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Abstract

In high-dimensional regression, the presence of influential observations may lead
to inaccurate analysis results so that it is a prime and important issue to detect
these unusual points before statistical regression analysis. Most of the tradition-
al approaches are, however, based on single-case diagnostics, and they may fail
due to the presence of multiple influential observations that suffer from masking
effects. In this paper, an adaptive multiple-case deletion approach is proposed
for detecting multiple influential observations in the presence of masking effects in
high-dimensional regression. The procedure contains two stages. Firstly, we pro-
pose a multiple-case deletion technique, and obtain an approximate clean subset of
the data that is presumably free of influential observations. To enhance efficiency,
in the second stage, we refine the detection rule. Monte Carlo simulation studies
and a real-life data analysis investigate the effective performance of the proposed
procedure.

Keywords: Influential points; Masking; Regression diagnostics; High-dimensional
regression.

1 Introduction

An observation is flagged as influential if some important features of the regression anal-
ysis are noticeably changed after this observation is removed in the regression model, (see
Cook, 1977, Belsley et al., 1980). The presence of these abnormal observations would
possibly lead to erroneous influential results, therefore, it is necessary to detect such ob-
servations and remove them in regression analysis. As Davies and Gather (1993) pointed
out, although the detection of outliers in a univariate sample has been investigated ex-
tensively in the statistical literature, the word “outlier” has never been given a precise
definition.

In the past few decades, many statisticians have concentrated on the problem of
detecting influential observations in various regression models, and many effective ap-
proaches have been proposed. The common approaches are by utilizing single-case dele-
tion measures to detect the observations that unduly affect the ordinary least square
(OLS) estimate, for example, Cook’s distance, DFBETAS, and DFFITS, (see reference,
Cook, 1977, 1979, Chatterjee et al., 1988, Cook and Weisberg, 1982, etc.). These single-
case deletion methods can work well for detecting the problematic observations when the
data set contain a single or few influential points.
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However, when there are a certain proportion of influential points in a data set, the
single-case deletion methods may fail to identify all the problematic observations. This
is likely due to the existence of multiple influential observations that may suffer from
the so-called “masking effect”, implying that when one or more influential points were
deleted from the data set, another observation may emerge as extremely influential, which
was not visible at first, (see reference Rousseeuw and Leroy, 1987). In other words, the
real influential observations may not look like influential, therefore, multiple influential
observations may mask each other and go undetected. The opposite effect is known as
swamping (see Barnett and Lewis, 1994, Hadi and Simonoff, 1993), which makes non-
influential observations appear influential.

To reduce the impact of masking or swamping effects by single-case deletion approach-
es, an effective way is by use of multiple-case deletion approach, which was proposed first
by Belsley et al. (1980). It is a direct approach, and the main idea is deleting more than a
single observation once, and constructing measures with and without these deleted obser-
vations. Due to the development of computing tools, many related studies have emerged,
see, for example, Pena and Yohai (1999), Becker and Gather (2001), Pena (2005), Imon
(2005), Nurunnabi et al. (2014), etc. Roberts et al. (2015) built upon these previous
work and proposed an adaptive, automatic multiple-case deletion procedure (ADAP, in
short) to detect influential points in linear regression model, and simulation studies and
three real-data examples showed that the ADAP procedure is an effective method.

In high dimensional regression, data sets usually consist of a few influential points
inevitably, as the dimensionality of the data increases, both the chance of an observa-
tion being influential and its potential impact on the analysis results may be ampli-
fied. Zhao et al. (2013) defined the high-dimensional influential points, and proposed
high-dimensional influence measure (HIM in short) which captures the influence on the
marginal correlations for high-dimensional linear model and demonstrated that it is par-
ticularly useful in downstream analysis. However, as Zhao et al. (2013)’s work utilizes
single-case deletion method, it may suffer from masking effects, and the power rate of
detecting the problematic points may substantially decrease when the data set consists
multiple influential points, (see, Hawkins 1980; Barnett and Lewis 1984). Zhao et al.
(2016) further studied the problem of multiple influential point detection in high dimen-
sional spaces by a new group deletion procedure referred to as MIP, and they introduced
two novel quantities named Max and Min statistics to overcome the masking effect and
the swamping effect, respectively. However, the MIP method can not attain the tar-
geted Type I errors and thus pays too much price on reducing swamping effect, then it
requires a large amount of computation, and as a result its power rate would be largely
compromised.

In this paper, with the aim to identify the true influential points as accurately as
possible, we proposed an adaptive approach to detecting multiple influential points that
suffer from masking effects in high-dimensional regression. Firstly, we sample many sub-
sets from the original data set, so that, after the multiple-case deletion, these influential
points in certain subsets that were masked in the original data set may be detected as
influential. In a similar sprit to the single-case deletion idea of the Cook’s distance, we
defined a measure based on the marginal correlations (or distance correlations) with and
without a fixed observation among the sampled subsets. For each observation, we cal-
culated and obtained the maximum values of the influence measure among the sampled
subsets, studied the asymptotic distribution of the influence measure and developed a
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cutoff value to judge the influence of a given observation. By this procedure, we could
detect and remove those problematical observations, and obtain a reliable non-influential
observations subset. In the second step, to enhance efficiency, we refined the detection
rule to determine whether the deleted observations are really influential or not.

The rest of this paper is organized as follows. In Section 2, we develop a multiple-case
deletion approach and propose a detection algorithm for detecting multiple influential ob-
servations in high-dimensional regression model. Furthermore, a confirmatory procedure
is proposed to augment the multiple-case deletion algorithm. In Section 3, we examine
the performance of the procedure via Monte Carlo simulation studies. In Section 4, a
real-data example is analyzed by the proposed approach. Section 5 concludes the paper.

2 Methods and Properties

2.1 Problems and existing works

Suppose we have a data set that contains a total of n observations, and there are n∗

(n∗ < [n/2]) influential observations, and (n − n∗) normal observations, that is, we
assume the n observations are collected from the following model{

yi = f0(xi) + εi, if i ∈ N \ N ∗,
ỹl = fl(x̃l) + ε̃l, if l ∈ N ∗, (1)

where N ∗ (|N ∗| = n∗) is the influential points index set (a subset of N = {1, . . . , n}),
f0(·) and fl(·), l ∈ N ∗ are two unknown regression functions. That is, {(yi, xi), i ∈
N \N ∗} denotes a data set which consist of n−n∗ normal observations, and {(ỹl, x̃l), l ∈
N ∗} denotes a data set which consist of n∗ influential observations. Any observation
with fi(·) 6= f0(·) is considered as influential. Here, yi is the i-th response variable,
xi = (xi1, . . . , xip) denotes the i-th explanatory variable with p-dimensional vectors,
analogously, ỹl and x̃l = (x̃l1, . . . , x̃lp) denote the l-th response and explanatory variable
of the influential points, the error term εis or ε̃ls are independently and identically
distributed (i.i.d.) as N(0, σ2).

