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Abstract

This paper presents a study of a new procedure, which is based
on integrating a powerful nonparametric test for the two-sample prob-
lem and EWMA control scheme to on-line sequential monitoring. The
proposed procedure, based on individual observation per sample, can
be used to monitor the location and the scale parameters of a uni-
variate continuous distribution, simultaneously. An iterative compu-
tation procedure is developed for computing the monitoring statistics.
A search algorithm for the control limit based on Monte-Carlo simu-
lation and bisection method is derived and a table is provided. The
sensitivity analysis on the procedure is studied in detail. Monte-Carlo
simulation results show that the proposed procedure is quite robust
to non-normally distributed data, and moreover, it is efficient in de-
tecting various process shifts. A real data example from a chemical
reaction process is shown to illustrate the application of our proposed
procedure.
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1 Introduction

Control charts have been widely used in many areas, not only in industry, but
also in areas such as transactional and service businesses, signal and image
processing ([30]), health care and public health surveillance ([45]), and so
forth. In addition to standard text book such as [31], interested readers
could also refer to [35] for recent development on statistical process control
(SPC) and to [49] for control charts for high-quality processes. Application
of SPC charts involves two stages, i.e., Phase I and Phase II. In Phase I,
a set of process data is collected and analyzed (retrospective analysis) all
at once to determine whether the process has been in control. After Phase
I, we have a “clean” set of process data that is representative of in-control
(IC) process performance. In Phase II, control chart is used to monitor
the process by comparing the sample statistic to the control limits for each
successive sample as it is collected from the process. Performance of a Phase
II SPC procedure is usually measured by the average run length (ARL),
which is the average number of observations that must be collected before
an observation indicates an out-of-control (OC) condition ([31]). This paper
focuses on Phase II monitoring of univariate processes in cases when process
observations are not normally distributed, i.e., there is lack of knowledge
about the underlying distribution.

In the literature, many Phase II SPC charts have been proposed, includ-
ing different versions of the Shewhart chart, the cumulative sum (CUSUM)
chart, the exponentially weighted moving average (EWMA) chart, and the
chart based on change-point detection (cf., e.g., [23, 31, 35]). Many of these
control charts are based on the assumption that the observations of a pro-
cess follow a particular probability distribution, usually normal distribution.
In practice, the process observations may, however, not follow the specified
(e.g. normal) distributions. In such cases, [37, 38] show that results from
the charts mentioned above would be unreliable, i.e., the actual IC ARL
(denoted as 𝐴𝑅𝐿0) values of the conventional CUSUM chart ([34]) are much
smaller than the nominal 𝐴𝑅𝐿0 values when the true process distribution is 𝑡
or 𝜒2, especially with small degree-of-freedom, which implies that the related
process would be stopped too often by the control chart and consequently a
considerable amount of time and resource would be wasted in such cases.

It is necessary to develop appropriate control procedures that do not
require the normal distribution assumption in cases when the process distri-
bution is actually non-normal. To this end, a number of distribution-free or
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nonparametric SPC (NSPC) charts have been developed. [10, 6] give thor-
ough overviews on existing research in the area of univariate NSPC. [47, 48]
also encourage research of nonparametric methods. For some recent devel-
opment, for Phase I, see, for instance, [5] propose distribution-free procedure
for univariate observations based on recursive segmentation and permuta-
tion. [26, 25] propose distribution-free control charts for subgroup location
and scale, respectively. [42, 43] construct a standard deviation and �̄� control
chart derived from the trimmed mean, respectively. [44, 53] propose robust
estimators for location. [33] study robustness of control charts for moni-
toring process mean. For Phase II, to name a few, [2] propose an extrema
chart based on the extrema of a sample of observations. [28] propose two
nonparametric analogs of the CUSUM and EWMA control charts based on
the Wilcoxon rank-sum test for detecting process mean shifts. [50] propose
a non-parametric CUSUM mean chart. [39] investigate the performance of
two CUSUM chart combinations that can be made to be robust to non-
normality. By integrating the omnibus Kolmogorov-Smirnov and Cramer-
von-Mises tests into the widely researched change-point model framework,
[40] present two distribution-free charts that can detect arbitrary changes
to the process distribution. [22] develop a nonparametric tool based on the
change-point model. [7, 8] propose control charts based on runs and prece-
dence statistics with runs-type signaling rules, respectively. [16, 15] propose
nonparametric charts for variability and location, respectively. [20, 21] pro-
pose nonparametric EWMA charts for monitoring location based on signed-
rank and precedence test, respectively. [19] develop a bivariate signed-rank
test for location parameters. [51] develop a multivariate sign EWMA control
chart for location parameters.

Note that most of the procedures above are only designed to detect a sin-
gle shift in the location (e.g., mean) or scale (e.g., standard deviation) of the
process. Generally, the process location and variability may vary simultane-
ously during the monitoring period. Therefore, it is desirable to construct
a procedure that can not only detect changes in the process location, but
also is sensitive to the shifts in the process variability. [12, 29] give overviews
of the control charts in an effort to use only one chart to simultaneously
monitor both process location and scale. There are also some attempts for
single charts in NSPC. Among others, [52] develop a distribution-free control
chart based on the integration of a powerful nonparametric goodness-of-fit
test and the EWMA control scheme. [41] propose a Lepage-type hypothesis
test statistic based on Mann-Whitney test statistic for monitoring process
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location and Mood test statistic for monitoring process variability. Com-
bining two popular nonparametric test statistics: the Wilcoxon rank sum
test for location and the Ansari-Bradley test for scale, [32] propose a sin-
gle distribution-free Shewhart-type chart. [13] propose a distribution-free
Shewhart-type chart based on the Cucconi statistic. Recently, [14] extend
the Shewhart-type chart of [32] to CUSUM-type chart. [1] develop a non-
parametric CUSUM by utilizing a smooth bootstrap algorithm along with
an adaptive nonparametric kennel density estimator. The research, however,
is still demanding for nonparametric single charts.

