 16.6 14.6 9.9
0.001 141.9 108.6 79.9 59.8 45.2 35.4 28.6 23.8 20.1 17.5 15.3 13.7 12.6 8.8
0.003 40.8 34.1 28.3 24.0 20.6 18.1 16.0 14.3 12.9 11.6 10.6 9.9 9.1 7.0
0.005 18.9 17.0 15.3 13.8 12.6 11.6 10.7 9.9 9.1 8.6 8.0 7.5 7.1 5.7
0.008 9.8 9.2 8.7 8.2 7.8 7.3 6.9 6.6 6.3 6.0 5.7 5.5 5.2 4.4
0.02 3.1 3.0 3.0 2.9 2.8 2.8 2.7 2.6 2.6 2.5 2.5 2.4 2.4 2.2
0.04 1.3 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0

β
γ 0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.1 0.2 0.3

0.0 200.8 148.8 117.3 96.9 83.7 75.0 68.4 63.7 60.1 57.3 54.9 45.6 41.5 28.4
0.001 133.4 108.0 90.6 79.4 72.0 66.3 62.2 58.8 56.2 53.9 52.0 43.9 40.3 27.5
0.003 80.4 72.2 66.5 62.3 58.9 56.2 54.0 52.0 50.3 48.8 47.4 41.0 37.9 25.9
0.005 62.4 59.0 56.2 54.0 52.0 50.3 48.7 47.3 46.1 44.9 43.9 38.6 35.7 24.2
0.008 51.0 49.4 48.0 46.6 45.4 44.3 43.2 42.3 41.4 40.5 39.6 35.3 32.7 21.8
0.02 33.2 32.5 31.9 31.3 30.8 30.2 29.6 29.0 28.5 27.9 27.4 24.2 22.2 13.8
0.04 16.4 16.0 15.6 15.2 14.9 14.5 14.2 13.9 13.5 13.2 12.9 11.2 10.2 6.8
0.10 3.0 3.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.8 2.6 2.4 2.0
0.20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table 2: The control limits and corresponding design parameters

Methods LCL UCL design parameters
T 2 — 12.83 —

MCUSUM1 — 6.25 (3.1,2.025,1.01)
MCUSUM2 — 6.25 (2.9,1.975,0.99)

χ2 — 28.2 —
MEWMA — 0.6711 12.75

Ortho(EWMA0) 52.1732 52.8268 3.03
Ortho(EWMA1) 6.4431 6.5569 3.03
Ortho(EWMA2) 1.9101 2.0899 3.03
Ortho(EWMAE) — 0.5352 3.03

WLRT — 0.975 —
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Table 3: The OC ARL comparisons under shifts in A0, A1, A2, σ0

α
Methods 0.05 0.075 0.10 0.125 0.15 0.175 0.20 0.225 0.25 0.275 0.3 0.4 0.5

MCUSUM/χ2 136.1 94.1 65.6 47.8 36.1 28.1 23.0 19.2 16.4 14.2 12.6 8.6 6.5
MEWMA 139.5 100.0 70.7 50.6 38.5 29.9 24.3 19.9 17.1 14.8 13.0 8.8 6.7

Ortho 148.7 107.3 74.1 52.3 38.9 29.6 23.7 19.3 16.3 14.1 12.4 8.2 6.2
T 2 189.8 178.2 165.6 149.4 133.7 119.0 103.1 90.6 77.4 67.4 57.4 31.6 17.6

WLRT 141.3 103.8 73.6 54.2 41.6 32.8 26.7 22.4 19.1 16.6 14.7 9.9 7.4
β

Methods 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.2
MCUSUM/χ2 197.4 181.6 162.8 137.9 117.4 100.5 70.7 51.3 38.9 30.2 24.1 19.7 16.6

MEWMA 176.2 127.0 85.6 57.2 40.7 30.6 19.4 13.9 10.8 8.8 7.5 6.5 5.7
Ortho 128.3 57.5 29.8 18.5 13.1 10.3 7.0 5.4 4.4 3.7 3.2 2.8 2.4

T 2 194.3 186.5 172.1 154.3 138.3 119.4 87.3 62.5 44.1 31.3 22.1 16.1 11.8
WLRT 122.7 55.6 29.8 19.2 14.0 10.9 7.5 5.7 4.5 3.7 3.2 2.7 2.4

γ
Methods 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04

MCUSUM/χ2 197.2 182.8 165.6 145.0 123.4 105.9 89.7 76.6 65.4 57.3 19.6 10.9 7.5
MEWMA 197.8 188.8 170.8 149.0 130.5 112.8 96.7 82.3 71.4 60.8 20.7 11.4 7.8