Thus, when building a regression model as (1), the data set {(yi, xi), i ∈ N} would
probably be contaminated by an individual or multiple influential observations {(ỹl, x̃l), l ∈
N ∗}. These influential points are usually modeled by an abnormal change occurred as
the following three forms: (i), in the response variable; (ii), in the covariates; (iii), or in
both the response and the explanatory variables. In this paper, we considered these three
perturbation models only for generating influential points. Beyond that, it is necessary
to assume that only a small proportion (far less than 50%) of observations are influential,
which is reasonable in practice.

In particular, if the relationship between the response and covariates is linear, the
model can be expressed as follows{

yi = xiβ + εi, if i ∈ N \ N ∗,
ỹl = x̃lβ̃ + ε̃l, if l ∈ N ∗, (2)

where N ∗, N , {(yi, xi), i ∈ N \ N ∗}, {(ỹl, x̃l), l ∈ N ∗}, εis and ε̃ls have the same
definitions as those in model (1). Here, β = (β1, . . . , βp) and β̃ = (β̃1, . . . , β̃p)

> are
two different p-vector regression coefficients. In low dimension setting, the ordinary least
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square (OLS) estimate of regression coefficient was chosen as the feature with substantial
change to define influential observations. Roberts et al. (2015) proposed the ADAP to
detect multiple influential points with the masking effects in regression. To measure the
influence of an observation K in the data set {(yi, xi), i ∈ N}, they utilized a “Cook’s
distance”-like statistic

CIK =
(β̂{I,K} − β̂{I})>X>X(β̂{I,K} − β̂{I})

ps2
, (3)

where I = {i1, . . . , ih} denotes an index set with size h to be deleted for a particular

subset, X denotes an n × p design matrix with X = (x1, . . . , xn)>, β̂{I} is the OLS

estimator of coefficients based on the n − h retained observations, β̂{I,K} is the OLS
estimate of coefficients when an observation K from the retained n − h observations is
further deleted, and s2 is the sample estimate of σ2 obtained from model (1) by use of
all the n observations. They repeated M times to delete h observations from the whole
data set, there being n − h values of CIK for a given subset with size h, then calculated
these corresponding n − h values of CIK respectively. On the other hand, for a fixed
observation K, there would be MK (MK ≤M) values of CIK produced by the procedure,
and they chose the maximum values of CIK . The observation K is flagged as influential
if max{CIK} > 1, where the cutoff value 1 is used in their paper.

In high-dimensional settings, where the dimension p is larger than the sample size n,
the ADAP method may fail to detect multiple influential observations in linear regression
model, as the gram matrix is not invertible, and the OLS estimate of the coefficient is
unstable in high dimensional linear regression model, hence we can not get the “Cook’s
distance”-like statistic. On the other hand, we are not sure whether the data comes
from a high-dimensional linear model, then, we we should consider influence detection in
more general models. As a result, we consider using the marginal Pearson correlations
or distance correlations between the response and the predictors to define the influential
observations, and an observation is flagged as influential if the corresponding correlation is
noticeably changed after this observation is removed in high dimensional linear regression
model. Then, in the following sections, we will give a more detailed description of these
correlation-based methods.

2.2 Pearson correlation based methodology for linear model

Here we follow the idea of ADAP in Roberts et al. (2015), consider the problem of
detecting multiple influential observations with masking effects in high-dimension regres-
sion model, and propose a multiple influence detection procedure. The improvement is
that we choose the marginal Pearson correlation estimate instead of the OLS estimate
of the coefficients, and it can deal with high dimensional problem effectively.

Firstly, we delete h observations randomly from the original n observations. Let I =
{i1, . . . , ih} be the set of the indices of the deleting subset, and R = N\I be the set of the
indices of the remaining subset. Then X{R} is the corresponding “after-deletion” design
matrix, and y{R} is the “after-deletion” response variable. The correlations between
the response y{R} and the j-th predictor variables Xj{R} based on the (n− h) retained
observations are denoted by

ρj{R} = Cor(Xj{R}, y{R}), for j = 1, . . . , p.
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Then, we further delete an observationK from the remaining data set {(yi, xi), i ∈ R},
the corresponding “after-deletion” response is y{R,−K}, and design matrix is denoted as
X{R,−K}. The correlations between y{R,−K} and the j-th predictor variables Xj{R,−K}
based on the (n− h− 1) retained observations are denoted as

ρj{R,−K} = Cor(Xj{R,−K}, y{R,−K}), for j = 1, . . . , p.

Denote

ρ̂j{R} =
∑
i∈R

(xij − X̄j)(yi − Ȳ )/

√∑
i∈R

(xij − X̄j)2
∑
i∈R

(yi − Ȳ )2

as the consistent estimate of ρj{R}, with X̄j = 1
n−h

∑
i∈R xij , Ȳ = 1

n−h
∑
i∈R yi. Simi-

larly, denote

ρ̂j{R,−K} =
∑

i∈{R,−K}

(xij − X̄j)(yi − Ȳ )/

√ ∑
i∈{R,−K}

(xij − X̄j)2
∑

i∈{R,−K}

(yi − Ȳ )2,

as the consistent estimate of ρj{R,−K}, with X̄j = 1
n−h−1

∑
i∈{R,−K} xij , Ȳ = 1

n−h−1
∑
i∈{R,−K} yi.

Finally, we determine the influential of the observation K by the discrepancy between
the two correlation estimates, and propose the following “HIM”-like statistic to measure
the influence of an observation K in the retained data,

C{R,−K} =
1

p

p∑
j=1

(ρ̂j{R} − ρ̂j{R,−K})2. (4)

Similar to the idea of ADAP, when there are multiple influential observations in
the data set, a true influential observation K may suffer from masking effect by other
influential ones. Therefore, we repeat deleting h observations from the whole data set
M times, and the majority of the observations that mask observation K are deleted,
then the observation K may become unmasked. For a given “after-deletion” data set
{(yi, xi), i ∈ R}, there will be n − h values of C{R,−K}, calculating these corresponding
n − h values of C{R,−K} respectively. For any observation K ∈ N , there will be MK

(MK ≤ M) values of CIK produced by the procedure. As a result, we consider utilizing
the maximum value of C{R,−K} over all subsets to determine whether an observation K
is influential when other observations are deleted, because if the observation K is a sole
influential point in the entire data set, the corresponding value of C{R,−K} is expected
to be large.

2.3 The multiple-case deletion algorithm

The influential points detection rule can be formulated as the problem of hypothesis
testing with the null hypothesis

H0i : (yi, xi)is not an influential point fori = 1, . . . , n.