The purpose of this paper is to propose a single NSPC procedure that
can monitor the location and the scale parameters of a univariate continuous
distribution, simultaneously. Most existing NSPC charts mentioned above
are based on ordering or ranking information of the observations obtained at
the same or different time points. Some of them require multiple observations
at each time point (e.g., [20, 21]). In many industrial applications ([31],
Chapter 6), due to practical and cost concerns, it may be impossible to
collect more than one observation per sample. Intuitively, it would lose
much information if we only use the ordering or ranking information in the
observed data for process monitoring. Motivated by works of [24] and [17], we
propose a single NSPC procedure that is based on individual observation and
can monitor the location and the scale parameters of a univariate continuous
distribution, simultaneously. The proposed procedure is compared with some
competing methods in the literature, including the nonparametric likelihood-
ratio EWMA (NLE) procedure of [52], the robust EWMA (RoE) of [3], and
the control chart based on precedence statistics with runs-type signaling rules
of [8] (denoted as Pre).

The rest part of the paper is organized as follows. Our proposed procedure
is described in Section 2. Then some implementation issues are described in
detail in Section 3, including iterative computation of the monitoring statis-
tics, search algorithm for finding control limit and sensitivity analysis of the
effect of the parameters on the performance. A comparison study based
on Monte-Carlo simulation to evaluate the performance in comparison with
some competing procedures is presented in Section 4. An application is dis-
cussed in Section 5 to demonstrate the application of the proposed method
in a real world setting. Some remarks conclude this paper in Section 6. The
simulation procedure by which the ARL values are derived is deferred to
Appendix.
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2 Proposed NSPC Procedure

Motivated by the discussions above, a new procedure is described here. We
first give the assumptions and models of the proposed procedure, and then
present the methodology for constructing our NSPC procedure, named RE
procedure.

Assume that 𝑋1, 𝑋2, . . . , 𝑋𝑚 are a sequence of independent observations
obtained during Phase I process monitoring and 𝑌1, 𝑌2, . . . , 𝑌𝜏 , 𝑌𝜏+1, . . . , 𝑌𝑛

are a sequence of independent observations obtained during Phase II process
monitoring. The cumulative distribution functions (cdf) of 𝑋1, 𝑋2, . . . , 𝑋𝑚,
𝑌1, 𝑌2, . . . , 𝑌𝜏 are the same to be 𝐹 (⋅) up to an unknown time point 𝜏 , and
change to another cdf 𝐺(⋅) after the time point 𝜏 for 𝑌𝜏+1, . . . , 𝑌𝑛.

As some existing NSPC procedures (e.g., [40, 28]), we assume the IC
cdf 𝐹 (⋅) is unknown. As a matter of fact, we assume that an IC dataset
of size 𝑚 has been collected in the Phase I analysis, and it can be used
for estimating certain IC parameters or the IC distribution 𝐹 (⋅). The set
of IC Phase I sample 𝑋1, 𝑋2, . . . , 𝑋𝑚 is used to represent the IC process
distribution 𝐹 (⋅). Note that, in practice, it might still be an important issue
to do Phase I analysis efficiently in cases when 𝐹 (⋅) is nonparametric and
unknown, although Phase I analysis in such cases is not the focus of this
paper. [26] propose a distribution-free method for defining the IC state of a
process and identifying an IC reference sample. [9, 27] give comprehensive
reviews of Phase I analysis, which is a broad area of quality monitoring
research and has been studied by many researchers. The proposed procedure
in this paper is not applicable in Phase I. And it will also be shown in Section
3.2 that the size 𝑚 of Phase I sample has great effect on the IC performance
on our proposed procedure.

Now let𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑚, be the rank of𝑋𝑖 in the pooled sample {𝑋1, 𝑋2, . . . ,
𝑋𝑚, 𝑌1, 𝑌2, . . . , 𝑌𝜏 , 𝑌𝜏+1, . . . , 𝑌𝑛}. Analogously we denote 𝑅𝑖,𝑚+ 1 ≤ 𝑖 ≤ 𝑁,
as the rank of 𝑌𝑖 in {𝑋1, 𝑋2, . . . , 𝑋𝑚, 𝑌1, 𝑌2, . . . , 𝑌𝜏 , 𝑌𝜏+1, . . . , 𝑌𝑛}, where 𝑁 =
𝑚 + 𝑛. To design a procedure that is able to monitor the location and the
scale parameters of a univariate continuous distribution, a combined statistic
is usually employed, such as the Lepage statistic proposed by [32, 14], which
is the sum of squares of standardized of Wilcoxon rank sum statistic 𝑄1 and
Ansari-Bradley statistic 𝑄2,

𝑄1 =
𝑁∑
𝑖=1

𝑅𝑖𝐼𝑖, 𝑄2 =
𝑁∑
𝑖=1

∣𝑅𝑖 − 𝑁 + 1

2
∣𝐼𝑖, (2.1)
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and the Cucconi test statistic proposed by [13], which is a combination of
standardized of sum of the squares of the ranks 𝑃1 and sum of the squares
of the anti-ranks 𝑃2,

𝑃1 =
𝑁∑
𝑖=1

𝑅2
𝑖 𝐼𝑖, 𝑃2 =

𝑁∑
𝑖=1

(𝑁 + 1−𝑅𝑖)
2𝐼𝑖, (2.2)

where 𝐼𝑖 is an indicator variable with 𝐼𝑖 = 1 when the 𝑖𝑡ℎ order statistic of
the combined 𝑁 observations is a 𝑌 ; otherwise, 𝐼𝑖 = 0. Note that 𝑅𝑖𝐼𝑖 is the
ranks of 𝑌 and 𝑁+1