Ortho 147.7 80.1 44.4 27.9 19.4 14.8 11.8 9.9 8.5 7.5 3.4 1.9 1.2
T 2 198.2 195.6 195.8 190.1 186.8 183.5 178.2 172.3 162.3 159.5 93.4 48.0 24.7

WLRT 142.2 73.6 41.1 26.3 19.0 14.6 11.7 9.8 8.4 7.4 3.1 1.9 1.3
δ

Methods 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.7 1.8 2.0
MCUSUM/χ2 113.5 65.9 39.1 24.3 16.4 11.2 8.1 6.1 4.8 3.9 2.1 1.7 1.3

MEWMA 95.7 42.3 24.2 16.2 12.1 9.6 8.0 6.8 6.0 5.4 3.8 3.4 2.8
Ortho 71.4 30.4 16.8 11.2 8.3 6.5 5.4 4.6 4.0 3.5 2.4 2.1 1.7

T 2 113.7 71.0 46.3 32.6 23.9 18.1 14.0 11.4 9.4 7.9 4.6 3.7 2.7
WLRT 98.2 42.2 22.8 15.1 11.2 8.8 7.2 6.1 5.3 4.7 3.2 2.7 2.1

δ
Methods 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.30

MCUSUM/χ2 355.6 607.4 971.1 * * * * * * * * * *
MEWMA 174.4 80.0 38.2 22.2 14.9 11.1 6.1 5.3 4.6 4.1 3.7 3.3 2.9

Ortho 465.8 812.5 * * * * * * * * * * *
T 2 376.9 738.5 * * * * * * * * * * *

WLRT 124.8 50.4 26.4 17.5 13.2 10.7 9.2 8.1 7.3 6.7 6.3 6.0 5.5
∗ denotes the corresponding value are larger than 1,000.
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Table 4: The OC ARL comparisons under A0 and A2 shift simultaneously

α
Methods γ 0.025 0.05 0.075 0.10 0.125 0.15 0.20 0.25 0.3 0.4

MCUSUM/χ2 0.001 159.2 115.3 80.4 57.0 42.0 32.2 21.2 15.3 12.0 8.3
MEWMA 167.2 124.9 88.1 62.9 46.0 35.1 22.6 16.2 12.6 8.6

Ortho 112.3 81.4 58.5 43.0 32.6 25.8 17.6 13.0 10.3 7.3
T 2 195.1 186.2 172.2 158.4 143.6 128.5 97.3 73.5 54.8 30.1

WLRT 108.6 79.9 59.8 45.2 35.4 28.6 20.1 15.3 12.6 8.8
MCUSUM/χ2 0.003 119.0 82.7 58.6 43.6 33.1 26.4 18.1 13.7 10.9 7.8

MEWMA 131.7 95.6 67.7 50.2 37.4 29.5 19.9 14.8 11.7 8.2
Ortho 35.4 28.4 23.2 19.6 16.6 14.4 11.2 9.2 7.7 5.9

T 2 186.9 176.0 162.8 150.4 133.1 116.0 88.3 66.0 49.5 27.3
WLRT 34.1 28.3 24.0 20.6 18.1 16.0 12.9 10.6 9.1 7.0

MCUSUM/χ2 0.005 86.2 61.2 45.2 34.0 26.9 22.0 15.9 12.4 10.1 7.3
MEWMA 98.3 72.3 52.8 40.0 31.1 25.1 17.6 13.5 10.9 7.8

Ortho 17.0 15.0 13.4 12.0 10.8 9.8 8.3 7.1 6.2 5.0
T 2 175.0 166.8 152.1 136.2 119.9 106.5 80.9 60.3 44.5 24.5

WLRT 17.0 15.3 13.8 12.6 11.6 10.7 9.1 8.0 7.1 5.7
MCUSUM/χ2 0.01 42.0 32.3 25.8 21.1 17.8 15.4 12.0 9.8 8.4 6.4

MEWMA 47.8 37.2 30.0 24.7 20.7 17.8 13.6 11.0 9.2 6.9
Ortho 7.0 6.7 6.4 6.0 5.7 5.5 5.0 4.5 4.2 3.6

T 2 144.5 131.5 117.8 105.7 92.2 81.4 60.4 45.5 33.2 18.8
WLRT 7.0 6.7 6.4 6.1 5.9 5.6 5.2 4.8 4.4 3.8

MCUSUM/χ2 0.03 9.9 9.1 8.4 7.8 7.2 6.8 6.0 5.4 4.9 4.2
MEWMA 10.6 9.8 9.2 8.5 8.0 7.6 6.8 6.1 5.6 4.7

Ortho 1.9 1.9 1.8 1.8 1.7 1.7 1.6 1.6 1.5 1.4
T 2 43.0 37.9 33.6 29.8 26.0 22.9 18.1 13.8 11.0 6.9

