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Abstract
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1 Introduction

1.1 Motivating examples and challenges

In recent years, there has been an intense interest in multivariate statistical
process control (MSPC) charts in the statistical, quality assurance and re-
liability research literature. [1], [2] and [3] have all pointed out that MSPC
charts are one of the most rapidly developing areas of statistical process con-
trol (SPC) and suggest that basic and applied research is needed on meth-
ods for monitoring multivariate variables. In many industrial, manufacturing
and service applications, it is an important factor to improve the quality for
successful business, and the quality of a product is often related to several
correlated quality characteristics. With advances in data acquisition systems
and computing technologies, MSPC charts can and should play a greater role
in monitoring and improving manufacturing processes ([4, 5]). Given a mul-
tivariate process of interest, the process mean is typically monitored by the
Hotelling’s 𝑇 2 chart ([6, 7, 8]) and the process variability is usually monitored
by a chart based on the determinant ∣𝑆∣ or/and the inverse 𝑆−1 of the sample
covariance matrix 𝑆 ([9, 10, 11, 12]). The process variability can also be mon-
itored by a chart based on the likelihood ratio test (LRT), which also involves
∣𝑆∣, such as those of [13], [14], [15], [16] and [17]. [18] give a comprehensive
review on MSPC charts developed between 1990 and 2005 and designed for
monitoring changes in a covariance matrix.

In many areas, including signal processing, network security, image processing,
genetics and other economic problems, however, practitioners are more inter-
ested in the case where the dimension 𝑝 is large or proportional to the sample
size 𝑛. In the UCI Machine Learning Repository, the “Wine Quality Data Set”
covers the period from May 2004 to February 2007 and contains a total of 4898
observations. It is publicly available from http://archive.ics.uci.edu/ml/datasets/
Wine+Quality. The data were individually recorded by a computerized system
(𝑛 = 1), which automatically manages the process of wine sample testing
from producer requests to laboratory and sensory analysis. For each of these
observations, there are 𝑝 = 11 continuous variables (based on physicochem-
ical tests) including fixed acidity, volatile acidity, citric acid, residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates and al-
cohol (denoted by y1,y2, ⋅ ⋅ ⋅ ,y11, respectively). These variables are the major
focus in white wine production and any value falling outside the specification
limits will affect the quality of the white wine. Therefore, these variables must
be carefully monitored and controlled in the production. Another categorical
variable, quality, indicating the wine quality between 0 (bad) and 10 (excel-
lent), is also provided based on sensory analysis. The goal of this data analysis
is mainly to model and monitor wine quality based on physicochemical tests.
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Interested readers are referred to [19] for more details.

[20] study this data set under the key assumption that the covariance ma-
trix does not change. We believe monitoring the process covariance matrix is
also of great importance, not only for this wine quality data set, but also in
any control procedure. As [4] points out, “just as it is important to monitor
the process mean vector, it is also important to monitor process variability”.
There exist many other examples similar to this one in the literature. In am-
bulatory monitoring, it is important to detect what caused covariance matrix
components to change ([21]). In a wafer fabrication process, changes in the
covariance matrix are usually caused by changes of raw materials, deteriora-
tion of key equipment, and incorrect setting of process parameters ([22]). In
an important process for silicon wafer manufacturing called lapping, several
correlated variables are considered to be critical factors that determine the
uniformity of the thickness of a wafer and therefore must be closely monitored
([23]). In the health care industry, the foetal state may be determined using a
technique called cardiotocography, which measures multiple features such as
the number of accelerations per second and the number of foetal movements
per second. Any significant deviation of the covariance matrix of those features
from the normal state indicates that the foetus may have a health problem
([24]).

In general, constructing a proper covariance matrix monitoring scheme for
data like those in the “Wine Quality Data Set” has some technical challenges:
(i) Given a multivariate process of interest, the process covariance matrix is
usually monitored by charts based on the determinant ∣𝑆∣ or/and the inverse
𝑆−1 of the sample covariance matrix 𝑆. Neither of these is applicable, especially
for high-dimensional processes (as 𝑝 > 𝑛 in the “Wine Quality Data Set” ),
because the sample covariance matrix cannot be estimated accurately and
easily; (ii) most existing MSPC charts for covariance matrices are based on
multiple observations at each time point, which may be unreasonable in some
applications where sampling may be expensive, destructive or time consuming.
In these cases, individual sampling (as 𝑛 = 1 in the “Wine Quality Data
Set”) may be more appropriate; (iii) some MSPC covariance matrix detecting
schemes based on penalization ([22, 23, 25, 26]) are computationally intensive.

Despite the importance of monitoring high-dimensional process covariance
matrices with individual observations, effective and computational tractable
monitoring schemes are rare as far as we know. The aim of this paper is
to establish a control chart for monitoring process covariance matrices with
individual observations.
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1.2 Literature review and brief overview of the proposed methodology

When the dimension 𝑝 is large or proportional to the sample size 𝑛, the vari-
ability monitoring schemes based on ∣𝑆∣ or 𝑆−1 are no longer applicable or
give poor performance due to the singularity of the sample covariance. On the

one hand, [27] show that
√
𝑛/𝑝 ln(∣𝑆∣) → −∞ as 𝑝 → ∞, which will make the

control limit too wide and will cause the methods of [10], [14], [15] and [16] to
perform poorly for a large 𝑝. On the other hand, it is known that the covari-
ance matrix will not have an inverse when 𝑝 is larger than 𝑛, which will make
the methods of [9] and [12] no longer applicable. Thus a proper and efficient
monitoring scheme that is suitable for this situation is highly desirable and is
the objective of this paper.

When the dimension and the sample size are comparable, process shifts may
occur in only a few of the variance and/or covariance elements. These shifts are
known as sparse shifts in the statistical literature. Under these circumstances,
more powerful MSPC charts are developed via penalization. [28], [29], [30] and
[31] propose control charts for monitoring the process mean vector. Among
others, [22] obtain the estimator of the inverse Ω of the covariance matrix as
follows:

Ω̂ = argmin
Ω>0

{𝑡𝑟(Ω𝑆)− ln ∣Ω∣+ 𝜌∣∣Ω− 𝐼𝑝∣∣1},
where 𝐼𝑝 is the identity matrix, ∣∣𝐴∣∣1 =

∑𝑝
𝑖=1

∑𝑝
𝑗=1 ∣𝑎𝑖𝑗∣ for a matrix 𝐴 =

(𝑎𝑖𝑗)𝑝×𝑝, 𝑡𝑟(𝐴) is the trace of 𝐴, and 𝜌 is a data-dependent tuning parameter

that can be tuned to achieve different levels of sparsity of the resulting Ω̂ and
construct the LRT chart with the monitoring statistic ln ∣Ω̂∣+ 𝑡𝑟(𝑆)− 𝑡𝑟(Ω̂𝑆).
[23] differ from [22] in that they penalize ∣∣Ω∣∣1 instead of ∣∣Ω − 𝐼𝑝∣∣1. With

a similar estimator to [23], [25] and [26] propose the LRT statistic 𝑡𝑟(Ω̂−1)−
ln ∣Ω̂−1∣ − 𝑝. By penalizing the mean vector and covariance matrix separately,
[32] propose a generalized LRT chart for the mean vector and the covariance
matrix, simultaneously.