After calculating the maximum value of C{R,−K} for each observation, we should find a
cut-off value to determine whether an observation is influential or not. Therefore, it is
possible to determine the asymptotic distribution of C{R,−K} under the null hypothesis.
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Here, we suppose that all the observed data {(yi, xi)ni=1} are generated from model (2),
and under the assumptions (C1)-(C3) as those in Zhao et al. (2013), we derive a similar
conclusion.

Proposition 1 Under assumptions (C1)-(C3), when there are no influential observa-
tions, and min(n− h, p) →∞, then

(n− h)2C{R,−K} → χ2(1),

where χ2(1) is the chi-square distribution with one degree of freedom. Here, the assump-
tion (C3) is a normality assumption on X and the error term are mainly for convenience,
and can be relaxed to the distributions with sub-Gaussian tails, but it will require more
lengthy proofs.

In consideration of the asymptotic distribution of C{R,−K} as both n − h and p go
to infinity, we are ready to develop a cut-off value to determine whether an observation
is unusual. For any observation K, if the maximum value of C{R,−K} is greater than a
certain predetermined critical value, we deem K is an influential point. That is, for a
given significance level α, the i-th observation K is identified as influential if

max{C{R,−K}} > χ2
1−α(1)/(n− h)2,

where χ2
1−α(1) is the upper α-th quantile of χ2(1).

Under these settings, we give the following algorithm for detecting multiple influential
points in high dimensional regression model.

Algorithm 1: Multiple-Case Deletion Algorithm (MDA in short).

1. Delete h observations without replacement from the original data set {(yi, xi), i ∈
N}, and obtain the remaining indices subset R.

2. Calculate the correlations estimate ρ̂j{R} and ρ̂j{R,−K} respectively, and calculate
the values of C{R,−K} for each observation K ∈ R.

3. Repeat Steps 1 and 2 M times, and MK (≤M) values of C{R,−K} are obtained for
each observation K ∈ N .

4. Calculate the maximum of the MK values of C{R,−K} for each K ∈ N .

5. The observation K is flagged as influential if (n− h)2max{C{R,−K}} > χ2
1−α(1).

After running Steps 1-5 of the MDA algorithm, we can obtain a relatively reliable
noninfluential indices subset C and a suspicious subset D = N\C. To check a particular
observation K ∈ D is really influential or not, we can test the influential of K relative
to the clean subset C. Concretely, we refine the detection procedure by adding the
observation K back into the noninfluential subset C and calculate the “add-back” HIM-
like statistics:

C{C,+K} =
1

p

p∑
j=1

(ρ̂j{C} − ρ̂j{C,+K})2, (5)

where ρ̂j{C} is the correlation coefficients estimate based on the observations in set C
only, and ρ̂j{C,+K} is the correlation coefficient estimate when we add the observation
K back into the clean set C.
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Similar to Proposition 1, under certain conditions, when there are no influential ob-
servations, and min{c+ 1, p} → ∞, we have

(c+ 1)2C{C,+K} → χ2(1),

where c = |C| is the cardinality of the clean set C.
As a result, we can use χ2

1−δ(1) as the cut-off value to determine whether K is a
really influential point. Here, δ is appropriately chosen, such as δ = α/2. The refined
procedure augments MDA as follows:

Algorithm 2: Refined algorithm

6. Based on the result of MDA, create a clean set C and suspicious set D.

7. Calculate the correlations estimate ρ̂j{C} and ρ̂j{C,+K} based on the current clean
data set C, and calculate C{C,+K} for each of the n−c observations in the suspicious
data set D.

8. For a given level δ, if c2C{C,+K} > χ2
1−δ(1), observation K remains flagged as

suspicious, otherwise observation K is added back to the clean set.

As yet, we have completed our multiple influential observation detection procedure.
It is worth mentioning that the Steps 6 to 8 can be iterated many times until no further
observations are flagged as influential. Considering the computational cost, we only apply
a single iteration of Steps 6 to 8 in this paper. Combining Algorithms 1 and 2, we denote
the refined MDA procedure as R-MDA in this paper.

2.4 Distance correlation based methodology for complex models

In practice, we are not sure the data comes from which type of model in regression
analysis, in other words, specifying a correct linear model as (2) for high-dimensional data
may be challenging. Therefore, we extend the proposed influence detection procedure
to a broad of more complex underlying models, that is, suppose the observations (yi, xi)
are collected from the general regression model (1). As the function f0(·) may denote
nonlinear relationship, the influential measure based on Pearson correlation coefficient is
inappropriate. On the other hand, we recognize that distance correlation (Székely et al.
2007) is an appropriate alternative tool to metric the statistical dependence between two
variables. Li et al. (2012) proposed a sure independence screening procedure based on
the distance correlation, (DC-SIS, for short), and the sure screening property is valid for
the DC-SIS under more general model settings, as it does not require model specification
for response or predictors.

Motivated by this property, under more general model settings, we can measure the
influence of the i-th observation by defining a DC-based influence statistic,

C∗{R,−i} =
1

p

p∑
j=1

(d̂corj{R} − d̂corj{R,−i})
2, (6)

which is expected to be more effective than the Pearson correlation-based method. Here,

d̂corj{R} denotes the sample estimate of the distance correlation between the response
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Figure 1: The scatter plot of the right side
of inequality (8) and h.
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Figure 2: The scatter plot of the right side
of inequality (8) and M .

and the j-th predictor. As the distribution of the statistic C∗{R,−i} is still unknown in the

literature and so complicated that one can sort the values of {max(C∗{R,−i}), i = 1, . . . , n},
and remove those observations associated with large values of max(C∗{R,−i}) in practice.

The detailed derivation of the asymptotic distribution of the influential statistics
C∗{R,−i}, however, is beyond the scope of this paper, we will focus on these exciting topics
in further study. Of course, as an alternative, we can use bootstrap method to find the
upper α-th quantile F1−α of the cumulative distribution function (CDF) as the cut-off
value. The observation K is flagged as influential if (n−h)2max{C{R,−K}} > F1−α. Note
in practice, this bootstrap approach will cost much calculation.

2.5 The choice of M and h

It should be noted that, for the multiple deletion algorithm in Subsection 2.3, reasonable
values of M and h should be considered. Assume there are n∗ influential observations
in the original n observations, and let A denote the event that a particular influential
observation is isolated from the other n∗−1 influential observations, then the probability
is

P (A) = 1− (1− C(h−n∗+1)
(n−n∗) /Chn)M . (7)

Let event B denote all these n∗ influential observations being isolated from the others at
least once. The probability of event B is very complicated to calculate, and we utilize
the Bonferroni bound to obtain the approximate results, that is

P (B) ≥ n∗ × (1− (1− C(h−n∗+1)
(n−n∗) /Chn)M )− n∗ + 1. (8)

As we can see, the right side of inequality (8) may be negative, but it provides an
useful guidance as with an appropriate choice of M and h, it tends to 1. For example,
when n = 100, n∗ = 5, if we fix M = 500, as h increases, the right side of inequality (8)
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tends to 1. On the other hand, if we fix h = 49, as M increases to 500, the right side of
inequality (8) tends to 1. See Figures 1 and 2.