2
is the average of all ranks. It seems that the difference

of the ranks of 𝑌 and the average of all ranks will help detect the location
and variability change of a process, if any. In Eq. (2.1) and (2.2), the ranks
of 𝑋 are not evidently included, which motivates us to employ the squared
difference of the average of the ranks of 𝑋 and 𝑌 , i.e., a statistic like(

1

𝑚

𝑚∑
𝑖=1

𝑅𝑖 − 1

𝑛

𝑁∑
𝑖=𝑚+1

𝑅𝑖

)2

. (2.3)

We found that, the statistic in Eq. (2.3) is a special case of the statistic
𝑇𝑘 proposed by [24] and [17], which is defined by

𝑇𝑘 =
𝑘∑

𝑗=1

{ 𝑁∑
𝑖=1

𝑐𝑁𝑖𝑏𝑗(
𝑅𝑖 − 0.5

𝑁
)
}2
, (2.4)

where 𝑏𝑗(⋅) denotes the 𝑗𝑡ℎ orthonormal Legendre polynomial,

𝑐𝑁𝑖 =

√
𝑚𝑛

𝑁

{
𝑚−1 as 1 ≤ 𝑖 ≤ 𝑚,
−𝑛−1 as 𝑚+ 1 ≤ 𝑖 ≤ 𝑁.

The Legendre polynomial 𝑃𝑛(𝑥) is defined recursively by

𝑃0(𝑥) = 1, 𝑃1(𝑥) = 𝑥

and
(𝑛+ 1)𝑃𝑛+1(𝑥) = (2𝑛+ 1)𝑥𝑃𝑛(𝑥)− 𝑛𝑃𝑛−1(𝑥).

The first few orthonormal Legendre polynomials 𝑏𝑗(⋅) are 𝑏0(𝑥) =
√

1/2,

𝑏1(𝑥) =
√
3/2𝑥, 𝑏2(𝑥) =

√
5/8(3𝑥2 − 1), and etc.
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[24] and [17] proposed the statistics 𝑇𝑘 in Eq. (2.4) for the following
testing problem,

𝐻0 : 𝐹 (𝑥) = 𝐺(𝑥) versus 𝐻1 : 𝐹 (𝑥) ∕= 𝐺(𝑥),

and they derived the limiting distribution of 𝑇𝑘 and its consistency under mild
conditions, and also showed the efficiency of 𝑇𝑘 through extensive simulation
studies. The 𝑘 values are suggested to be a small positive integer, such as 1
and 2.

Based on the consideration of Eq. (2.3) and Eq. (2.4), we construct our
NSPC procedure with 𝑇1, which turns out to be the squared difference of the
average of the ranks of 𝑋 and 𝑌 . One may also employ other statistic, e.g.,
𝑇2. We, here, just use 𝑇1 to show the idea of this paper, and it can be easily
generalized to 𝑇2. Although 𝑇1 is a function of the ranks of all observations
up to time point 𝑁 , it may not be effective to detect persistent changes in
the process. It is well known that EWMA is more effective for small changes
of process ([20, 21, 28, 52]), we suggest the following EWMA procedure at
time point 𝑛, {

𝑅𝐸0 = 0,
𝑅𝐸𝑛 = (1− 𝜆)𝑅𝐸𝑛−1 + 𝜆𝑇1, for 𝑛 ≥ 1,

(2.5)

where 0 < 𝜆 ≤ 1 is the smoothing constant. An OC signal is issued if
𝑅𝐸𝑛 > ℎ, where ℎ is the control limit for a prespecified 𝐴𝑅𝐿0. For the rest
of this paper, we denote our proposed rank-based EWMA procedure as RE
procedure.

Note that our proposed RE procedure calls for calculating 𝑇1 as 𝑁 in-
creases. That is, regardless of how big 𝑁 might be, one still has to calculate
𝑇1 for small 𝑁 values. We do not recommend to use the asymptotic dis-
tribution 𝜒2

1 derived by [24] in practice to find the control limits. Instead,
we find the control limits through Monte-Carlo simulation based on a search
algorithm (details deferred to Section 3.2).

3 Implementation Issues

We describe some implementation issues of our proposed RE procedure. In
Section 3.1, the computation aspects are described, where we give an iterative
algorithm for computing the monitoring statistics. Then, in Section 3.2,
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we show a search algorithm for the control limit ℎ based on Monte-Carlo
simulation and bisection method and study the effect of Phase I sample size
𝑚 on the IC performance. Finally, in Section 3.3, the sensitivity analysis of
effects of parameters on ARL values of proposed procedure is discussed.

3.1 Iterative computation

It seems necessary to sort the observations {𝑋1, 𝑋2, . . . , 𝑋𝑚, 𝑌1, 𝑌2, . . . , 𝑌𝜏 , 𝑌𝜏+1,
. . . , 𝑌𝑛} and obtain the corresponding ranks every time when we get a new
observation 𝑌𝑛 at time point 𝑛, which will inevitably cause a tedious compu-
tation and a heavy storage task as 𝑛 gets large. Fortunately, we can make
the computation much easier using the following iterative algorithm.

Note that

𝑇1 =

{ 𝑁∑
𝑖=1

𝑐𝑁𝑖𝑏1(
𝑅𝑖 − 0.5

𝑁
)

}2

=

{ 𝑚∑
𝑖=1

√
𝑚𝑛

𝑁
⋅ 1

𝑚
⋅
√

3

2
(
𝑅𝑖 − 0.5

𝑁
)−

𝑁∑
𝑖=𝑚+1

√
𝑚𝑛

𝑁
⋅ 1
𝑛
⋅
√

3

2
(
𝑅𝑖 − 0.5

𝑁
)

}2

=
3𝑚𝑛

2𝑁3

(
1

𝑚

𝑚∑
𝑖=1

(𝑅𝑖 − 0.5)− 1

𝑛

𝑁∑
𝑖=𝑚+1

(𝑅𝑖 − 0.5)

)2

=
3𝑚𝑛

2𝑁3

(
1

𝑚

𝑚∑
𝑖=1

𝑅𝑖 − 1

𝑛

𝑁∑
𝑖=𝑚+1

𝑅𝑖

)2

.