As pointed out by [24], even though the charts based on penalization men-
tioned above are shown to perform well in many cases, the performance de-
pends heavily on the choice of tuning parameter 𝜌, which plays a critical role
in balancing the robustness and sensitivity of the charts against various shifts.
This tuning parameter 𝜌, is, unfortunately, not easy to set, as the authors
have also shown. To avoid having to set the tuning parameter, [24] propose
a new control chart by integrating the classical 𝐿2-norm-based test with a
maximum-norm-based test. [33] propose an 𝐿1-norm and an 𝐿2-norm-based
distance between diagonal elements of the estimators from their expected val-
ues based on [34]’s multivariate exponentially weighted mean squared error
(MEWMS) chart and multivariate exponentially weighted moving variance
(MEWMV) chart.
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When the dimension is large relative to the sample size, [35] give a well-
conditioned estimator for the covariance matrix. [36], [37], [38] and [39] give
hypothesis tests for the covariance matrices when the dimension is large com-
pared to the sample size. They study the asymptotic behaviors of these tests
when 𝑝 → ∞. Motivated by [37], we propose a multivariate control chart for
monitoring high-dimensional process covariance matrices based on integrating
exponentially weighted moving average (EWMA) on-line monitoring with the
statistic

𝑊 =
1

𝑝
𝑡𝑟(𝑆 − 𝐼)2 − 𝑝

𝑛
(
1

𝑝
𝑡𝑟(𝑆))2 +

𝑝

𝑛
, (1)

which is selected due to its ease of computation and high power in detecting
out-of-control (OC) covariance matrices. Work based on trace of 𝑆 exist in the
literature. [40] propose a variability control chart based on 𝑡𝑟(𝑆2) and 𝑡𝑟(𝑆4).
[41] construct a control chart based on first taking the EWMA of the product
of each observation and its transpose and computing the square distances
between estimators and true parameters.

Our proposed chart has the following advantages: (i) Unlike the penalization-
based charts, it circumvents the need to select a tuning parameter 𝜌; (ii) it is
able to handle the case when the dimension 𝑝 is larger than the sample size 𝑛;
(iii) it is able to handle the case when the sample size is one. The average run
length (ARL), which is defined as the average number of samples before the
control chart signals an OC condition ([4]), is employed as a criterion to study
the properties of the new chart. We find that the new chart is sensitive in
detecting changes in high-dimensional process covariance matrices, especially
when shifts occur in the diagonal part of the covariance matrices.

The rest of this paper is organized as follows. In Section 2, our proposed con-
trol chart is presented. Design and implementation of the chart are provided
in Section 3, including search algorithm and a table for the control limits,
diagnostic aids after the signal, effect of misspecifying the in-control (IC) dis-
tribution and a bootstrap procedure. In Section 4, the performance of the
proposed chart is evaluated using Monte Carlo simulations from the perspec-
tive of the ARL. The application of our proposed method is illustrated in
Section 5 with a real data example from a white wine production process. In
Section 6, the paper is concluded and future research directions are suggested.
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2 A New Chart for Monitoring High-Dimensional Variability

2.1 Tests for the covariance matrix when 𝑝 and 𝑛 are comparable

Assume that a process of interest consists of 𝑝 quality characteristics denoted
by X, where X ∼ 𝑁𝑝(𝝁,Σ), a p-dimensional multivariate normal distribution
with mean vector 𝝁 and covariance matrixΣ. LetX𝑡 = {X𝑡1,X𝑡2, . . . ,X𝑡𝑛}, 𝑡 =
1, 2, . . . , be the 𝑡𝑡ℎ sample of size 𝑛 drawn from the process, and let 𝝁0 and
Σ0 be the desired mean vector and covariance matrix, respectively. Assume
also that the random vectors X𝑡𝑗 are independent of each other, both within
the samples and across the samples. Let

X̄𝑡 =
𝑛∑

𝑗=1

X𝑡𝑗/𝑛, S𝑡 =
𝑛∑

𝑗=1

(X𝑡𝑗 − X̄𝑡)
′(X𝑡𝑗 − X̄𝑡)/𝑛 (2)

be the 𝑡𝑡ℎ sample mean vector and sample covariance matrix, respectively.

To be more specific, assume that the 𝑡𝑡ℎ future observation, X𝑡, is collected
over time from the following general multivariate change-point model:

X𝑡 ∼
⎧⎨⎩𝑁𝑝(𝝁0,Σ0), if 𝑡 = 0, 1, . . . , 𝜏 ;

𝑁𝑝(𝝁1,Σ1), if 𝑡 = 𝜏 + 1, . . . ,
(3)

where 𝜏 is the unknown change point, 𝝁0 and 𝝁1 are the mean vectors, and
Σ1 ∕= Σ0 are the corresponding unknown shape matrices of parameters. As
we are focusing on the Phase II on-line monitoring shifts of the process, 𝝁0

and Σ0 are assumed known or their values can be well estimated from a
sufficiently large reference sample obtained at the end of Phase I study. When
the process is IC, we assume, without loss of generality, that 𝝁0 = 0 and

Σ0 = I𝑝. Otherwise, the transformation ofΣ
−1/2
0 (X𝑡𝑗−𝝁0) can be used instead

of X𝑡𝑗. It should be pointed out that although our focus is on monitoring
the covariance matrix, the mean vector may or may not change. Hence, the
objective of this paper is to construct a control chart that not only can detect
changes in the process variability but is also insensitive to shifts in the process
mean.

The on-line monitoring problem (3) is closely related to statistical hypothesis
testing for the one-sample variance problem in the context of multivariate
statistical analysis. Hence, given a sample X𝑡, the following hypothesis test is
considered:

𝐻0 : Σ = I𝑝 versus 𝐻1 : Σ ∕= I𝑝. (4)

When the dimension 𝑝 is large compared to the sample size 𝑛, many hypothesis

6



tests exist for the covariance matrix, such as those of [36], [37], [38] and [39].
These papers study the asymptotic behaviors of these tests when 𝑛 → ∞
as well as 𝑝 → ∞. [36] proves that a test based on 𝑉 = 1

𝑝
𝑡𝑟(𝑆 − 𝐼)2 is the

locally most powerful invariant test for the hypothesis testing problem (4)
when 𝑛 → ∞ while 𝑝 remains fixed. [37] show that 𝑉 is not consistent against
every alternative when 𝑝 goes to infinity with 𝑛. They introduce the modified
statistic 𝑊 as defined in (1). [37] prove that 𝑊 has the same 𝑛-asymptotic
properties as 𝑉 : it is 𝑛-consistent and has the same 𝑛-limiting distribution
as 𝑉 under the null. But they also show that, contrary to 𝑉 , the power and
size of the test based on 𝑊 are robust against a large 𝑝, one that is even
larger than 𝑛. Considering the ease of computation and high power of 𝑊 in
detecting OC covariance matrices, we would like to construct a control chart
by appropriately employing 𝑊 .

2.2 A MEWMV control chart

Although the monitoring problem (3) is closely related to the hypothesis test-
ing problem (4), they are completely different and distinguished by the fun-
damental differences between on-line and off-line decision issues ([4]).

To construct a control chart by appropriately employing 𝑊 in (1), an esti-
mator of the sample covariance matrix 𝑆 is needed. It seems that the sample
covariance matrix S𝑡 in (2) is an alternative. It is, however, cannot be em-
ployed directly for two reasons. First, even though the statistic 𝑊 is proposed
when both 𝑛 → ∞ and 𝑝 → ∞, it is common in practice that only individual
observations (𝑛 = 1) are available. In many industrial applications ([4], Chap-
ter 6), due to practical and cost concerns, it may not be possible to collect
more than one observation per sample. In these circumstances (𝑛 = 1), S𝑡 in
(2) will be a zero matrix and will not be well defined. Second, as the objec-
tive of this paper is to provide a control chart for monitoring the covariance
matrix, it is expected that the proposed control chart will not be sensitive to
the mean vector shifts. The S𝑡 in (2) involves sample mean X̄𝑡 based only on
the current sample at time 𝑡, so it will inevitably be influenced by changes in
the mean vector.