Then, here we just give a guidance to choose the number M and h to gain a large
probability. However, we should not only consider the probability of a particular influ-
ential observation being isolated from the other n∗ − 1 ones, as the original objective in
this paper is to detect all the influential points in high dimensional regression model. As
M and h increase, the chance of missing truly influential observations decreases, then we
can detect mostly of true influential points. But also, the chance of incorrectly detecting
a normal observation increases as the increase of M and h, so we supplement a refined
step to augment the multiple-case deletion algorithm.

3 Simulation Studies

In this section, we conduct simulation studies to assess the effectiveness of R-MDA
method, and compare its performance with some competitive methods, including the
HIM in Zhao et al. (2013), ADAP in Roberts et al. (2015), and MIP in Zhao et al.
(2016). To make fair comparisons, we follow similar model settings as those in Zhao et
al. (2013). All the simulation studies were conducted by using Matlab codes.

3.1 Simulation models

In this subsection, we give two simulation examples to verify that the proposed method
is reasonable.

Example 1: (High-dimensional linear model). The simulated data were generated
from a “true” model which comprised a response and p explanatory variables, the rela-
tionship is formulated as

yi = xiβ + εi, for i = 1, . . . , n, (9)

where β = (β1, . . . , βp)
> is a p-vector of regression coefficient. We set βj = 1, (1 ≤ j ≤ 5)

and βj = 0, (j > 5). The random error term εi is independent of the predictors, and
is generated from three different distributions: the standard normal distribution, the
exponential distribution with rate 0.1 and the standard t distribution with three degrees
of freedom. The covariates xi = (xi1, . . . , xip) are generated from a multivariate normal
distribution Np(0,Σ) with entries of Σ = (ρ|j−l|)p×p for j, l = 1, . . . , p and ρ = 0, 0.5, 0.9
are chosen in the simulation study.

After generating data via model (9) in various cases mentioned above, we then re-
move n∗ ones from the original n observations, and replaced with n∗ masked influential
observations {(ỹl, x̃l), l ∈ N ∗} from the following model

ỹl = x̃lβ̃ + εl, for l = 1, . . . , n∗, (10)

where β̃ = (β̃1, . . . , β̃p)
> is a p-vector of regression coefficient, and εl has the same

distribution as that in model (9). In particular, we consider the n∗ influential points are
generated as one of the following three cases.

Model 1: Response perturbation model. Let x̃l = xl, for l = 1, . . . , n∗, and β̃j =

(1, 1, 1, 1, 1, κ, . . . , κ)>, that is β̃j = 1, (1 ≤ j ≤ 5) and β̃j = κ, (5 < j ≤ p), κ is the
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perturbation parameter that indicates the magnitude of the influence. In this case, the
perturbation can be written as ỹl = xlβ+κxlγ+ εl, and γ = (0, 0, 0, 0, 0, 1, . . . , 1)>, that
is, the responses are contaminated by a random perturbation term κxlγ.

Model 2: Explanatory variable perturbation model. Let ỹl = yl remain unchanged,
x̃lj = xlj + 30κI{j∈S}, for l = 1, . . . , n∗, and S(⊂ {1, . . . , p}) is an index subset of
predictors. In this case, the influence was occurred on the predictors and keep the
response invariant.

Model 3: Perturbation in both the response and explanatory variables. Let the
regression coefficient β̃ = (1, 1, 1, 1, 1, κ, . . . , κ)>, and x̃lj = xlj + 30κI{j∈S}, for l =
1, . . . , n∗. Therefore, it is a combination of the above two perturbation models.

Example 2: (Nonparametric additive model) Consider the following nonlinear model

yi = 2f1(xi1) + 6f2(xi2) + 4f3(xi3) + f4(xi4) + εi, (11)

where f1(x) = x, f2(x) = (2x−1)2, f3(x) = sin(2πx)/(2−sin(2πx)), f4(x) = 0.1 sin(2πx)+
0.2 cos(2πx) + 0.3 sin(2πx)2 + 0.4 cos(2πx)3 + 0.5 sin(2πx)3. Suppose all the observation-
s (yi, xi) are generated from this model, and then we reset the first n∗ observations
generated from another perturbation model, e.g. Model 2 referred in Example 1.

The placement of the n∗ inserted observations was such that the HIM-like value
for each of the n∗ observations is less than χ2

1−α(1)/n2 based on all n observation-
s, but when we deleted the other n∗ − 1 inserted observations, the HIM-like value is
greater than χ2

1−α(1)/n2. As a result, the data set contains n − n∗ normal observa-
tions and n∗ influential observations. In this experiment, we set the perturbation pa-
rameter κ = 0, 0.4, 0.8, 1.2, 1.6, and S = {1, . . . , [p/2]}. We choose n = 100, 200, 500,
p = 10, 100, 500, 1000 with various values of n∗ = 5, 10, 15, 20 in our simulation study.

3.2 Performance comparisons

In consider of all possible values of n, p, n∗, κ, h and M , it is instructive to evaluate
the average values of type-I error rate and power rate. Suppose among the n − n∗

non-influential observations, n1 observations are incorrectly identified as influential, and
among the n∗ true influential observations, n2 observations are correctly identified. Then,
the type-I error rate is defined as n1/(n−n∗), i.e., the proportion of normal observations
that are incorrectly classified as influential. The power rate is defined as n2/n

∗, i.e., the
proportion of contaminated observations that are correctly labeled as influential ones.
For clear comparisons, we also list the standard deviations of the type-I rates and power
rates in parentheses. The nominal significant level α is chosen to be 0.01, 0.05 or 0.1. As
for Example 2, we perform similar algorithms as MDA proposed in Section 2 and compute
the DC-based influential measure C∗{R,−i}. Since the asymptotic distribution of C∗{R,−i}
is complicated, we flag the n∗ observations with the largest values of max(C∗{R,−i}) as
influential. The empirical power and type-I error rate values of the simulation study

are presented in Tables 1-8. All the results of Example 1 and 2 are obtained with 500
replications.