Let 𝑋(1), 𝑋(2), . . . , 𝑋(𝑚) be the order statistics of 𝑋1, 𝑋2, . . . , 𝑋𝑚. Before
we start Phase II monitoring, i.e., 𝑛 = 0, the ranks of 𝑋(1), 𝑋(2), . . . , 𝑋(𝑚)

are 1, 2, . . . ,𝑚, respectively. Then at any time point 𝑛(𝑛 ≥ 1) when we get
the sample 𝑌𝑛, we compare 𝑌𝑛 with 𝑋(1), 𝑋(2), . . . , 𝑋(𝑚). If 𝑌𝑛 < 𝑋(𝑖), the
rank of 𝑋(𝑖) is updated by adding one; otherwise, the rank of 𝑋(𝑖) remains
the same as the original one. Note that the following equation holds

𝑚∑
𝑖=1

𝑅𝑖 +
𝑁∑

𝑖=𝑚+1

𝑅𝑖 = 𝑁(𝑁 + 1)/2. (3.6)

So when we obtain the ranks of 𝑋(𝑖), 𝑖 = 1, 2, . . . ,𝑚 at any time point

𝑛, we can obtain
∑𝑚

𝑖=1 𝑅𝑖, and then obtain
∑𝑁

𝑖=𝑚+1 𝑅𝑖 from Eq. (3.6). The
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entire computation involves only order 𝑚 (which is fixed and not growing)
computations for any time point 𝑛, and thus the computational task can be
easily managed.

3.2 Search algorithm

A search algorithm for the control limit ℎ is based on Monte-Carlo simula-
tion and bisection method. The Fortran program used is available from the
authors upon request. A user can also code his own computer program by
the guidelines below for finding ℎ.

Step 1: Input parameters to be specified by the practitioners, including 𝐴𝑅𝐿0,
Phase I sample size 𝑚 and smoothing constant 𝜆.

Step 2: Set the maximum of ℎ to, e.g., ℎ𝑚𝑎𝑥 = 0.1 (such that the ARL value
is larger than 𝐴𝑅𝐿0) and the minimum of ℎ to ℎ𝑚𝑖𝑛 = 0 and set
ℎ = (ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛)/2.

Step 3: Set 𝑅𝐸0 = 0 and 𝑅𝐿 = 0. Generate standard normal random variables,
update RL to 𝑅𝐿 = 𝑅𝐿 + 1 and compute 𝑇1 to obtain 𝑅𝐸𝑛 until
𝑅𝐸𝑛 > ℎ.

Step 4: Repeat Step 3 𝐵 times, which is the Monte Carlo sample size and
obtain the average of the RL, i.e., ARL. If 𝐴𝑅𝐿 > 𝐴𝑅𝐿0, update ℎ𝑚𝑎𝑥

to ℎ; otherwise, update ℎ𝑚𝑖𝑛 to ℎ.

Step 5: The algorithm is not stopped until the absolute difference of 𝐴𝑅𝐿 and
𝐴𝑅𝐿0 is less than a prefixed value 𝜀1 or the absolute difference of the
current ℎ and the ℎ in the last iteration is less than another prefixed
value 𝜀2.

Based on the search algorithm above, all the results are implemented in
Fortran 95 with IMSL package. Routine “rnnor” is used to generate standard
normal random variables. Note that the proposed RE procedure is nonpara-
metric and hence the ARL values are nearly the same for other non-normal
continuous distributions, such as 𝑡(3) and 𝜒2

3 used in Section 3.3, which can
be generated by routine “rnstt” and “rnchi”, respectively. The computation
time depends highly on the total Monte Carlo sample size 𝐵, the prefixed
values 𝜀1 and 𝜀2. Hence larger value of 𝐵 and smaller values of 𝜀1 and 𝜀2
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will lead the result with higher accuracy, but more time consuming, and vice
versa. To balance the time and accuracy, we recommend that 𝐵 = 5000,
𝜀1 = 1 and 𝜀2 = 10−4. The execution time is about several minutes on a
Pentium 4 with CPU processor 3.00 GHz.

Numerical computations in Fortran software, based on the search algo-
rithm above, are used to determine ℎ. The results, which are displayed in
Table 1, show a pretty stable and meaningful estimates of the 𝐴𝑅𝐿0. We
have chosen 𝑚 = 20, 50, 100, 200 and 500 for the reference sample size and
𝜆 = 0.05, 0.10, 0.20 and 1.00 for the smoothing constant. The ℎ values in
Table 1 are for 𝐴𝑅𝐿0 = 200, 370 and 500, respectively. Thus, for example,
when 200 reference observations and smoothing constant 0.05 are available
and an 𝐴𝑅𝐿0 of 200 is desired, the ℎ for the RE chart is given by 0.02133.
From Table 1, we see that for any fixed combination of (𝑚,𝜆) values, the
higher the nominal 𝐴𝑅𝐿0 values, the higher the values of ℎ. Further, for
fixed 𝜆, the ℎ increases with the increase in the reference sample size 𝑚, and
for fixed 𝑚, the ℎ also increases with the increase in the 𝜆.

Insert Table 1 about here.
As a Phase II NSPC procedure, it is assumed for the proposed RE chart

that the IC process is represented by a Phase I reference sample of size 𝑚.
The size 𝑚 would affect how well the IC process is estimated and how well
the RE chart performs in Phase II. It should be pointed out that when 𝑚
is not large, there would be considerable uncertainty in the estimation of
the process, which in turn would distort the IC run length distribution of
the RE control chart. Figure 1 shows the standard deviation of run length
(SDRL) values for the corresponding ARL values in Table 1. We also show
the SDRL and ARL for geometric distribution, as the run length distribution
can generally be approximated by geometric distribution ([31, 35]). From
Figure 1, we can see that the SDRL-ARL profiles would get more similar to
that of geometric distribution as 𝑚 increases. Furthermore, as long as 𝑚 ≥
200, the SDRL values are quite stable for all the 𝜆 considered. Therefore,
we suggest collecting at least 200 IC observations before Phase II process
monitoring.