To overcome this problem, motivated by [21] and [34], we replace the sample
mean X̄𝑡 by an EWMA-type estimator. To be specific, two EWMA statistics
based on the sample mean vector X̄𝑡 and sample covariance matrix S𝑡 are
given by

u𝑡 = 𝜆X̄𝑡 + (1− 𝜆)u𝑡−1,

v𝑡 = 𝜆S∗
𝑡 + (1− 𝜆)v𝑡−1, (5)
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where S∗
𝑡 =

∑𝑛
𝑗=1(X𝑡𝑗 − u𝑡)

′(X𝑡𝑗 − u𝑡)/𝑛, u0 = 0, v0 = I𝑝, and 𝜆 is the
smoothing parameter satisfying 0 < 𝜆 ≤ 1. It is well known that a smaller 𝜆
leads to, generally, a quicker detection of smaller shifts ([42]).

Now it should be noted that the EWMA estimator of the process mean vector
u𝑡, rather than X̄𝑡, is used in the covariance matrix estimation. This estimator
is expected to be more accurate as it uses sequentially updated estimates
if the mean 𝝁1 deviates from 𝝁0. Therefore, the performance in detecting
process changes, if any, may be improved. This kind of EWMA estimator is
also suggested by [9] and [16].

Note also that in order to detect small or moderate covariance shifts effectively,
we also incorporate the EWMA estimator v𝑡 of the process covariance matrix
S𝑡. Here the EWMA strategy is not used directly to average the monitoring
statistic but rather to obtain more precise estimates of the current process co-
variance matrix. This is analogous to the construction of multivariate EWMA
control charts to some extent ([43]). [21] and [34] have shown that when esti-
mating process variability based on individual observations, using EWMA to
smooth the sample covariance matrix calculated from each individual obser-
vation is effective against process noise. The EWMA smoothing also has the
effect of accumulating historical information for a more stable estimation.

Furthermore, as [16] and [34] have also pointed out, v𝑡 is a positive definite
matrix with probability 1 when 𝑛𝑡 ≥ 𝑝, which implies that when 𝑡 > 𝑝

𝑛
, v𝑡 can

be a reasonable estimate of Σ. In this paper, we focus on 𝑛 = 1 and 𝑝 → ∞,
in which case 𝑝

𝑛
may be so large that there does not exist a reasonable 𝑡 such

that v𝑡 is positive definite. Nevertheless, v𝑡 is still employed as the estimate
of Σ because the statistic 𝑊 only involves the trace, rather than inverse or
determinant, of 𝑆. If a practitioner is still concerned about the singularity of
v𝑡, a well-conditioned estimator for covariance matrices proposed by [35] can
be applied, where the estimator is the weighted sum of v𝑡 and I𝑝.

Under some mild conditions, as proved by [37], when the covariance matrix
does not deviate from I𝑝,

𝑛𝑊 − 𝑝 =
𝑛

𝑝
𝑡𝑟(𝑆 − I𝑝)

2 − 1

𝑝
(𝑡𝑟(𝑆))2

ℒ→𝑁(1, 4), (6)

as 𝑛 → ∞ and 𝑝 → ∞. Now we are ready to construct our control chart.
By substituting v𝑡 for S𝑡 in (6) and dropping the normalizing constants, we
obtain the monitoring statistic 𝑇𝑡 at time 𝑡, which is defined by

𝑇𝑡 = ∣𝑡𝑟(v𝑡 − I𝑝)
2 − (𝑡𝑟(v𝑡))

2∣. (7)

If 𝑇𝑡 > ℎ, an OC signal is given to indicate a covariance shift the process may
have, where ℎ > 0 is the control limit chosen to achieve a specified IC ARL
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(denoted by 𝐴𝑅𝐿0). In this paper, we call our proposed MEWMV-based chart
for variability change with a large 𝑝 the MVP chart for short.

3 Design and Implementation of the MVP Chart

3.1 Determining parameters

As we are using EWMA-type estimators of the mean vector and the covariance
matrix, a smoothing constant 𝜆 is involved. The effect of 𝜆 in EWMA is well
studied ([5]). In general, a smaller 𝜆 leads to quicker detection of smaller shifts,
which is still valid for our MVP. Based on our simulation results, we suggest
choosing 𝜆 ∈ [0.1, 0.2], which is a reasonable choice in practice ([16]).

To apply our MVP chart, the control limit ℎ should be determined first. Table
1 provides the control limits of the MVP chart for various combinations of
(𝜆, 𝑝, 𝐴𝑅𝐿0). For other choices of parameters, a Fortran program for searching
for the control limits is available from the authors upon request. A user can
also code his own computer program in whichever software he wants to use
(Python, R, Matlab, C++, and etc) by the guidelines below for finding ℎ.

Step 1: Input parameters to be specified by the users, including 𝐴𝑅𝐿0, dimension
𝑝 and smoothing parameter 𝜆.

Step 2: Set the maximum of ℎ to ℎ𝑚𝑎𝑥 such that the ARL value is larger than
𝐴𝑅𝐿0 and the minimum of ℎ to ℎ𝑚𝑖𝑛 such that the ARL value is smaller
than 𝐴𝑅𝐿0, and set ℎ = (ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛)/2.

Step 3: Set u0 = 0, v0 = I𝑝 and 𝑅𝐿 = 0. Generate standard multivariate normal
random vectors, update RL to 𝑅𝐿 = 𝑅𝐿 + 1 and compute u1, v1 to
obtain 𝑇𝑛 until 𝑇𝑛 > ℎ.

Step 4: Repeat Step 3 𝐵 times, which is the Monte Carlo sample size and obtain
the average of the RL, i.e., ARL. If 𝐴𝑅𝐿 > 𝐴𝑅𝐿0, update ℎ𝑚𝑎𝑥 to ℎ;
otherwise, update ℎ𝑚𝑖𝑛 to ℎ.

Step 5: The algorithm is not stopped until the absolute difference of 𝐴𝑅𝐿 and
𝐴𝑅𝐿0 is less than a prefixed value 𝜀1 or the absolute difference of the
current ℎ and the ℎ in the last iteration is less than another prefixed
value 𝜀2.

Based on the search algorithm above, all the results are implemented in For-
tran 95 with IMSL package. Routine “rnmvn” is used to generate standard
multivariate normal random vectors. The computation time depends on the
values of 𝐵, 𝜀1 and 𝜀2, as larger values of 𝐵 and smaller values of 𝜀1 and 𝜀2
will obtain more accurate results, but more time consuming, and vice versa.
To balance the time and accuracy, we recommend that 𝐵 = 10000, 𝜀1 = 1 and
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𝜀2 = 10−2. The execution time is about several minutes on an Intel i5 with
CPU processor 3.00 GHz.

Insert Table 1 about here.

The results displayed in Table 1 show stable and meaningful estimates of the
control limits. We have chosen 𝜆 = 0.1 and 0.2, 𝑝 = 5, 10, 20 and 30, and
𝐴𝑅𝐿0 = 200, 300, 370 and 500. From Table 1, we can see that for any given
combination of (𝑝, 𝜆), the higher the nominal 𝐴𝑅𝐿0, the higher the value of
ℎ. Further, for a fixed 𝜆, ℎ increases with the increase in 𝑝, and for a fixed 𝑝,
ℎ decreases with the increase in 𝜆.

3.2 Diagnostic aids

When choosing a control chart to detect and eliminate special causes, a pri-
mary consideration should be the ability to signal quickly after a special cause
occurs. Another important issue, particularly in the multivariate setting, is the
development of procedures that can be employed after a signal for diagnostic
purposes.

After a signal, it is important to know whether the shift is really an OC signal
or a false alarm. As our MVP chart is on the basis of hypothesis test (4), it
is difficult for us to identify whether the signal is real or not. We can only
control the false alarm rate. Here, if we desire a lower false alarm rate, we set
a larger 𝐴𝑅𝐿0.

Assuming the signal is real, in order to identify the change point location, we
propose using the maximum likelihood estimator (MLE) of the change point
statistic. Assume that an OC is given at the 𝑠𝑡ℎ observation by the MVP chart.
The MLE 𝜏 of the change point 𝜏 for a multivariate normal distribution is
given by

𝜏 = arg0≤𝑗<𝑠 max
{ 1

𝑠− 𝑗

𝑠∑
𝑡=𝑗+1

(X̄𝑡 − u𝑡)
′v−1

𝑡 (X̄𝑡 − u𝑡)
}
. (8)

Note that this type of estimator has also been studied by [44] and [45].