Table 1 reports the average empirical type I error values as well as the standard
deviations by our proposed R-MDA procedure on simulated data for various combinations
of n∗, p, and α in three different models of Example 1. In this simulation study, we set
h = [n/2]− 1, M = 500 and the perturbation parameters κ = 1.6. It is easy to observe
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Table 1: Average percentage of type I errors (size) values (%) of R-MDA under various
values of n∗, p and α when n = 100, κ = 1.6; The standard deviations (%) are given in
parentheses.

n∗=5 n∗=10

Model p α=1% α=5% α=10% α=1% α=5% α=10%

(1) 10 0.8(0.3) 5.4(2.1) 9.7(3.0) 0.9(0.7) 4.8(2.1) 10.3(3.0)
100 0.9(0.5) 5.3(2.2) 11.8(2.9) 0.7(0.8) 5.3(2.2) 9.6(3.2)
500 0.9(0.6) 6.1(2.7) 12.2(3.0) 0.7(0.6) 4.4(2.1) 9.7(2.9)
1000 0.9(0.6) 5.8(2.6) 13.0(2.6) 0.7(0.5) 3.8(1.8) 9.5(3.3)

(2) 10 0.7(0.5) 4.8(2.3) 8.2(3.2) 0.8(0.6) 4.6(2.1) 9.4(3.4)
100 0.9(0.4) 5.7(2.3) 12.9(3.1) 0.6(0.5) 3.8(2.3) 9.4(3.3)
500 0.9(0.3) 6.1(2.7) 13.0(2.6) 0.8(0.6) 3.9(2.7) 10.2(3.3)
1000 0.9(0.3) 6.3(2.6) 13.2(3.1) 0.8(0.7) 3.9(2.4) 9.8(3.4)

(3) 10 0.8(0.4) 4.2(2.3) 8.8(3.1) 0.7(0.8) 4.9(2.0) 9.0(3.1)
100 0.8(0.4) 4.6(2.4) 9.0(3.1) 0.7(0.5) 4.9(1.5) 8.4(2.1)
500 0.9(0.3) 4.2(2.7) 8.7(2.9) 0.5(0.4) 4.6(1.2) 8.0(2.1)
1000 0.9(0.3) 4.0(2.8) 9.2(3.1) 0.5(0.4) 3.7(1.2) 7.0(2.3)

Table 2: Performance comparison of HIM and MIP, MDA and R-MDA; Average per-
centage of type I errors and power values (%) for various values of p when n = 200,
n∗ = 10, α = 0.05, κ = 1.2; The standard deviations (%) are given in parentheses.

HIM MIP MDA R-MDA

Model p size power size power size power size power

10 0.2(0.2) 16.5(10.4) 2.0(1.1) 34.1(11.9) 9.6(2.7) 38.8(12.8) 4.7(2.2) 37.9(12.1)
(1) 100 0.0(0.0) 46.5(12.8) 1.0(1.2) 77.5(14.2) 10.2(2.5) 78.8(12.3) 5.1(2.2) 76.6(11.1)

500 0.0(0.0) 52.4(14.4) 0.8(0.5) 89.7(6.8) 10.2(2.3) 93.8(8.7) 5.2(1.9) 92.7(8.6)

10 0.2(0.2) 36.5(16.0) 1.9(1.8) 63.1(17.1) 6.2(2.5) 83.9(10.8) 3.4(2.1) 81.6(16.3)
(2) 100 0.0(0.0) 39.4(14,6) 1.0(0.6) 78.5(22.0) 8.8(2.0) 95.2(9.7) 4.5(2.1) 93.6(16.4)

500 0.0(0.0) 37.1(15.1) 0.8(0.7) 83.3(18.9) 9.4(2.1) 97.9(10.2) 4.5(2.1) 96.1(17.2)

10 0.1(0.1) 63.5(14.5) 1.6(1.3) 86.0(21.1) 8.9(2.0) 96.8(1.9) 4.9(2.0) 96.2(3.0)
(3) 100 0.0(0.0) 82.4(11.3) 0.6(0.5) 100.0(0.0) 9.0(1.6) 100.0(0.0) 5.4(1.5) 100.0(0.0)

500 0.0(0.0) 85.8(10.7) 0.4(0.3) 100.0(0.0) 9.2(1.4) 100.0(0.0) 5.3(1.2) 100.0(0.0)
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Table 3: Performance comparison of different methods in terms of type I errors and
power values (%) for various perturbation parameter κ when n = 100, n∗ = 10, p = 1000,
α = 0.05.

HIM MIP MDA R-MDA

Model κ size power size power size power size power

0.0 0.2 - 3.0 - 7.4 - 5.3 -
0.4 0.0 36.5 0.9 67.1 7.6 84.8 5.3 83.9

(1) 0.8 0.0 39.5 1.0 81.5 6.2 90.0 4.7 87.6
1.2 0.0 44.4 0.9 88.7 8.2 87.8 6.2 89.7
1.6 0.0 49.5 0.6 91.8 6.5 93.0 4.8 92.9

0.0 0.2 - 3.9 - 11.5 - 6.8 -
0.4 0.0 17.5 1.0 73.1 6.2 83.9 3.4 79.6

(2) 0.8 0.0 19.7 0.9 84.5 7.1 89.2 3.5 86.4
1.2 0.0 20.0 0.9 85.3 7.4 90.9 3.5 88.1
1.6 0.0 21.7 0.8 84.4 6.9 90.5 3.9 90.1

0.0 0.3 - 3.1 - 12.4 - 6.4 -
0.4 0.0 69.5 0.6 98.0 3.9 99.8 3.1 99.2

(3) 0.8 0.0 71.4 0.9 100.0 4.5 100.0 3.6 100.0
1.2 0.0 73.8 0.8 100.0 3.6 100.0 3.4 100.0
1.6 0.0 76.7 0.8 100.0 3.9 100.0 3.1 100.0

that the realized empirical type I errors of R-MDA are nearly consistent to the nominal
ones for these models considered.

Table 2 reports the average empirical type I error values, power values, and the
standard deviations of applying various methods for detecting n∗ = 10 influential points.
Here, we set h = [n/2] − 1, M = 1000, the perturbation parameters κ = 1.2, and
p = 10, 100, 500. Note that, the realized type I errors of R-MDA are near to the nominal
one 5% in most cases. In contrast, the type I errors of HIM tends to be extremely
small, therefore, the ability of detecting influential observations would be compromised.
Note the HIM method utilizes single-case deletion, it may suffer from masking effects,
and the power rate of detecting the problematic points may substantially decrease when
the data set consists multiple influential points. As the MIP method introduced two
novel quantities named Max and Min statistics to overcome the masking effect and the
swamping effect, respectively, we can see that the MIP method can not attain the targeted
Type I errors and thus pays too much price on reducing swamping effect, and as a
result its power rate would be largely compromised. However, masking phenomenon is
usually more serious than swamping phenomenon in the influential observation detection
problems, as the former can cause gross distortions, whereas the latter is often just a
matter of lost efficiency (Zou, et al. 2014). In most cases, the proposed R-MDA method
approximately achieves the designed type-I error rate (thus swamping effect is not serious)
and has a much better power rate values (thus alleviates masking effect) in most cases.