Insert Figure 1 about here.
To deal with the situation when a sufficiently large reference data set is

unavailable, one possible method is the bootstrap method, such as those of
[11, 18].
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3.3 Sensitivity analysis

For our proposed RE procedure, there are 3 parameters: the change point
𝜏 , the size of Phase I observations 𝑚 and the smoothing parameter 𝜆. To
show the effects of these parameters on ARL, the IC distribution is chosen
to be one of the following three distributions: 𝑁(0, 1), 𝑡(3) and 𝜒2

3. Among
these distributions, 𝑡(3) represents symmetric distributions with heavy tails,
and 𝜒2

3 represents skewed distributions. It is also assumed the pre-specified
𝐴𝑅𝐿0 value is 370. For the three parameters, we choose 2 different levels for
each parameter, i.e., 𝜏 = 10 or 50, 𝑚=100 or 200, 𝜆 =1 or 0.1. Figure 2 and
Figure 3 show the ARL values under the settings above for mean shifts and
variance shifts, respectively.

Insert Figures 2 about here.
Insert Figures 3 about here.
From Figure 2 and Figure 3, comparing the left panel (𝜏 = 10) and the

right panel (𝜏 = 50), we can see that the ARL values are generally larger
when 𝜏 = 50. With similar effect, ARL values are generally larger when
𝑚 = 200. These findings are particularly useful, which implies the OC
performance of the proposed RE chart is less affected than IC performance
by the number of Phase I observations. Considering 𝜆, it seems that larger
𝜆 can obtain better performance.

It seems that the simulation findings above may contradict with some
well-known results for EWMA and Shewhart charts. Firstly, it seems that
larger 𝜆 can obtain better performance, even for some cases of small shifts,
which leads to a phenomenon that the Shewhart charts detects small shifts
more quickly than the EWMA chart. The possible reasons may be as follows.
We can note from Table 1 that the control limits are quite small, even as
small as 10−2, which implies that the monitoring statistics 𝑅𝐸𝑛 are also quite
small. In this case, a smaller value of 𝜆 means that the current statistic 𝑇1

receives a smaller weight, and an observation even very far from the IC value
may not result in an immediate OC signal. Moreover, as pointed out by [46],
the maximum value of the signal resistance, which is defined as the largest
standardized deviation (distance) from the IC process value not leading to
an immediate OC signal, of an EWMA type chart increases as the value
of 𝜆 decreases. They also showed through simulation that under a worst-
case scenario, a sample mean more than 15 standard errors from the target
value does not lead to an immediate OC signal. Therefore, they strongly
recommend using EWMA type charts only in conjunction with Shewhart
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limits, especially with smaller values of 𝜆, so as to remove much of the adverse
effect of inertia.

Secondly, the ARL values are influenced by 𝜏 , i.e. the change point,
especially, for the Shewhart chart (𝜆 = 1). It is reasonable that the ARL
values are influenced by 𝜏 for the EWMA chart (𝜆 < 1), which is consistent
with the literature, such as [52]. For our RE chart with 𝜆 = 1, though it seems
like a Shewhart type chart, it is different from the conventional Shewhart
chart, which only uses the current observations, because 𝑇1 is still a function
of the ranks of all observations up to the current time point 𝑁 . Moreover, as
𝑇1 is squared difference of the average of the ranks of {𝑋1, 𝑋2, . . . , 𝑋𝑚} and
{𝑌1, 𝑌2, . . . , 𝑌𝜏 , 𝑌𝜏+1, . . . , 𝑌𝑛}, the larger 𝜏 is, the more of the average of ranks
of {𝑌𝜏+1, . . . , 𝑌𝑛} will be offset by the average of ranks of {𝑌1, 𝑌2, . . . , 𝑌𝜏}.
In another word, the average of ranks of {𝑌𝜏+1, . . . , 𝑌𝑛} will be masked to
some extent by the average of ranks of {𝑌1, 𝑌2, . . . , 𝑌𝜏}. As a consequence,
the proposed RE procedure will become more ineffective in reacting to some
delayed shifts in the process.

4 Comparison Study

We present some simulation results in this section regarding the performance
of our proposed RE procedure and compare it with some competing methods
in the literature.

The purpose of this paper is to study a NSPC chart based on individual
observation for detecting shifts in both location and scale parameters of a
process in Phase II when both of these process parameters are estimated
from IC Phase I reference sample. It should be clearly noted that there is
no existing meaningful nonparametric EWMA chart for this purpose and
comparing the RE procedure with alternative NSPC methods turns out to
be difficult due to the lack of an obvious comparable method. This is due
to the following two reasons. First, most of the approaches in the literature
were designed for the cases where location shifts or variance shifts separately,
such as the work of [28, 50, 16, 15, 20, 21]. Second, much of the rank-based
work were based on group observations and they can not apply to individual
observation case, such as those of [20, 21, 32, 1, 2, 13, 14].

As far as we know, except for NLE procedure of [52], there is not any
scheme that is based on individual observation and can monitor the location
and the scale parameters of a univariate continuous distribution. Never-
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theless, comparing our RE chart to charts that are designed to detect only
location changes or only variability changes would be also interesting. When
the process distribution is not normal, [3] show that a properly designed
EWMA chart is robust to departures from normality, so the robust EWMA
(denoted as RoE) is compared with our RE chart. Moreover, [8] propose
a precedence chart with runs-type signaling rules and the 2-of-2 version is
suggested. By this version of the chart, a signal of shift is delivered when
two consecutive medians are both on or above the upper bound or both on
or below the lower bound. Although the 2-of-2 version precedence chart is
Shewhart type, it is known that the performance of Shewhart type chart
with runs rules will be greatly improved. Therefore, we also compare our RE
chart with 2-of-2 version precedence chart (denoted as Pre).