After the change point location is identified, it is interesting to identify which
variables, the mean vector or the covariance matrix, changed once the MVP
chart signals. Note the objective of this paper is constructing control chart
for covariance matrices that is insensitive to mean vector shifts. With this
objective, we followed the technique of [21] and [34] to construct control chart
for covariance matrices that is insensitive to mean vector shifts. So our MVP
chart is not able to identify if mean vector changes.
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It is also interesting to identify which components in the covariance matrix
changed. A naive idea is to compare these components with those of I𝑝, and
those components with large difference are expected to be the changed com-
ponents. It is, however, not easy to get the distribution of these components,
hence not easy to get reliable diagnosis, which warrants further study.

3.3 Effect of misspecifying the IC distribution

The construction of our proposed MVP chart is based on the assumption of
multivariate normality. This claim is reasonable for some cases, it, however,
may be troublesome for other cases, particularly as the number of variables
(or dimensions) increases. It is interesting to study the effect of misspecifying
the IC distribution on the MVP chart’s ARLs relative to the ARLs obtained
when the joint distribution of the variables is correctly specified.

We consider the multivariate 𝑡 distribution with 𝜈 degrees of freedom, denoted
as 𝑇𝑝,𝜈 and multivariate Γ distribution with shape parameter 𝜈 and scale
parameter 1, denoted as Γ𝑝,𝜈 . Many researchers propose and study multivariate
𝑡 distribution and multivariate Γ distribution. Here we follow the definitions
proposed by [46] and [47], respectively. Note 𝑇𝑝,𝜈 and Γ𝑝,𝜈 are selected to
represent symmetric distributions with heavy tails and skewed distributions,
respectively.

With control limits from Table 1, i.e., under the assumption of multivariate
normality, the actual ARL values are shown in Figure 1 when the observations
are generated from 𝑇𝑝,𝜈 and Γ𝑝,𝜈 . The cases for 𝐴𝑅𝐿0=200 and 𝑝 = 5, 10 are
considered. From Figure 1, it can be seen that (i) the actual ARL values of the
MVP chart are smaller than the nominal 𝐴𝑅𝐿0 value when 𝜈 is small, which
implies that the related process would be stopped too often by the control
chart and consequently a considerable amount of time and resource would be
wasted in such cases; (ii) when 𝜈 is large, the actual ARL values of the MVP
chart are comparable to the nominal 𝐴𝑅𝐿0 value; (iii) when the dimension 𝑝
is larger, the effect is more severe. If one is concerned about the assumption of
multivariate normality, a bootstrap procedure proposed in the next subsection
can be employed.

Insert Figure 1 about here.

3.4 Bootstrap procedure

As shown in the previous subsection, the MVP chart’s ARLs would be affected
if the IC distribution is not multivariate normal. In this case, the bootstrap
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([48, 49]) is a widely accepted approach, such as [50] and [51] for univariate
control charts, and [52] for multivariate control charts. The work of [53] based
on supervised learning and [54] based on support vector data description may
also shed light on directions to dealing with nonnormal variables.

To use the bootstrap method, we assume𝑚 IC observationsY = {Y1,Y2, . . . ,Y𝑚}
are available to represent the IC distribution. By the bootstrap method, we
first standardize the observations Y by the sample mean and sample covari-
ance of Y, and then repeatedly draw observations with replacement from the
𝑚 standardized observations, which are called the resampled data. The resam-
pled data are used as Phase II observations to compute the values of 𝑇𝑡 in (7)
of the MVP chart for any given 𝑡. Particularly, when determining the control
limits, the difference lies in Step 3 of Section 3.1. Here, we repeatedly draw
observations with replacement from standardized observations of Y, rather
than generating standard multivariate normal random vectors.

Such a bootstrap procedure would appear to be dependent on a large IC ob-
servations. This, however, may not always be available. It would be interesting
to study when the bootstrap procedure could be considered, and what ARL
performance can be expected from using this strategy. We study the effect of
𝑚 on the performance of MVP chart. To this end, we use 𝑇𝑝,𝜈 and Γ𝑝,𝜈 with
𝜈 = 5, as well as 𝑁𝑝(0, I𝑝). The cases for 𝐴𝑅𝐿0=200 and 𝑝 = 5, 10 are consid-
ered. Figure 2 shows the ARL values of MVP chart when the IC parameters
𝝁0 and Σ0 are computed from an IC data set with various historical sample
sizes 𝑚. From Figure 2, it can be seen that (i) when 𝑚 is relatively small,
the actual ARL values of the MVP chart are quite far away from the nominal
level of 200; (ii) when 𝑚 increases, such biases decrease; (iii) when 𝑚 ≥ 1000,
the ARL values become stable, which implies about 1000 samples are large
enough; (iv) when the dimension 𝑝 is larger, more IC observations are needed.

Insert Figure 2 about here.

4 Comparison Studies

In this section, we give a brief introduction to the MaxNorm chart of [24], and
we compare the performance of our MVP chart with the MaxNorm chart and
some other competing charts, including the LASSO-MEWMC (LMC) chart of
[22] and the penalized likelihood ratio (PLR) chart of [23]. Some alternative
charts, such as those of [21] and [34], were compared with PLR or LMC and
generally showed no better performance, and hence are not included here.
Most of the other existing charts for monitoring the covariance matrix require
𝑛 > 1, and they cannot be applied to our individual observation setting.
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4.1 Existing work

The LMC chart of [22] and the PLR chart of [23] were briefly introduced in
Section 1.2. Now we will introduce the MaxNorm chart of [24].

In order to detect shifts that occur in a small number of elements of the
covariance matrix, the MaxNorm chart proposed by [24] integrates the clas-
sical 𝐿2-norm-based test with a maximum-norm-based test. The monitoring
statistic at time 𝑡 is

𝑇𝑡𝑀𝑎𝑥𝑁𝑜𝑟𝑚
= max

{𝑇𝑡1 − 𝐸(𝑇1)√
𝑉 𝑎𝑟(𝑇1)

,
𝑇𝑡2 − 𝐸(𝑇2)√

𝑉 𝑎𝑟(𝑇2)

}
,

where

𝑇𝑡1 = ∣∣𝑑𝑡∣∣2 =
𝑝∑

𝑖=1

𝑝∑
𝑗=1

𝑐2𝑡(𝑖𝑗), 𝑇𝑡2 = ∣∣𝑑𝑡∣∣∞ = max(∣𝑐𝑡(11)∣, . . . , ∣𝑐𝑡(𝑝𝑝)∣),

𝑑𝑡 = (𝑐𝑡(11), 𝑐𝑡(12), . . . , 𝑐𝑡(𝑖𝑗), . . . , 𝑐𝑡(𝑝𝑝))
′, 𝑐𝑡(𝑖𝑗), 𝑖 ≤ 𝑗, is an element of matrix

𝐶𝑡 = Σ𝑡 − 𝐼𝑝, Σ𝑡 = (1 − 𝜆)Σ𝑡−1 + 𝜆𝑆𝑡, 𝑆𝑡 =
∑𝑛

𝑗=1(X𝑡𝑗)
′(X𝑡𝑗)/𝑛, and 𝐸(𝑇1),

𝐸(𝑇2), 𝑉 𝑎𝑟(𝑇1) and 𝑉 𝑎𝑟(𝑇2) are the corresponding limits when 𝑡 → ∞.

As [24] point out, 𝑇𝑡2 is more effective than 𝑇𝑡1 if shifts occur in only a few
elements in Σ. On the other hand, 𝑇𝑡1 would outperform 𝑇𝑡2 if shifts occur in
a moderate to large number of covariance elements. Hence, combining these
two statistics offers a more balanced detection ability.