Table 3 summarizes the results of type I error and power rate values by use of HIM,
MIP, MDA and R-MDA approaches respectively. Note that in Table 3, when κ = 0,
the calculation of power value is not applicable (“-”) because there are no influential
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Table 4: Average percentage of type I errors and power values (%) of different methods
under various of n, p and n∗ when κ = 1.6, α = 0.05; The simulation data are generated
from Model 2 of Example 1.

ADAP HIM MIP R-MDA

(n, p) n∗ size power size power size power size power

(100, 10) 2 0.0 100.0 1.8 69.8 2.0 100.0 4.3 100.0
(100, 10) 5 0.0 100.0 0.9 51.1 3.2 100.0 4.4 100.0
(100, 10) 10 0.0 50.0 0.5 29.1 1.8 78.0 3.7 84.6
(100, 10) 20 0.0 10.6 0.2 17.7 1.2 37.8 2.9 69.7

(100, 15) 2 0.0 100.0 0.7 66.7 1.5 100.0 4.8 100.0
(100, 15) 5 0.0 100.0 0.6 39.1 3.7 100.0 4.2 100.0
(100, 15) 10 0.0 58.4 0.2 27.5 2.2 63.8 3.4 82.7
(100, 15) 20 0.0 7.8 0.1 12.1 2.6 58.8 3.3 73.8

(100, 20) 2 0.0 100.0 0.8 75.1 2.5 100.0 4.8 100.0
(100, 20) 5 0.0 100.0 0.0 57.14 2.2 100.0 4.2 100.0
(100, 20) 10 0.0 20.6 0.0 20.8 2.0 76.4 3.9 82.6
(100, 20) 20 0.0 0.0 0.0 11.9 1.9 49.4 3.7 67.6

(200, 50) 2 0.0 100.0 0.1 99.0 0.4 100.0 5.5 100.0
(200, 50) 5 0.0 100.0 0.0 67.1 2.6 100.0 4.7 100.0
(200, 50) 10 0.0 25.5 0.0 44.7 3.4 87.5 4.3 91.6
(200, 50) 20 0.0 10.0 0.0 26.8 1.4 67.8 3.3 78.7

(200, 500) 2 0.0 0.0 0.0 79.3 0.9 100.0 5.9 100.0
(200, 500) 5 0.0 0.0 0.0 59.1 1.2 100.0 4.8 100.0
(200, 500) 10 0.0 0.0 0.0 43.8 3.2 77.9 3.1 94.2
(200, 500) 20 0.0 0.0 0.0 26.7 1.5 68.4 2.7 80.9
(200, 500) 30 0.0 0.0 0.0 18.5 0.9 29.7 2.3 67.6
(200, 500) 40 0.0 0.0 0.0 11.1 0.7 21.4 1.7 63.3
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Table 5: Average percentage of type I errors and power values (%) of R-MDA under
various of when n = 100, p = 1000, α = 0.05; The data are generated from Model 2 in
Example 1.

ρ n∗/n κ=0.4 κ=0.8 κ=1.2 κ=1.6

size power size power size power size power
0.02 8.7 100.0 8.6 100.0 8.4 100.0 8.1 100.0
0.05 6.8 100.0 6.3 100.0 6.2 100.0 5.9 100.0

0.0 0.10 4.8 87.5 3.6 90.3 3.2 79.8 3.1 88.6
0.15 4.3 72.5 3.6 77.4 3.2 80.8 2.2 84.7
0.20 3.6 59.5 3.0 67.1 2.3 69.0 2.1 72.8

0.02 8.7 100.0 8.6 100.0 8.6 100.0 8.3 100.0
0.05 6.4 100.0 6.3 100.0 6.3 100.0 6.2 100.0

0.5 0.10 5.6 80.3 5.2 87.2 4.8 89.2 4.3 90.4
0.15 3.1 76.9 2.2 79.9 2.1 84.3 2.4 86.1
0.20 2.7 56.7 2.1 60.9 2.2 70.1 1.4 76.2

0.02 8.9 100.0 8.7 100.0 8.6 100.0 8.4 100.0
0.05 6.9 100.0 6.7 100.0 6.3 100.0 6.2 100.0

0.9 0.10 4.3 81.6 4.2 83.7 3.9 85.9 3.4 88.0
0.15 3.5 77.2 2.8 78.7 2.7 81.5 2.4 87.0
0.20 3.4 63.2 2.9 65.4 2.1 67.0 1.6 69.4

Table 6: Average percentage of type I errors and power values (%) for various values
of p when n = 100, n∗ = 10, κ = 1.6, α = 0.05; The errors are generated from three
different distribution respectively.

εi ∼ N(0, 1) Exp(0.1) t(3)
Model p size power size power size power

(1) 100 5.4 78.0 5.5 78.5 6.1 77.4
500 4.7 90.4 3.5 88.4 4.7 89.6
1000 3.6 93.4 3.7 92.6 3.8 91.2

(2) 100 4.7 93.6 4.8 90.6 4.7 92.8
500 4.6 93.2 4.9 90.0 5.2 96.4
1000 4.9 96.6 5.1 92.4 5.7 97.4

(3) 100 5.1 99.2 4.9 92.8 4.7 95.8
500 4.6 99.6 4.9 97.0 5.2 96.8
1000 4.9 99.9 5.1 97.0 5.7 98.7
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Table 7: Average percentage of type I errors and power values (%) for measuring the
impact of the choice of h and M , when n = 100, n∗ = 10, p = 1000, κ = 1.6, α = 0.05.

h = 30 h = 40 h = 50 h = 60
Model M size power size power size power size power

(1) 200 3.5 80.3 3.6 83.5 4.6 86.8 4.9 89.3
500 3.3 86.4 4.3 90.8 5.1 93.0 6.0 93.3
1000 3.1 88.3 3.0 92.3 2.9 93.8 2.4 96.8

(2) 200 3.0 68.3 3.9 71.0 3.1 84.8 4.5 87.3
500 3.6 70.7 4.0 83.9 3.7 88.1 4.6 89.5
1000 4.1 76.8 4.7 85.8 4.3 89.9 4.8 90.6

Table 8: Average percentage of type I errors and power values (%) of HIM, R-MDA
and MDA-DC under various values of κ and n∗, when n = 100, p = 500, α = 0.05.