Now the proposed RE procedure is compared with NLE procedure of [52],
RoE of [3], and Pre of [8]. As the number and variety of OC settings are
too large to allow a comprehensive comparison and our goal is to show the
effectiveness and sensitivity of the RE chart, and thus we only choose certain
representative models for illustration. Following the robustness analysis of
[52], we consider the following distributions: the standardized version with
mean 0 and standard deviation 1 of one of the following three distributions:
𝑁(0, 1), 𝑡(3) and 𝜒2

3, as in Section 3.3, which represent two popular symmetric
distributions and a well-known asymmetric distribution. The IC Phase I
sample size 𝑚 is chosen to be 20000 and 200, which setting is consistent
with [52]. The 𝐴𝑅𝐿0 value is set to 370 and control limits are searched such
that the actual 𝐴𝑅𝐿0 approximates 370 well. The zero-state ARL results are
shown in Tables 2-4. All the results in this section are obtained from 10,000
Monte-Carlo replications unless indicated otherwise.

Insert Table 2 about here.
Insert Table 3 about here.
Insert Table 4 about here.
From Tables 2-4, in general, the simulation results reveal that for fixed 𝑚,

𝜆 and a given IC distribution, the OC ARL values decrease sharply with the
increasing shift in the location and also with the increasing shift in the scale.
This indicates that all these nonparametric charts are reasonably effective in
detecting shifts in the location and/or in the scale. However, the performance
of the chart (speed of detection) varies depending on the type of shift and
the type of IC distribution being considered.

Specifically, the performance of our RE procedure is generally much better
than all other charts for most of the location shifts considered, except for
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quite large shift size, say 𝛿 = 3 for RoE and Pre. For example, when 𝑚 =
20000, 𝛿 = 0.5, 𝜆 = 0.05 and the IC distribution is normal, the ARL of
proposed RE chart is 14.8, which is about 40% of 36.1 for NLE, 56% of 26.3
for RoE, and 14% of 108 for Pre. When 𝑚 = 200, the ARL reduction of RE
chart compared with other charts is also quite large. Although the ARL of
RoE is a little smaller than that of RE when 𝛿 = 3, RoE is not indeed robust
and the actual 𝐴𝑅𝐿0 will deviate from the nominal 𝐴𝑅𝐿0, as shown in [38].
In fact, we adjusted the control limits of RoE such that the actual 𝐴𝑅𝐿0

approximates the nominal 𝐴𝑅𝐿0 well.
As for scale shifts, our RE procedure is generally no better than the

compared charts for most of cases, except that it is better than RoE when
the IC distribution is 𝜒2

3. A possible explanation for the inferior position of
RE chart may be that we only use the first order of ranks as 𝑇1 in Eq. (2.5),
and we may improve the performance of our RE procedure by using second
order of ranks, e.g., 𝑇2, which may warrant further research.

Considering the significant ARL reduction for location shifts and if mon-
itoring the location is considered more important than monitoring the vari-
ability, our proposed RE chart should be a good alternative. And in practice,
a practitioner can not expect whether a process shift is due to location or
variability, our RE chart can guard against both location and variability
shifts, though not so effective for single scale shifts.

5 Real Application Example

We illustrate the proposed RE procedure using a dataset from an aluminum
smelter that produces metallic aluminum from dissolved alumina through a
chemical reaction process. The dataset contains the content of SiO2, Fe2O3,
MgO, CaO and Al2O3 (labeled as 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥5, respectively) in the
cryolite/alumina mixture that goes through the chemical reaction process.
More detailed information about this data can be found in [36].

The data have 189 observations. Like many other Phase II SPC pro-
cedures, our procedure assumes that observations at different time points
are independent of each other. Following the suggestions in [36], we first
pre-whiten the data and then try to apply the related procedures considered
in the previous section to the pre-whitened data. The Shapiro-Wilk test
for checking the normality of the IC data gives 𝑝-values of 3.272 × 10−10,
2.578× 10−2, 1.924× 10−1, 2.301× 10−5 and 5.079× 10−4, which imply that
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the IC data are significantly non-normal for 𝑥1, 𝑥4 and 𝑥5. To this end, the
first 95 observations are used as an IC data, and the remaining observations
are used for testing.

For our RE procedure, the parameters are chosen such that its 𝐴𝑅𝐿0

equals 200 and it signals a location shift or variability shift in Phase II process
monitoring as early as possible. The charting statistics are shown in Figure
4. For the RE chart with 𝜆 = 0.1, the charts give OC signals at the 102nd,
118th, 172nd, 113rd, 102nd observation, while for the RE chart with 𝜆 = 1,
the charts give OC signals at the 101st, 118th, 184th, 114th, 101st observation
for the 5 contents, respectively. Note that [36] show that the process may go
OC around 153. Based on our RE procedure, except for 𝑥3, our charts for
other variables give OC signals sooner.

Insert Figure 4 about here.

6 Concluding Remarks

We developed a new NSPC procedure for univariate continuous process in
cases when the process distribution cannot be specified beforehand. It inte-
grates a nonparametric test based on works of [24] and [17] with the EWMA
model. Compared to some existing control procedures, the proposed proce-
dure is robust to non-normally distributed data, and efficient in detecting
various process shifts, especially for location shifts. As it avoids the need for
a lengthy data-gathering step and it does not require knowledge of the under-
lying distribution, our proposed procedure is particularly useful in start-up
or short-run situations. Therefore, this is the NSPC procedure that we rec-
ommend to use in practice.