4.2 ARL comparisons

In this subsection, we compare the performance of the MVP chart, the MaxNorm
chart of [24], the LMC chart of [22] and the PLR chart of [23] in terms of the
OC ARL (𝐴𝑅𝐿1) as well as standard deviation of run length (SDRL) values.
Following the simulations conducted in [24], [22] and [23], we set 𝜆 = 0.1 and
the control limits such that the 𝐴𝑅𝐿0 is approximately 200 for all charts. Note
that when the process is IC, we assume 𝝁0 = 0 and Σ0 = I𝑝. As the number
and variety of OC settings are too large to allow a comprehensive compar-
ison and it is almost impossible to include all possible OC scenarios in the
simulation, considering our goal is to show the effectiveness and sensitivity of
the MVP chart, we only choose certain representative models for illustration.
Following the simulation settings of [24] and [23], we consider the following
seven OC matrices: Σ1 = (1 + 𝛿)𝐼𝑝,
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Σ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 𝛿

1 0

0
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑝×𝑝

, Σ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝛿 𝛿

𝛿 1 𝛿 0

𝛿 𝛿 1

1

0
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑝×𝑝

,

Σ4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝛿

𝛿 1 0

1

0
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑝×𝑝

, Σ5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 𝛿 𝛿 𝛿

𝛿 1 + 𝛿 𝛿 0

𝛿 𝛿 1 + 𝛿

1

0
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑝×𝑝

,

Σ6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 𝛿2 𝛿

𝛿 1 + 𝛿2 0

1

0
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑝×𝑝

, Σ7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 𝛿 𝛿

𝛿 1 + 𝛿 0

1
. . .

0 1

1 + 𝛿 𝛿

𝛿 1 + 𝛿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑝×𝑝

.

It should be noted that Σ2, Σ3, Σ4 and Σ6 are also studied in [22].

As pointed out by [24], the seven covariance matrices can be divided into three
categories. Category I consists of Σ1 and Σ2, in which the shifts occur in just
different diagonal elements. Category II includes Σ3 and Σ4, where the shifts
occur in off-diagonal elements. Category III consists of Σ5, Σ6 and Σ7, where
the shifts occur in both the diagonal and off-diagonal elements.

The 𝐴𝑅𝐿1 and SDRL values of the MVP chart are obtained through Monte
Carlo simulation with a simulation size of 10,000. The run length is sufficient
long, enabling us to draw reasonable conclusions. The 𝐴𝑅𝐿1 and SDRL values
of the MaxNorm chart of [24], the LMC chart of [22] and the PLR chart of [23]
are taken from Tables 4 and 5 of [24]. To evaluate the deviation of OC matrices
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Σi, 𝑖 = 1, . . . , 7 and IC matrix Σ0 = I𝑝, the 𝐿2 matrix norm is employed, i.e.,

Δ = ∣∣Σi − I𝑝∣∣2,

where ∣∣𝐴∣∣2 =
√∑𝑝

𝑖=1

∑𝑝
𝑗=1 𝑎

2
𝑖𝑗 for a matrix 𝐴 = (𝑎𝑖𝑗)𝑝×𝑝. For the PLR and

LMC charts, different values of 𝜌 will have different detection performance.
To show the influence of 𝜌, [23] studied 𝜌 in the interval [0.05, 1.8] and [22]
considered 𝜌 in the interval [0.02, 1.2]. From their simulations, too small a 𝜌
or too large a 𝜌 would bring poor performance in most cases. Therefore, three
different 𝜌 values are chosen, i.e., 𝜌 = 0.05, 0.20, 1.00, for better trade-off in
different OC covariance matrices.

Table 2 shows the comparison results for 𝑝 = 5, a dimension that is not too
large. When the OC covariance matrix is Σ1, the MVP chart has the best
performance among the existing charts, no matter what value of 𝜌 is used for
PLR and LMC. The PLR and LMC charts perform better when a large tuning
parameter 𝜌 was chosen, which forces more off-diagonal elements to zero and
thus makes the PLR and LMC charts more sensitive to changes in variance
components. The MaxNorm chart is never the best or the worst. As for Σ2,
the MVP chart performs best when Δ is large, while LMC with 𝜌 = 1.00
performs best when Δ is small. Note that Σ2 is an OC covariance matrix that
is much more difficult to detect than Σ1, especially when 𝑝 is large.

Insert Table 2 about here.

In addition to using ARL as a performance measure, [55] propose a relative
mean index (RMI) for evaluating the ARL performance of a control chart over
a range of change magnitudes, which was also employed by [22]. The RMI is
defined as

𝑅𝑀𝐼 =
1

𝑑

𝑑∑
𝑖=1

𝐴𝑅𝐿Δ𝑖
− 𝐴𝑅𝐿Δ𝑖,min

𝐴𝑅𝐿Δ𝑖,min

,

where 𝐴𝑅𝐿Δ𝑖
is the 𝐴𝑅𝐿1 under Δ𝑖, 𝐴𝑅𝐿Δ𝑖,min is the minimum ARL for

detecting a shift magnitude equal to Δ𝑖 and 𝑑 is the number of different Δ𝑖

considered. It can be seen that if the RMI of a given control chart is close
to 0, then the control chart performs better in general than other charts over
a range of change magnitudes. From Table 2, the RMI of the MVP chart is
exactly 0 for Σ1, which indicates that this chart is the best performer in this
setting. The RMI of the MVP chart is 0.14 for Σ2, a little larger than that of
the MaxNorm chart.

When the OC covariance matrix is Σ3 or Σ4, the PLR chart with 𝜌 = 0.05
or the LMC chart with 𝜌 = 0.05 performs the best, which is expected since
only the covariances have changed. The choice of smaller 𝜌 is expected since
there are many non-zero entries in Σ3 and Σ4. The MaxNorm chart is still in
between these charts in terms of performance. It should be pointed out that
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although the proposed MVP chart can detect this kind of shifts, the perfor-
mance is not satisfactory. Σ3 and Σ4 fall into Category II of the seven OC
matrices, where the shifts occur in off-diagonal elements. From the monitoring
statistics in (7), the MVP chart only makes use of the trace of v𝑡, which is
an estimator of the covariance matrix. This is the reason why the MVP chart
performs unsatisfactorily under these circumstances.

When the OC covariance matrix is Σ5, which is similar to Σ3 but with added
changes in the variance components, the changes in variances are likely to make
the MVP chart more effective. As can be seen from Table 2, the MVP chart
outperforms the other charts, except when Δ = 0.8 for PLR with 𝜌 = 1.00.
In this case, the RMI of the MVP chart is 0.01, which is still the smallest. As
for Σ6, the LMC chart with 𝜌 = 0.20 performs the best when Δ is small, and
the MVP chart performs the best when Δ is large. In this case, the RMI of
the MVP chart is 0.15, which is still the smallest. In detecting Σ7, the MVP
chart outperforms all other charts as expected. It is worth pointing out that
the RMI of the MVP chart is exactly 0 for Σ7, which indicates that this chart
is the best performer in this case.

In conclusion, when the dimension is not too large (𝑝 = 5 here), among the
considered charts, the MVP chart is more effective if the process shifts cause
changes in variance components, such as Σ1, Σ2, Σ5, Σ6 and Σ7. The MVP
chart is less effective if shifts occur only in the off-diagonal components of the
covariance matrix, such as Σ3 and Σ4.