κ=0.4 κ=0.8 κ=1.2 κ=1.6

Method n∗/n size power size power size power size power

0.05 0.9 13.7 0.8 19.4 0.8 19.8 0.7 22.1
HIM 0.10 0.9 9.5 0.9 11.1 0.9 12.0 0.9 12.6

0.15 0.9 9.5 1.0 9.7 0.9 10.8 1.1 11.3

0.05 4.7 91.6 3.8 92.2 3.9 94.3 4.4 96.6
R-MDA 0.10 4.1 77.6 4.2 80.3 4.8 84.9 3.6 86.8

0.15 2.3 45.0 2.9 49.7 3.9 60.3 4.4 66.4

0.05 2.4 96.3 1.1 97.9 0.0 100.0 0.0 100.0
MDA-DC 0.10 3.6 86.4 1.9 92.7 1.8 93.6 1.4 95.1

0.15 3.4 81.1 3.2 84.2 2.2 85.3 1.8 92.2
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points. As κ increases from 0 to 1.6, MDA and R-MDA almost can detect all the true
influential points. HIM can barely detect all influential observations due to masking
effect even if when κ = 1.6. MIP performs well in detecting influential observations, but
compared with R-MDA, it is still not effective. Both MDA and R-MDA perform well at
detecting the n∗ influential observations. Although in terms of type I errors, these two
approaches often erroneously flagged normal observations as influential, but compared
with HIM, these two approaches have advantages of detecting all of influential points,
and can control well for a given nominal significant level.

In most cases, the MDA approach can detect most of the true influential points, but
there are also too many normal observations being incorrectly regarded as influential.
From Tables 2-3, we observed that owing to the confirmation procedure, the R-MDA can
detect most of the true influential points, and reduce the number of incorrect choices.
Therefore, a confirmation step is necessary to ensure that the normal observations are
not incorrectly as influential ones.

Table 4 gives the results of average type I error and power rate values by four differ-
ent methods ADAP, HIM, MIP and R-MDA respectively on simulated data for various
combines n, p and n∗. The simulation results show that when p < n, and there are few
influential points in the data set, ADAP method has a good performance, this result
is consistent with the conclusion of ADAP in Roberts et al. (2015). But when p > n,
this method can not work well, as the OLS estimate of regression coefficient is not solv-
able. In comparison, the other three methods can be used to detect influential points in
high-dimensional situations, and also in the low-dimensional case. The only downside is
that the power of the HIM method is low, and this perhaps due to the masking effect.
The MIP and R-MDA methods perform well to detect influential points in most cases,
because they can detect influential points with higher power rate, and by contrast, the
performance of R-MDA is slightly better than that of MIP.

Table 5 takes into account the effect of different correlations between the predictor
variables on the results, and ρ = 0, 0.5, 0.9 are chosen respectively. We can observe that
either the variables are independently or dependently, as the perturbation parameter κ
increases from 0.4 to 1.6, and the proportion of influential points increased from 2% to
20%, the R-MDA method is effective to detect multiple influential points in most cases.

In Table 6, the simulation results show that no matter the errors are generated from
which model (normal, skewed or heavy-tailed), the proposed R-MDA method can work
well, as the type I errors can be well controlled near 0.05, and all the power values are
close to 1. This is reasonable because when the condition (C3) of Proposition 1 is relaxed
to more general cases, and the theoretical results are still feasible. Although in Table 6,
we did not record the type I error values in the first step of R-MDA, the confirmation step
of R-MDA is effective to control the type I error values, that is, fewer normal observations
are incorrectly deemed as influential ones. But, after careful investigation, we discovered
that when the errors are generated from the Exponential distribution, or the standard t
distribution, the corresponding type I error values are a bit higher than those of normal
error case. To our delight, we can further see that, when the dimension p increases from
100 to 1000, the power values also increased with the dimension, which once again shows
that our method can be used to deal with high dimensional data.

To explore the impact of M and h in our proposed R-MDA algorithm, in Table 7,
we compared the simulation results through various choices of M and h. The results are
consistent with the plotted curves in Figure 1 and Figure 2. For a fixed value of M , as

16



h increases from h = 30 to h = 70, the power values increase, on the other hand, when
we fixed the value of h, and the power values increase as M increases from 200 to 1000.
Meanwhile, the type I error values increase too. As a result, an appropriate choice of
M and h should be chosen, as too large or too small is inappropriate. The simulation
results confirm that h = [n/2] and M ≥ 1000 is a reasonable choice.

The simulation results of Table 8 show that when κ changes from 0.4 to 1.6, and the
proportion of the influential points increase from 0.05 to 0.15, the DC-based influential
measure (denoted by MDA-DC for short) performs reasonably well for a complex model.
By comparison, both of HIM, the single-case deletion method based on Pearson correla-
tion, and the R-MDA, the multiple-case deletion method based on Pearson correlation
can not work well when the simulated data are from a complex nonparametric additive
model in Example 2. This is probably due to the fact that the distance correlation can
regress the nonlinear relationship reasonably. Meanwhile, the disadvantage is that the
method based DC consumes a lot of computational cost, and the theoretical work is
challenging, especially in the high-dimensional setting. Therefore, the topic of detecting
influential points under more general model settings deserves further study.

4 A Real Data Example

As an application illustration, we applied the proposed R-MDA approach to the NCI-60
data developed by National Cancer Institute, and found that the analysis results are
substantially different when the detected influential observations are removed.

The microarray and proteomic datasets consist of data on 60 human cancer cell lines,
and can be downloaded from the CellMiner program package (http://discover.nci.nih.gov/
cellminer/). For the gene expression data, we used the Affymetrix HG-U133(A B)a chip
(Affy) that had been normalized by the gcRMA method, resulting in a set of 43,524
predictors. For the protein expression data, 162 proteins expression values were acquired
via reverse-phase protein lysate arrays and log2 transformed. As one observation named
LC:NCI H23 of the cell lines was missed in the gene expression data, 59 human cancer
cell lines were used in the analysis. More details on how the data were obtained can be
found in Shankavaram et al. (2007).

Similar to Alfons et al. (2013), we first order the protein expression variables accord-
ing to their MAD (median absolute deviation), and show the protein expressions based
on the KRT18 antibody which constitutes the variable with the largest MAD. Hence, we
chose the protein KRT 18 as the response variable, which is known to be persistently
expressed in carcinomas (Oshima et al., 1996). Due to the dimensionality greatly exceeds
the sample size, the sparsity assumption is reasonable, that is, only a small number of
predictors are relevant to the response (Fan and Lv, 2008). Then, we followed Fan and
Lv (2008) to retain the top 1000 gene expression data that are mostly correlated with
the protein KRT 18 in the data analysis. Thus, the resulting analysis has p = 1000
predictors and a sample size n = 59. That is, the data set consists of an response vari-
able y = (y1, . . . , yn)>, and an n× p matrix of gene expression values X = (xij)n×p, for
i = 1, . . . , n(= 59), j = 1, . . . , p(= 1000), where yi is the i-th response variable of protein
KRT 18, and xij denotes the expression level of the j-th gene for the i-th human cancer
cell line.