It is worth pointing out here that apart from quick detecting abnormal
changes, isolating the shifted components or factors that are responsible for
the change is also a fundamental task of SPC, especially for a single control
chart. For example, in the application example from the previous section, it
would be interesting and helpful to determine which factors are responsible
for the change of quality, the location or the variability. The problem of
isolating the causes of our proposed RE procedure after it triggers a signal
warrants further research. Further, although our proposed RE procedure
does not require the specification of the IC distribution, it is assumed that
an IC dataset is available for estimating the IC parameters or the distribution.
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[27, 4] show the need for nonparametric approach to Phase I analysis.
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Appendix

The simulation procedure by which the ARL values (in Sections 3-4) are
derived is described in this appendix. The Fortran program used is available
from the authors upon request. A user can also code his own computer
program by the guidelines below.

Step 0: Input parameters to be specified by the practitioners, including Phase
I sample size 𝑚, change point position 𝜏 , smoothing constant 𝜆 and
control limit ℎ, which can be obtained by the algorithm in Section 3.2.

Step 1: Generate 𝑚 IC Phase I sample, 𝑋1, 𝑋2, . . . , 𝑋𝑚.

Step 2: Set 𝑛 = 0, 𝑅𝐸𝑛 = 0 and 𝑅𝐿 = 0.

Step 3: This step includes 4 different cases as follows.

∙ If 𝑛 ≤ 𝜏 and 𝑅𝐸𝑛 ≥ ℎ, then go to Step 2.

∙ If 𝑛 ≤ 𝜏 and 𝑅𝐸𝑛 < ℎ, then update 𝑛 to 𝑛 = 𝑛+ 1, generate one
IC Phase II sample 𝑌𝑛, update RL to 𝑅𝐿 = 𝑅𝐿+1, and calculate
𝑅𝐸𝑛. Go back to Step 3.

∙ If 𝑛 > 𝜏 and 𝑅𝐸𝑛 < ℎ, then update 𝑛 to 𝑛 = 𝑛 + 1, generate
one OC Phase II sample 𝑌𝑛, update RL to 𝑅𝐿 = 𝑅𝐿 + 1, and
calculate 𝑅𝐸𝑛. Go back to Step 3.

∙ If 𝑛 > 𝜏 and 𝑅𝐸𝑛 ≥ ℎ, then go to Step 4.

Step 4: Set 𝑅𝐿 = 𝑅𝐿− 𝜏 .

Step 5: Repeat Step 2-4 𝐵1 times to obtain the average of the RL, i.e., ARL.

Step 6: Repeat Step 1-5 𝐵2 times to obtain the average of the ARL values such
that the effect of the size 𝑚 of Phase I sample is negligible.
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(c) λ = 0.2
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Figure 1: SDRL values versus different ARL values for different 𝑚.
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Figure 2: ARL values for different mean shifts when the IC distribution is 𝑁(0, 1)
(a1 and a2), 𝑡(3) (b1 and b2) and 𝜒2

3 (c1 and c2).
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Figure 3: ARL values for different variance shifts when the IC distribution is
𝑁(0, 1) (a1 and a2), 𝑡(3) (b1 and b2) and 𝜒2

3 (c1 and c2).
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Figure 4: Monitoring statistics of RE procedure with 𝜆 = 0.1 (left column) and
𝜆 = 1.0 (right column) when it is applied to the aluminum data for 𝑥1 (a1 and
a2), 𝑥2 (b1 and b2), 𝑥3 (c1 and c2), 𝑥4 (d1 and d2), 𝑥5 (e1 and e2), respectively.
In each plot, the horizontal dashed line(s) denotes the control limit(s).
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Table 1: The control limits ℎ for various combinations of 𝑚, 𝜆 and 𝐴𝑅𝐿0.

m 𝜆 𝐴𝑅𝐿0 = 200 𝐴𝑅𝐿0 = 370 𝐴𝑅𝐿0 = 500
20 0.05 0.00773 0.00926 0.00938

0.10 0.01131 0.01352 0.01459
0.20 0.01533 0.01680 0.01977
1.00 0.03252 0.03430 0.03742

50 0.05 0.01383 0.01424 0.01633
0.10 0.01617 0.01805 0.01992
0.20 0.02139 0.02412 0.02619
1.00 0.04119 0.04854 0.05117

100 0.05 0.01693 0.01834 0.01998
0.10 0.02104 0.02562 0.02586
0.20 0.02842 0.03086 0.03350
1.00 0.05257 0.05664 0.05854

200 0.05 0.02133 0.02338 0.02523
0.10 0.02664 0.03023 0.03205
0.20 0.03430 0.03906 0.04023
1.00 0.05891 0.06650 0.07048

500 0.05 0.02750 0.03258 0.03406
0.10 0.03516 0.03875 0.04141
0.20 0.04307 0.04852 0.05045
1.00 0.06875 0.07779 0.08318
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Table 2: The zero-state ARL comparisons among RE, NLE, RoE and Pre under
the normal distribution.

𝑅𝐸 𝑁𝐿𝐸 𝑅𝑜𝐸 𝑃𝑟𝑒
𝑁(0, 1) versus 𝑁(𝛿, 1)

𝜆
𝑚 𝛿 0.05 0.1 0.05 0.1 0.05 0.1

0.00 370 369 369 370 369 371 371
0.50 14.8 12.4 36.1 37.7 26.3 28.4 108

20000 1.00 7.07 5.67 14.1 12.2 10.7 9.74 25.7
1.50 5.02 3.96 7.65 6.54 6.75 5.80 9.10
2.00 4.24 3.32 4.57 4.01 4.98 4.19 4.59
3.00 3.49 3.02 2.08 1.95 3.34 2.76 2.39
0.00 369 370 371 368 372 369 371
0.50 10.9 9.42 37.2 46.8 31.3 31.1 121