Now we turn our attention to a high-dimensional case (𝑝 = 30). The compari-
son results are shown in Table 3. We emphasize the findings that are different
from those for 𝑝 = 5. Generally speaking, the performance of all charts deteri-
orates as 𝑝 increases. The performance of the MVP chart is less affected by the
high dimensionality than the other charts. Note that when the dimension is
high, the MVP chart gives the best performance for Σ1, Σ2, Σ5, Σ6 and Σ7;
when the dimension is not so high, the MVP chart has the best performance
for Σ1, Σ5, Σ6 and Σ7. It can therefore be concluded that the superiority of
the MVP chart grows as 𝑝 increases. The MVP chart is particularly effective
when the covariance changes occur in blocks in higher dimensions. Moreover,
even for Σ4, for which only a small number of off-diagonal covariance matrix
components change, the MVP chart performs the best when Δ = 2.0. The
RMI values of the MVP chart dropped from 4.71 and 4.41 to 0.44 and 0.73 for
Σ3 and Σ4, respectively. In summary, when the dimension is high, the MVP
chart not only retains the advantage of effectively detecting covariance shifts
that involve diagonal components, but also satisfactorily detects shifts that
involve only off-diagonal components.

Insert Table 3 about here.
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As pointed out by an referee, the MVP chart statistic 𝑇𝑡 in (7) is based on
the trace of S. If a change in Σ causes the largest eigenvalue to increase by
a factor 𝛿 while the smallest eigenvalue decreases by the same factor 𝛿, such
as Σ8, the trace of S is unaltered. In general, the trace of S is effective for
detecting increases in variance. However, if some components exhibit variance
increases while others have compensating decreases, such as Σ9, the trace of
S is unaltered, either. For these two cases, we found via simulation that our
MVP chart is unable to detect these shifts, what ever 𝛿 is.

Σ8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 𝛿

1 0
. . .

0 1

1− 𝛿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑝×𝑝

, Σ9 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 𝛿

1 + 𝛿 0

1
. . .

0 1

1− 𝛿

1− 𝛿

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑝×𝑝

.

Although the PLR chart or the LMC chart with a properly chosen 𝜌 has the
best performance in some cases, it is known that the choice of 𝜌 largely depends
on the change patterns, which makes it difficult to recommend one 𝜌 value
that works well for all OC settings. Furthermore, the construction of the PLR
chart or the LMC chart involves a complex numerical minimization problem
to obtain a sparse estimator of the sample covariance matrix. These problems
do not apply to the MVP chart. Given its overall performance, the MVP chart
is thus a good alternative for monitoring covariance matrices with individual
observations, especially covariance shifts that involve diagonal components.

5 Real Data Example

In this section, we use the real “Wine Quality Data Set” from the motivating
example in Section 1.1 to illustrate the application of our proposed MVP
control chart.

[19] show that it is desirable to set up an on-line detection system to moni-
tor the production process of Portuguese Vinho Verde wine to guarantee its
quality. As mentioned in Section 2, the focus of this paper is on Phase II
monitoring. Under the MSPC context of sequentially monitoring the wine
production process, we assume that the standard quality level is 7 (LV7; as
also suggested by [19]). The 880 observations of LV7 that are classified as IC
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are used as the historical reference sample to estimate the mean vector and
covariance matrix. The IC mean vector and covariance matrix, estimated from
the 880 observations of LV7, are respectively

𝝁0 = (6.73, 0.26, 0.33, 5.19, 0.04, 34.13, 125.11, 0.99, 3.21, 0.50, 11.37)

and

Σ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.57 −0.01 0.02 0.76 0.00 −0.01 4.32 0.00 −0.06 −0.01 −0.26

−0.01 0.01 0.00 −0.01 0.00 −0.20 −0.24 0.00 0.00 0.00 0.06

0.02 0.00 0.01 0.02 0.00 0.16 0.30 0.00 0.00 0.00 −0.02

0.76 −0.01 0.02 18.47 0.01 6.75 64.12 0.01 −0.23 −0.06 −2.58

0.00 0.00 0.00 0.01 0.00 0.03 0.14 0.00 0.00 0.00 −0.01

−0.01 −0.20 0.16 6.75 0.03 175.42 231.01 0.01 0.06 0.27 −3.30

4.32 −0.24 0.30 64.12 0.14 231.01 1072.10 0.05 −0.16 0.04 −18.99

0.00 0.00 0.00 0.01 0.00 0.01 0.05 0.00 0.00 0.00 0.00

−0.06 0.00 0.00 −0.23 0.00 0.06 −0.16 0.00 0.03 0.00 0.02

−0.01 0.00 0.00 −0.06 0.00 0.27 0.04 0.00 0.00 0.02 −0.01

−0.26 0.06 −0.02 −2.58 −0.01 −3.30 −18.99 0.00 0.02 −0.01 1.55

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
11×11

.

It can be seen that the sample covariance matrix Σ0 contains several large
entries. For example, the covariance of y6 and y7 is 231.01. This demonstrates
that the variables have considerable interrelationships and consequently a mul-
tivariate control chart is likely to be more appropriate than a set of univariate
control charts.

Next, we assume that we have collected the LV6 observations sequentially.
To demonstrate the application of the proposed MVP chart, we assume that
the process covariance matrix has changed from Σ0 to Σ1. Furthermore, we
set 𝜆 = 0.1 and the control limits such that the 𝐴𝑅𝐿0 is approximately 500.
Note that the IC covariance matrix of the transformed variable is simply the
identity matrix I11. The step-by-step computation of the monitoring statistic
is as follows.

Step 1: Set 𝑡 = 0 and u0 = 0, v0 = I11.
Step 2: Update 𝑡 to 𝑡 = 𝑡+ 1. Read the 𝑡𝑡ℎ observation X𝑡 of LV6 and transform

by Σ
−1/2
0 (X𝑡 − 𝝁0).

Step 3: Compute u𝑡 and v𝑡 based on (5).
Step 4: Compute 𝑇𝑡 based on (7).
Step 5: Repeat Steps 2-4 until 𝑇𝑡 > ℎ.
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Before process monitoring, the transformed observations of LV7 were investi-
gated and found not to follow the multivariate normal distribution. In fact,
the white wine data were also studied by [20] and [56], who showed that the P-
values of the Shapiro-Wilk goodness-of-fit test for normality of the three vari-
ables y2, y3 and y7 were smaller than 0.0001, demonstrating that this data set
is not multivariate normally distributed. Following the bootstrap procedure in
Section 3.4, to determine the control limits, we calculate the charting statistics
by randomly sampling the transformed observations of LV7 with replacement,
instead of randomly generating multivariate normal variables. Through this
bootstrap-type procedure, the control limit for the MVP chart is found to be
220.858. The monitoring statistics for the last 50 observations of LV7 and the
first 23 observations of LV6, as well as the control limit, of the MVP chart are
shown in Figure 3.

Insert Figure 3 about here.

From Figure 3, it can be seen that the monitoring statistics of the MVP chart
exceed the control limit from approximately the 73𝑟𝑑 observation (the 23𝑟𝑑 LV6
observation), and the subsequent 𝑇𝑡 statistics are all well above the control
limit. These signals are convincing enough, suggesting that a significant change
in covariance has occurred. For this example data, as the last 50 observations
are of LV7 and the first 23 observations are of LV6, and we assume that the
standard quality level is LV7 (as also suggested by [19]), we can make sure
the signal observed at the 73𝑟𝑑 observation is real. For comparison, [20] and
[56] detect this change from the 25𝑡ℎ and 24𝑡ℎ LV6 observation, respectively,
which are both later than our MVP chart. In order to identify the change
point location, as our MVP chart gives an OC signal at the 73𝑟𝑑 observation,
we obtain the MLE 𝜏 = 58 by (8).

Considering the ease of construction and efficient performance, the MVP chart
should be a reasonable alternative for monitoring covariance matrices with
individual observations.

6 Conclusions and Extensions

Motivated by [37], we propose a powerful high-dimensional control chart for
monitoring process covariance matrices with more variables than observations
based on integrating EWMA on-line monitoring with the statistic in (1). Due
to the powerful properties of the test statistic and EWMA, the new chart
provides satisfactory performance in various cases, especially for covariance
shifts that involve diagonal components. Our proposed chart has the following
advantages: (i) Unlike the penalization-based charts, it circumvents the need
to select a tuning parameter 𝜌; (ii) it is able to handle the case when the
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dimension 𝑝 is larger than the sample size 𝑛; (iii) it is able to handle the case
when the sample size is one.