Suppose that the processed gene expression data are from a high-dimensional linear
regression model. Further, we believe, the n = 59 human cancer cell lines may be
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contaminated with a few of influential points. Based on our previous simulation studies,
the presence of influential points may significantly affect the accuracy of data analysis.

Then, we apply the proposed R-MDA method to the processed gene expression da-
ta, with α = 0.05, M = 500 and h = 30. In the first step, the MDA identified
11 problematic observations, their labels are BR:BT 549, CNS:SNB 19, CNS:SNB 75,
LE:CCRF CEM, LE:HL 60, LE:MOLT 4, LE:SR, ME:MALME 3M, ME:SK MEL 28,
ME:SK MEL 5 and LC:NCI H460. Next, we apply the refine algorithm, and remove
the observation CNS:SNB 19 back to the clean data set, therefore, we identified a total
of 10 observations by the R-MDA method. Similarly, we apply the proposed MDA-
DC method directly to the processed gene expression data without considering the lin-
ear relationship, and screen out the top 10 observations with larger DC-based mea-
sures as influential points. The corresponding labels are BR:BT 549, CNS:SNB 19, C-
NS:SNB 75, LE:CCRF CEM, LE:MOLT 4, LE:SR, ME:MALME 3M, ME:SK MEL 28,
ME:SK MEL 5, LC:NCI H460. The results are consistent with the results by R-MDA
except an observation CNS:SNB 19. Therefore, we may consider all the 11 problematic
observations in practical applications.

As a comparison, we apply the HIM method to the processed NCI-60 data sets,
and identified only 6 problematic observations, LE:CCRF CEM, LE:MOLT 4, LE:SR,
ME:MALME 3M, ME:SK MEL 5 and LC:NCI H460. These results show that the R-
MDA method can detect more problematic observations than that of HIM method, as
the multiple influential observations may be suffered from masking effects. It illustrated
the single-case deletion methods may fail to detect all multiple problematic observations,
and the multiple-case deletion approach is an effective method.

In addition, we apply the sparse least trimmed squares regression method (Sparse
LTS in short) of Alfons et al. (2013) for analyzing the processed NCI-60 data sets,
and there are 13 observations deemed as influential, which contains 11 influential points
identified by MDA method above, and two other observations. Thus, we believe that the
observations detected by our MDA method are not probably “false positives”.

To further assess the influence of the identified observations, we compared the Lasso
estimate with and without those points, and compare the results of R-MDA with that of
HIM. Similar to Zhao et al. (2013), in our analysis, we used ten-fold cross-validation to
select the tuning parameter and every run is random, so we repeated this analysis 100
times and report the average results.

We summarize the difference of the coefficient estimates in three aspects: the sparsity;
the norm difference; and the angle between the two estimates.

Firstly, we remove the identified influential observations by the R-MDA method, the
resulting Lasso estimate is considerably more sparse, the average Lasso model size with
the full data is 55. Then, we remove the potential influential points identified by R-MDA,
the average Lasso model size is 29. By contrast, we remove the potential influential points
identified by HIM, and the average Lasso model size is 36. This shows that the existence
of the potential influential points clearly shows a significant effect on the model size, and
the R-MDA method is more effective than the HIM method.

Secondly, we denote d0 = ||β̂full||2 is the Lasso estimate using all the observations,

d1 = ||β̂redu||2 is the estimate after removing the potential influential points identified

by R-MDA, and d∗1 = ||β̂∗redu||2 is the estimate after removing the potential influential
points identified by HIM. To assess the difference of coefficient estimate with and without
the potential influential points, we denote d2 = ||β̂full − β̂redu||2, d∗2 = ||β̂full − β̂∗redu||2.
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We observe that the average of (d0 − d1)/d0 is 0.272, and that of d2/d0 is 0.798. By
contrast, the average of (d0 − d∗1)/d0 is 0.202, and that of d∗2/d0 is 0.713. Therefore, the
results by the R-MDA are a little better than that of HIM, as the corresponding l2 norm
difference is slightly larger. Moreover, both methods show that the estimates with and
without the potential influential points are quite different in terms of the l2 norm.

Thirdly, to again indication how the estimates change substantially after removing the
influential points, we calculate the angle between β̂full and β̂redu, and the angle between

β̂full and β̂∗redu, which are defined as β̂>fullβ̂redu/d0d1, β̂>fullβ̂
∗
redu/d0d

∗
1 respectively. The

simulated results are 0.63 and 0.66 respectively averaged over 100 times.
In summary, whether including those 10 influential observations or not may affect the

results of Lasso estimate. Hence, the influential observations should be identified firstly
in high dimensional data analysis, that is, leaving out those 10 observations may gain
more reliable results for the majority of the cancer cell lines.

5 Conclusions

ADAP is an effective method to detect influential points in practice. Nevertheless, it
cannot be applied to high-dimensional data with p > n. In this paper, we put forward
the R-MDA method to detect multiple influential observations which suffered from mask-
ing effects in high dimensional regression model. The proposed method enjoys several
appealing properties: (1) the influence measure can be calculated viably, and the cal-
culation process is relatively simple and effective; (2) it can detect almost all multiple
influence points which suffer from masking effects; (3) the method can be applied to high-
dimensional regression data with relatively large values of p. Furthermore, we considered
the proposed method R-MDA extended to a broad of more complex underlying models
and proposed MDA-DC. Simulation studies show that the proposed methods have bet-
ter performances as they can alleviate masking effects to a large extent. By comparing
with the traditional single-case deletion method, HIM, and other methods, ADAP, MIP,
the proposed methods are superior as they can achieve the designed type I errors and
have higher power values in most cases. As mentioned, the detailed derivation of the
asymptotic distribution of the influential statistics for MDA-DC warrants further study.
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[22] Székely G J, Rizzo M L, Bakirov N K Measuring and Testing Dependence by
Correlation of Distances. The Annals of Statistics. 2007; 35(6), 2769-2794.

[23] Zhao J, Leng C, Li L, Wang H. High-dimensional Influence Measure. Annals of
Statistics 2013; 41(5): 2639-2667.

[24] Zhao J, Liu C, Niu L, Leng C. Multiple Influential Point Detection in High-
dimensional Spaces. 2016; https://arxiv.org/abs/1609.03320.

[25] Zou C, Tseng S, Wang Z. Outlier Detection in General Profiles Using Penalized
Regression Method. IIE Transactions, 2014; 46, 106-117.

21


	Introduction
	Methods and Properties
	Problems and existing works
	Pearson correlation based methodology for linear model
	The multiple-case deletion algorithm
	Distance correlation based methodology for complex models
	The choice of M and h

	Simulation Studies
	Simulation models
	Performance comparisons

	A Real Data Example
	Conclusions