200 1.00 5.22 4.38 14.3 12.5 11.6 9.84 30.7
1.50 3.72 2.98 9.13 7.86 7.06 5.83 9.82
2.00 3.23 2.42 6.73 5.79 5.20 4.29 4.81
3.00 3.01 2.05 4.63 4.07 3.50 2.81 2.40

𝑁(0, 1) versus 𝑁(0, 𝛿2)
𝜆

𝑚 𝛿 0.05 0.1 0.05 0.1 0.05 0.1
1.00 370 369 370 370 369 371 371
1.20 219 199 57.0 58.4 147 126 113

20000 1.40 149 129 23.0 22.4 81.9 63.8 53.3
1.60 114 90.9 13.6 12.8 53.5 39.5 32.1
1.80 92.0 73.6 9.47 8.82 38.2 27.6 22.3
2.00 79.5 63.1 7.12 6.66 29.2 20.6 17.0
1.00 369 370 370 372 372 369 371
1.20 191 231 114 115 163 127 106

200 1.40 147 146 41.4 41.2 88.8 67.6 54.3
1.60 98.9 110 25.8 22.6 59.5 40.0 32.1
1.80 83.8 81.7 19.4 16.4 42.3 27.9 22.5
2.00 57.3 61.6 16.1 13.3 32.2 21.2 16.9
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Table 3: The zero-state ARL comparisons among RE, NLE, RoE and Pre under
the 𝑡(3) distribution.

𝑅𝐸 𝑁𝐿𝐸 𝑅𝑜𝐸 𝑃𝑟𝑒
𝑡(3)√

3
versus 𝑡(3)√

3
+ 𝛿

𝜆
𝑚 𝛿 0.05 0.1 0.05 0.1 0.05 0.1

0.00 369 369 372 371 371 371 368
0.50 10.3 8.43 28.4 26.8 27.5 33.4 148

20000 1.00 5.50 4.35 13.3 10.9 10.6 9.76 28.4
1.50 4.43 3.42 8.42 6.86 6.63 5.73 6.67
2.00 4.15 3.16 6.04 4.89 4.87 4.14 3.08
3.00 3.72 3.04 3.74 3.14 3.28 2.75 2.13
0.00 371 371 370 371 372 369 371
0.50 7.73 6.37 25.5 26.2 37.1 50.4 186

200 1.00 4.15 3.28 11.8 10.1 19.4 11.1 42.6
1.50 3.34 2.45 8.16 7.05 6.95 5.82 7.96
2.00 3.13 2.19 6.53 5.66 5.15 4.04 3.55
3.00 3.04 2.05 5.01 4.40 3.64 2.82 2.15

𝑡(3)√
3
versus 𝛿 ⋅ 𝑡(3)√

3

𝜆
𝑚 𝛿 0.05 0.1 0.05 0.1 0.05 0.1

1.00 369 369 370 369 371 371 368
1.20 241 225 127 132 178 144 170

20000 1.40 174 155 56.7 60.3 109 80.2 93.8
1.60 134 119 34.3 34.4 73.1 55.5 59.6
1.80 111 96.3 24.2 23.2 62.6 48.6 41.1
2.00 94.6 76.0 18.8 17.6 43.2 50.1 30.5
1.00 371 371 370 369 372 369 371
1.20 281 229 206 207 203 174 179

200 1.40 185 168 95.3 100 191 110 93.9
1.60 159 117 50.3 52.9 157 83.1 63.6
1.80 112 101 33.3 32.5 60.1 42.0 41.6
2.00 98.8 80.2 25.8 23.6 46.2 30.9 30.3
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Table 4: The zero-state ARL comparisons among RE, NLE, RoE and Pre under
the 𝜒2

3 distribution.

𝑅𝐸 𝑁𝐿𝐸 𝑅𝑜𝐸 𝑃𝑟𝑒
𝜒2
3−3√
6

versus
𝜒2
3−3√
6

+ 𝛿

𝜆
𝑚 𝛿 0.05 0.1 0.05 0.1 0.05 0.1

0.00 371 370 373 370 369 371 373
0.50 10.8 8.84 30.7 26.8 27.4 29.3 253

20000 1.00 5.88 4.66 17.9 14.4 11.0 10.2 90.2
1.50 4.57 3.59 12.3 9.82 6.81 5.96 33.3
2.00 4.05 3.09 8.91 7.12 4.98 4.22 13.4
3.00 3.97 2.77 5.11 4.22 3.34 2.77 2.97
0.00 371 371 373 366 368 368 370
0.50 8.06 6.83 22.9 22.9 30.9 29.6 272

200 1.00 4.34 3.62 13.9 11.9 11.8 10.4 118
1.50 3.42 2.76 10.3 8.85 7.37 5.96 40.3
2.00 3.04 2.35 8.32 7.15 5.15 4.32 15.2
3.00 3.00 2.00 5.94 5.17 3.44 2.80 3.28

𝜒2
3−3√
6

versus 𝛿 ⋅ 𝜒2
3−3√
6

𝜆
𝑚 𝛿 0.05 0.1 0.05 0.1 0.05 0.1

1.00 371 370 374 372 369 371 373
1.20 74.8 61.3 11.0 10.9 157 135 51.9

20000 1.40 43.7 35.0 5.69 5.67 87.6 71.6 23.3
1.60 33.4 26.5 4.06 4.06 57.1 44.0 15.1
1.80 28.2 22.4 3.35 3.30 40.5 30.4 11.4
2.00 25.3 19.8 2.92 2.92 30.9 22.7 9.51
1.00 371 371 370 373 368 368 370
1.20 84.8 102 46.2 49.8 185 145 49.5

200 1.40 29.1 23.1 22.9 19.9 99.4 74.3 22.5
1.60 19.4 15.4 17.0 14.2 62.0 45.5 15.0
1.80 15.8 12.7 14.1 11.7 44.8 31.2 11.3
2.00 14.3 11.4 12.4 10.2 34.9 23.6 9.43
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