Compared with the MaxNorm chart of [24], the LMC chart of [22] and the
PLR chart of [23], the proposed MVP chart is more effective if the process
shifts cause changes in variance components, but less effective if shifts occur
only in off-diagonal components of the covariance matrix when the dimension
is not large. The performance of the MVP chart is, however, less affected
by the high dimensionality than the other charts and the superiority of the
MVP chart grows as 𝑝 increases. The MVP chart is particularly effective when
the covariance changes occur in blocks in higher dimensions. Although the
PLR chart or the LMC chart with proper 𝜌 displays the best performance in
some cases, it is known that the choice of 𝜌 largely depends on the change
patterns, which makes it difficult to recommend one 𝜌 value that works well
for all OC settings. Furthermore, the construction of the PLR chart or the
LMC chart involves a complex numerical minimization problem to obtain
a sparse estimator of the sample covariance matrix. These problems do not
apply to the MVP chart. Given its overall performance, the MVP chart is
thus a good alternative for monitoring high-dimensional covariance matrices,
especially covariance shifts that involve diagonal components.

It is worth pointing out here that the proposed MVP chart is studied and
compared on the assumption that the parameters are exactly known when
the process is IC. In some cases, the parameters may be unknown or many
IC observations may be needed to estimate these parameters ([57, 58]). The
performance of the MVP chart with estimated parameters warrants further
study. Moreover, although a MLE of change point location of the proposed
MVP chart is provided for diagnosis, more reliable diagnostic aids on identify-
ing which components in the covariance matrix changed are needed. Further-
more, as the MVP chart is based on the trace, it is unable to detect shifts if
some components exhibit variance increases while others have compensating
decreases, which case also deserves further study.
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Table 1
The control limits of the MVP chart for various combinations of (𝜆, 𝑝,𝐴𝑅𝐿0).

𝐴𝑅𝐿0=200 𝐴𝑅𝐿0=300 𝐴𝑅𝐿0=370 𝐴𝑅𝐿0=500

𝜆 = 0.1 p=5 40.7031 42.1562 42.8906 44.0625

p=10 125.7812 128.8500 130.7812 133.0860

p=20 425.6248 431.0000 434.0624 438.4376

p=30 902.3436 908.4372 912.1872 917.3436

𝜆 = 0.2 p=5 37.4219 39.0625 39.9219 41.1719

p=10 108.6250 111.3750 113.0000 115.1562

p=20 357.4220 361.5000 363.4376 366.5624

p=30 751.8750 758.6250 761.7186 765.3516

Figure captions:
Figure 1. Actual ARL values when the IC distribution is multivariate 𝑇𝑝,𝜈 and
Γ𝑝,𝜈 .
Figure 2. Actual ARL values when the IC distribution is multivariate𝑁𝑝(0, I𝑝),
𝑇𝑝,𝜈 and Γ𝑝,𝜈 .
Figure 3. The monitoring statistics of the MVP chart applied to the white
wine production process.
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Table 2
ARL (SDRL) comparison when 𝑛 = 1, 𝑝 = 5. (Note: The ARL (SDRL) values of
the PLR, LMC and MaxNorm charts are taken from Tables 4 and 5 of [24].)

Δ PLR with 𝜌 LMC with 𝜌 MaxNorm MVP

0.05 0.20 1.00 0.05 0.20 1.00

Σ1 0.8 27.9 21.3 14.5 28.3 22.4 21.9 18.6 12.7

(22.7) (17.1) (11.5) (23.1) (17.9) (18.6) (15.7) (12.6)

1.2 20.4 15.9 11.2 21.2 16.8 16.4 14.3 7.46

(15.7) (12.2) (8.59) (16.4) (13.0) (13.4) (11.4) (6.79)

1.6 16.8 13.1 9.33 17.2 14.0 13.6 11.7 5.24

(12.7) (9.72) (7.02) (13.1) (10.4) (10.9) (9.10) (4.40)

2.0 14.6 11.3 8.05 14.6 11.8 12.0 10.2 4.12

(10.8) (8.47) (6.00) (10.7) (8.78) (9.43) (7.89) (3.31)

RMI 1.92 1.26 0.59 1.97 1.39 1.36 1.02 0.00

Σ2 0.8 40.3 34.0 28.2 42.2 37.0 26.2 27.3 37.5

(33.2) (28.2) (24.7) (34.5) (30.7) (22.8) (23.7) (40.1)

1.2 31.7 26.6 22.1 32.2 29.2 20.3 20.8 22.9

(24.6) (21.5) (19.1) (25.6) (24.0) (17.2) (17.5) (24.7)

1.6 26.4 22.7 18.2 27.0 24.5 17.0 17.4 16.2

(20.6) (18.0) (15.4) (20.5) (19.4) (14.3) (14.5) (17.0)

2.0 23.4 19.5 16.1 23.7 21.4 14.7 15.4 12.3

(17.9) (14.9) (13.2) (17.8) (16.8) (12.3) (12.8) (12.7)

RMI 0.66 0.40 0.15 0.70 0.53 0.06 0.10 0.14

Σ3 0.8 47.8 52.5 153 48.2 48.3 143 79.8 196

(36.5) (43.5) (153) (37.4) (39.4) (137) (73.5) (209)

1.2 36.2 39.7 137 35.9 36.2 124 59.9 196

(26.5) (31.6) (134) (25.1) (27.5) (116) (54.4) (215)

1.6 29.6 32.3 123 29.2 29.8 107 49.3 195

(19.5) (24.4) (120) (19.4) (21.9) (101) (43.8) (218)

2.0 24.9 27.5 115 25.1 25.6 92.8 41.2 164

(15.6) (19.8) (112) (16.1) (18.7) (84.9) (35.7) (191)

RMI 0.01 0.10 2.96 0.00 0.02 2.46 0.67 4.71

Σ4 0.8 36.7 45.3 129 36.4 38.5 75.3 86.9 198

(23.2) (34.8) (127) (22.9) (27.9) (65.7) (80.8) (217)

1.2 24.5 30.1 101 24.3 26.1 47.7 64.8 196

(11.7) (19.1) (96.7) (11.5) (16.1) (40.0) (57.7) (220)

1.6 18.3 22.1 82.7 18.1 19.8 34.8 49.9 104

(6.53) (11.4) (77.5) (6.53) (10.4) (26.6) (42.9) (122)

2.0 14.7 17.4 66.8 14.8 16.1 27.5 40.5 35.2

(4.14) (7.30) (60.8) (4.25) (7.62) (19.6) (33.2) (41.9)

RMI 0.01 0.22 3.20 0.00 0.08 0.96 1.64 4.41

Σ5 0.8 41.1 35.8 35.0 41.2 35.3 42.6 36.5 36.9

(34.1) (30.1) (31.6) (33.9) (28.9) (39.1) (32.4) (39.6)

1.2 31.9 28.0 27.4 32.2 28.1 33.5 27.7 23.1

(25.1) (22.6) (23.9) (25.4) (22.8) (29.6) (23.7) (24.7)

1.6 26.6 23.2 23.1 26.9 23.7 27.7 22.9 16.4

(20.5) (18.6) (19.8) (20.7) (18.6) (24.3) (19.7) (17.2)

2.0 23.0 20.3 20.1 23.5 20.2 24.1 20.3 12.3

(17.2) (16.0) (17.3) (17.6) (15.4) (20.8) (17.2) (12.8)

RMI 0.51 0.33 0.31 0.53 0.33 0.58 0.32 0.01

Σ6 0.8 43.0 40.1 47.1 42.8 39.2 48.6 44.6 61.1

(34.0) (33.0) (43.2) (33.7) (32.0) (43.9) (40.6) (67.7)