WLRT 1.9 1.8 1.8 1.8 1.8 1.7 1.7 1.6 1.6 1.5
MCUSUM/χ2 0.05 5.5 5.2 4.9 4.7 4.5 4.3 4.0 3.7 3.5 3.0

MEWMA 5.8 5.6 5.4 5.2 5.0 4.8 4.5 4.2 4.0 3.6
Ortho 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

T 2 12.0 11.0 9.9 8.9 8.1 7.4 6.0 5.0 4.2 3.0
WLRT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table 5: The OC ARL comparisons under A0, A1 and A2 shift simultaneously

γ
α = 0.025 β 0.001 0.002 0.003 0.005 0.008 0.01 0.03 0.05 0.1 0.2

MCUSUM/χ2 0.005 149.5 129.8 110.2 80.1 50.9 39.2 9.8 5.4 2.4 1.0
MEWMA 163.5 144.8 127.8 96.5 61.8 48.0 10.6 5.8 2.9 1.8

Ortho 74.5 41.9 26.7 14.5 8.4 6.6 1.8 1.0 1.0 1.0
T 2 191.7 189.8 185.8 177.4 158.9 145.6 42.4 12.1 1.7 1.0

WLRT 72.5 40.8 26.4 14.5 8.4 6.5 1.8 1.0 1.0 1.0
MCUSUM/χ2 0.01 139.8 120.1 102.2 74.2 47.5 37.1 9.6 5.4 2.4 1.0

MEWMA 148.6 134.8 119.7 92.4 60.1 46.3 10.6 5.8 2.9 1.8
Ortho 50.6 30.8 21.2 12.5 7.7 6.2 1.8 1.0 1.0 1.0

T 2 190.3 185.6 184.4 176.3 157.7 144.4 42.1 11.9 1.7 1.0
WLRT 50.1 30.7 21.2 12.8 7.8 6.1 1.8 1.0 1.0 1.0

MCUSUM/χ2 0.015 128.9 109.8 92.7 79.3 44.4 34.8 9.4 5.3 2.4 1.0
MEWMA 131.5 120.7 107.4 82.9 56.5 44.5 10.5 5.8 2.9 1.8

Ortho 36.2 23.8 17.5 11.0 7.1 5.8 1.8 1.0 1.0 1.0
T 2 187.8 181.5 178.5 170.2 155.3 142.1 42.9 12.1 1.7 1.0

WLRT 35.8 24.1 17.7 11.2 7.2 5.8 1.7 1.0 1.0 1.0
MCUSUM/χ2 0.03 100.4 85.8 73.3 54.3 36.6 29.4 8.9 5.1 2.3 1.0

MEWMA 77.9 73.9 68.4 57.7 43.4 35.9 10.2 5.8 2.9 1.8
Ortho 17.4 13.7 11.1 8.1 5.8 4.9 1.6 1.0 1.0 1.0

T 2 168.9 167.2 163.1 155.8 139.5 129.4 39.6 11.7 1.7 1.0
WLRT 18.3 14.2 11.5 8.4 5.9 4.9 1.6 1.0 1.0 1.0

MCUSUM/χ2 0.04 84.9 71.8 62.1 47.3 32.9 26.8 8.6 5.0 2.3 1.0
MEWMA 54.4 52.6 49.5 43.7 35.1 30.4 9.9 5.7 2.9 1.8

Ortho 12.6 10.5 8.9 6.9 5.2 4.5 1.5 1.0 1.0 1.0
T 2 151.8 151.2 147.8 141.8 127.7 117.9 38.4 11.5 1.7 1.0

WLRT 13.4 11.1 9.3 7.1 5.2 4.4 1.6 1.0 1.0 1.0
MCUSUM/χ2 0.05 72.2 63.3 53.6 41.4 29.2 24.5 8.3 5.0 2.2 1.0

MEWMA 39.5 38.2 37.1 33.6 28.4 25.5 9.6 5.6 2.9 1.8
Ortho 9.9 8.5 7.5 6.0 4.7 4.1 1.5 1.0 1.0 1.0

T 2 134.6 132.4 131.1 124.7 113.1 106.6 35.5 11.0 1.6 1.0
WLRT 10.6 9.0 7.9 6.2 4.7 4.0 1.5 1.0 1.0 1.0
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Table 6: The OC ARL comparisons under A0, A1, A2 and σ shift simultaneously