1.2 32.7 30.2 33.5 33.2 29.7 34.7 32.2 30.4

(25.2) (24.7) (30.1) (26.0) (23.5) (30.5) (27.5) (33.4)

1.6 27.4 24.4 26.3 27.5 24.8 27.3 25.3 17.9

(20.4) (19.2) (23.1) (21.2) (19.4) (23.2) (21.4) (19.2)

2.0 23.7 21.0 21.7 23.9 21.5 22.6 21.1 12.4

(17.7) (16.3) (18.7) (17.6) (16.5) (19.0) (17.9) (12.6)

RMI 0.41 0.27 0.39 0.42 0.28 0.44 0.33 0.15

Σ7 0.8 34.9 28.9 24.5 35.2 29.8 33.5 28.3 24.0

(27.3) (23.7) (21.1) (28.1) (24.2) (29.9) (23.7) (24.8)

1.2 26.8 22.6 19.3 26.9 23.1 25.6 21.7 14.2

(20.9) (17.8) (16.2) (20.8) (18.0) (21.9) (18.1) (14.3)

1.6 22.5 18.5 15.8 22.3 18.9 21.4 18.2 9.86

(16.8) (14.0) (12.7) (16.9) (14.3) (18.0) (14.9) (9.46)

2.0 19.3 16.3 13.8 19.3 16.8 18.7 15.5 7.53

(14.1) (12.3) (11.1) (14.0) (12.8) (15.3) (12.4) (7.01)

RMI 1.05 0.71 0.45 1.05 0.75 0.96 0.65 0.00
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Table 3
ARL (SDRL) comparison when 𝑛 = 1, 𝑝 = 30. (Note: The ARL (SDRL) values of
the PLR, LMC and MaxNorm charts are taken from Tables 4 and 5 of [24].)

Δ PLR with 𝜌 LMC with 𝜌 MaxNorm MVP

0.05 0.20 1.00 0.05 0.20 1.00

Σ1 0.8 40.7 25.9 14.6 38.4 25.3 33.5 25.1 3.16

(24.1) (15.1) (9.73) (21.1) (14.1) (28.2) (18.7) (8.08)

1.2 32.5 20.4 11.4 31.4 19.9 25.3 18.7 1.74

(17.0) (10.9) (7.06) (15.6) (10.1) (20.2) (12.9) (3.20)

1.6 27.6 17.3 9.47 26.9 17.1 20.5 15.5 1.31

(13.3) (8.23) (5.61) (12.2) (7.77) (15.7) (9.87) (1.54)

2.0 24.4 15.2 8.13 24.1 15.2 17.9 13.3 1.16

(10.4) (6.73) (4.69) (9.73) (6.48) (13.4) (8.13) (0.89)

RMI 17.42 10.56 5.35 16.88 10.40 13.06 9.50 0.00

Σ2 0.8 107 92.1 60.1 112 107 50.4 44.5 59.3

(82.2) (75.9) (54.1) (86.0) (90.0) (44.0) (39.2) (162)

1.2 91.3 77.3 47.0 98.1 92.1 37.5 33.2 34.7

(67.8) (60.9) (40.9) (73.8) (76.3) (32.6) (27.8) (96.3)

1.6 80.9 67.2 39.2 87.0 82.5 30.6 26.9 21.3

(58.8) (52.7) (32.6) (64.2) (67.5) (25.9) (22.2) (60.3)

2.0 73.1 60.1 35.0 78.9 72.5 26.0 22.8 15.0

(50.6) (45.8) (28.7) (55.3) (57.2) (21.3) (18.7) (42.2)

RMI 2.46 1.89 0.73 2.70 2.47 0.36 0.20 0.09

Σ3 0.8 145 151 189 147 149 170 176 194

(119) (133) (184) (123) (132) (163) (168) (468)

1.2 125 133 181 126 134 157 163 189

(102) (113) (176) (100) (115) (148) (158) (461)

1.6 113 116 172 115 121 142 151 160

(86.9) (99.0) (167) (88.8) (104) (139) (142) (398)

2.0 102 104 165 102 108 128 143 152

(77.3) (86.3) (158) (76.1) (91.5) (121) (135) (384)

RMI 0.00 0.04 0.47 0.01 0.06 0.23 0.31 0.44

Σ4 0.8 127 132 174 128 131 116 169 197

(101) (114) (169) (100) (115) (107) (164) (492)

1.2 99.3 107 156 98.8 100 77.7 138 179

(71.6) (88.9) (150) (70.8) (82.2) (67.1) (132) (454)

1.6 74.2 85.4 140 70.8 71.4 57.0 109 110

(47.1) (65.3) (132) (42.4) (50.8) (45.8) (101) (281)

2.0 51.2 67.1 122 43.0 43.0 42.8 86.1 40.4

(23.3) (46.7) (113) (13.8) (20.1) (32.8) (77.1) (113)

RMI 0.24 0.42 1.25 0.17 0.18 0.01 0.82 0.73

Σ5 0.8 108 93.8 74.2 109 97.3 81.7 85.9 59.4

(84.1) (76.9) (67.2) (84.8) (80.6) (74.1) (79.1) (161)

1.2 93.8 79.5 60.1 94.7 86.2 62.2 67.7 34.4

(70.0) (63.6) (54.1) (70.4) (70.6) (55.8) (60.8) (98.0)

1.6 81.6 69.9 51.2 84.1 76.0 50.7 57.6 22.0

(58.4) (53.9) (45.0) (61.2) (60.1) (44.1) (50.7) (64.1)

2.0 73.9 61.6 44.4 76.3 68.9 42.8 49.2 15.2

(50.9) (46.1) (38.3) (52.6) (53.5) (37.1) (42.8) (43.6)

RMI 2.28 1.78 1.06 2.36 2.03 1.08 1.32 0.00

Σ6 0.8 118 108 92.4 119 112 82.8 102 88.7

(93.7) (92.5) (84.4) (92.9) (94.7) (75.4) (95.1) (238)

1.2 98.0 88.4 69.6 102 95.4 58.8 73.5 46.2

(74.0) (72.6) (63.2) (78.1) (78.3) (51.8) (66.6) (129)

1.6 86.4 74.5 55.2 90.0 81.7 46.0 56.6 24.5

(62.9) (59.1) (48.8) (65.9) (64.4) (39.6) (49.4) (68.1)

2.0 77.7 64.7 45.4 80.6 74.0 37.5 45.6 14.6

(55.1) (49.8) (39.1) (58.0) (58.2) (31.8) (39.8) (43.4)

RMI 2.10 1.67 1.00 2.21 1.96 0.68 1.06 0.02

Σ7 0.8 96.5 78.3 57.3 96.2 83.5 68.0 68.2 39.3

(74.4) (63.6) (50.2) (72.2) (69.2) (62.1) (62.0) (109)

1.2 80.1 64.3 45.2 82.1 70.6 52.0 52.7 19.7

(57.5) (48.5) (39.5) (59.6) (54.7) (46.3) (46.1) (57.9)

1.6 70.0 55.3 36.8 73.2 61.3 41.9 43.4 11.4

(47.1) (41.0) (30.8) (50.5) (46.1) (35.6) (36.8) (33.8)

2.0 62.4 49.4 31.7 65.3 54.8 35.0 37.2 7.56

(40.4) (35.0) (25.4) (43.5) (40.5) (28.6) (31.4) (21.6)

RMI 4.23 3.16 1.79 4.42 3.58 2.17 2.28 0.00
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Fig. 1. Actual ARL values when the IC distribution is multivariate 𝑇𝑝,𝜈 and Γ𝑝,𝜈 .
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Fig. 2. Actual ARL values when the IC distribution is multivariate 𝑁𝑝(0, I𝑝), 𝑇𝑝,𝜈

and Γ𝑝,𝜈 .
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Fig. 3. The monitoring statistics of the MVP chart applied to the white wine pro-
duction process.
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