δ
α = 0.025 β = 0.005 γ 1.05 1.1 1.15 1.2 1.25 1.3 1.4 1.5 1.7 2.0

MCUSUM/χ2 0.001 94.1 58.6 36.8 23.7 15.9 11.1 6.1 3.9 2.2 1.4
MEWMA 84.2 40.3 23.6 15.9 12.1 9.6 6.9 5.4 3.9 2.8

Ortho 44.8 25.1 15.5 10.8 8.1 6.4 4.6 3.6 2.5 1.7
T 2 111.9 70.5 46.0 32.4 23.6 18.1 11.3 7.8 4.5 2.7

WLRT 51.3 31.0 19.8 14.0 10.6 8.4 6.0 4.6 3.1 2.1
MCUSUM/χ2 0.003 76.8 51.1 33.6 22.7 15.5 10.9 6.1 3.9 2.2 1.4

MEWMA 73.6 37.7 22.7 15.6 11.9 9.5 6.9 5.4 3.8 2.8
Ortho 22.4 17.1 12.6 9.5 7.4 6.1 4.5 3.5 2.4 1.7

T 2 106.9 68.1 45.2 31.7 23.3 17.9 11.3 7.8 4.6 2.8
WLRT 23.2 18.5 14.4 11.3 9.2 7.6 5.6 4.4 3.1 2.1

MCUSUM/χ2 0.005 61.2 44.3 30.7 21.3 14.9 10.8 6.1 3.9 2.2 1.4
MEWMA 60.8 34.3 21.6 15.3 11.8 9.4 6.8 5.3 3.8 2.8

Ortho 13.5 11.7 9.8 7.9 6.7 5.6 4.1 3.3 2.4 1.7
T 2 103.2 66.3 44.2 31.3 22.9 17.3 11.1 7.7 4.5 2.7

WLRT 13.6 12.1 10.4 8.9 7.7 6.6 5.1 4.1 3.0 2.6
MCUSUM/χ2 0.01 34.4 28.6 22.7 17.3 13.0 9.8 5.8 3.8 2.1 1.4

MEWMA 36.3 25.5 18.4 13.7 10.8 8.9 6.6 5.2 3.8 2.8
Ortho 6.4 6.1 5.7 5.2 4.7 4.2 3.5 2.9 2.2 1.6

T 2 88.2 57.4 39.3 27.6 20.9 16.2 10.5 7.4 4.4 2.8
WLRT 6.3 6.0 5.6 5.3 4.9 4.5 3.9 3.4 2.6 1.9

MCUSUM/χ2 0.03 9.5 9.2 8.6 7.9 6.9 6.1 4.4 3.2 1.9 1.3
MEWMA 10.2 9.5 8.8 7.9 7.2 6.5 5.4 4.6 3.6 2.7

Ortho 1.8 1.8 1.7 1.7 1.7 1.6 1.5 1.5 1.3 1.2
T 2 30.8 23.2 17.7 14.2 11.7 9.6 7.1 5.4 3.6 2.5

WLRT 1.8 1.8 1.7 1.7 1.7 1.6 1.6 1.5 1.4 1.3
MCUSUM/χ2 0.05 5.3 5.1 4.9 4.7 4.3 3.9 3.1 2.6 1.8 1.3

MEWMA 5.7 5.6 5.5 5.2 4.9 4.7 4.3 3.9 3.2 2.6
Ortho 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

T 2 10.0 8.6 7.4 6.4 5.6 5.0 4.2 3.5 2.8 2.1
WLRT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table 7: In control ARL and SDRL comparisons when m Phase I samples are used to estimate the
unknown parameters

k
λ UCL 10 30 50 70 100

0.05 0.434 ARL 84.4 124.6 142.1 153.9 167.5
SDRL 114.7 113.9 139.7 143.3 149.9

0.10 0.975 ARL 103.7 147.5 168.2 179.9 194.6
SDRL 142.3 164.7 175.2 179.5 189.4

0.20 2.180 ARL 120.8 163.8 181.7 192.7 200.9
SDRL 119.0 155.1 179.8 189.3 197.1

Table 8: The corrected control limits with estimated parameters (n=10)

k
λ 10 30 50 70 100

0.05 0.503 0.470 0.460 0.453 0.448
0.10 1.070 1.015 1.000 0.988 0.980
0.20 2.310 2.230 2.205 2.190 2.180
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Figure 2: The comparison of control charts for the simulated data
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