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Abstract

Exponential weighted moving average (EWMA) and cumulative sum (CUSUM)
control charts are well known tool for their effectiveness in detecting small and
moderate changes in the process parameters. To detect both large and s-
mall shifts, a new control structure is often recommended, named as combined
Shewhart-CUSUM control chart, which combines the advantages of a Shewhart
chart with the CUSUM chart. In this paper, we investigate eleven different s-
tandard deviation estimators with the structures of these three types of control
charts for monitoring the process dispersion under normal and contaminated
normal environments. By applying Monte Carlo simulations, we compare the
performance of these memory charts depending on four factors: (1) standard
deviation estimator, (2) parent environment, (3) chart type, and (4) change
magnitude. Extensive simulations are used to compute and study the run
length profiles of these memory charts, including the average, the standard de-
viation, the several percentiles and the cumulative distribution function curves
of the run length distribution. It turns out that there is a significant differ-
ence between the run length distribution of the memory chart with estimated
parameters and the analogous case with known parameters, even using the
adjusted control limits under normal environment, and the difference is more
severe when contaminations are present. This difference is gradually dimin-
ished when a large number of Phase I samples is used under normality, but it
is not true in the contaminated cases.
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1 Introduction

Conventional statistical process control (SPC) charts are usually based on the in-
dispensable assumption of known process parameters. In reality, this assumption is
often invalid. There are many real industrial situations in which the process param-
eters are unknown and are estimated from an in-control (IC) Phase I data. However,
the Phase I data can contain unusual observations, which are problematic as they can
influence the parameter estimates, resulting in Phase II control charts with less ability
to detect changes in the process characteristic. One way to deal with contaminations
in Phase I is to use robust estimators, which is not sensitive to contamination when
estimating the parameter. In this paper, we concentrate on robust control charts for
monitoring the process dispersion when the Phase I data may contain contaminat-
ed samples. Many researchers have made contributions to apply robust estimators
for monitoring the process dispersion parameter (see Rocke,1 Tatum,2 Wu et al.,3

Riaz and Saghir,4,5 Schoonhoven et al.,6 Schoonhoven and Ronald,7 Nazir et al.,8

Zwetsloot et al.,9 Nazir et al.,10 and Shahriari and Ahmadi11).
Control chart is a useful technique which helps in detecting out of control signal in

a process and it can either be a memory-type or memory-less control chart. Shewhart-
type (memory-less) charts are well known for their effectiveness in detecting large
shifts, but are less sensitive to detect small and moderate changes in the process
parameters. For this reason, some memory-type control charts are proposed, such
as the EWMA control charts and the CUSUM control charts. These charts provide
better protection against small and moderate process shifts. To detect both large and
small shifts, it is often recommended to combine the Shewhart chart with the CUSUM
or EWMA chart. Some of these enhancements may be seen in Lucas,12 Gibbons,13

Wu et al.,14 Capizzi and Masarotto,15 and Abujiya et al.16,17 These schemes combine
the advantages of a Shewhart chart with the CUSUM or EWMA chart and have wide
practical applications. For example, the combined Shewhart-CUSUM control chart
is the only statistical procedure that is directly recommended for use in intra-well
monitoring by U.S. Environmental Protection Agency (cf. Gibbons13). It has been
hypothesized that the charts with a desirable property of being sensitive to smaller
shifts are more severely impacted by parameter estimation (see Hawkins et al.18).
Thus, it is worthwhile to make a careful study on the effect of parameter estimation
on the memory-type charts’ performance as these charts are more efficient than the
Shewhart chart for detecting small shifts.
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In the SPC literature, it has been demonstrated by several authors that the EW-
MA and CUSUM control charts have similar performance (e.g., Lucas and Saccucci,19

Acosta-Mejia et al.,20 Knoth,21 and Qiu22). However, to the best of our knowledge,
the comparisons between the two types of control charts for monitoring the pro-
cess variance when parameter estimation is subject to contaminations have not been
studied so far. Additionally, the combined Shewhart-CUSUM (CS-CUSUM) chart-
s for monitoring the process variability in the case of estimated parameters under
contaminated environments have not been considered. The main objective of this
research is to compare the Phase II performance of the design structures of EWMA,
CUSUM and CS-CUSUM control charts with robust sale estimators under different
environments. The effect on the control chart performance is multidimensional since
it is not only a result of the accuracy of the parameter estimate but also of the
choice of the type of the chart and the size of the shift to be detected. Therefore, our
comparative study is based on the following four aspects: 1) The impact of different
estimators used to estimate the process standard deviation in Phase I; 2) the impact
of different parent environments (normal and contaminated normal) in Phase I; 3)
the impact of different types of the control charts designed to monitor the process
variability; 4) the impact of different change magnitudes to be detected.

Generally, the average run length (ARL) is the widely used criterion for assessing
the performance of control charts. However, because the run length distribution
of the memory-type chart with estimated parameters is not geometric, as with the
Shewhart chart with known parameters, the ARL should not be used as the sole
measure of chart performance. Thus, we present the performance of the chart as
measured by the ARL, the standard deviation of the run length (SDRL), and the
several percentiles of the run length distribution. Moreover, to get more insight into
the run length distribution, we also provide the run-length cumulative distribution
function curves. This allows a thorough comparison of the effects of estimating
parameters on the performance of the charts studied.

The rest of this paper is organized as follows: In the next section, we give the
details regarding the control structure of three memory-type control charts. Section 3
provides a description of the estimators of the standard deviation and different parent
environments. In section 4, we derive the Phase II control limits. In section 5, we
provide a comprehensive comparison of the three memory-type control charts based
on eleven different standard deviation estimators in terms of their run length profiles
in uncontaminated and various contaminated cases. After that, we also examine the
effect of the Phase I sample size on the performance of the charts studied. Several
remarks conclude this paper in Section 6.
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2 EWMA, CUSUM and CS-CUSUM charts

Knoth23 investigated two-sided EWMA dispersion control charts based on R, S2, S,
log(S2) and a+blog(S2+c), and concluded that the best performance in terms of the
average run length profile is given by the S2 and S EWMA control charts. This is
supported also by one-sided results (both EWMA and CUSUM). For application, one
should prefer S2 and S. In this paper, we therefore consider the design structures
of the EWMA, CUSUM and CS-CUSUM charts based on S for monitoring the
process variability, referred to as the EWMA-S, CUSUM-S and CS-CUSUM-S charts,
respectively. Note that when monitoring the process dispersion, it is generally of
interest in detecting an increase in the process variance, as these situations indicate
process degradation. Thus, in this paper we confine ourselves to this case. The
current section contains the details about these three one-sided memory structures.

Let Yt = (Yt1, Yt2, · · · , Ytn) be a Phase II sample of size n at time t from a process
where each observation follows a normal distribution N(µ, (δσ)2). Without loss of
generality, we use µ = 0 and σ = 1 throughout this article. δ is the magnitude of the
process standard deviation shift. When δ = 1, the standard deviation of the process is
IC; otherwise, a shift in process standard deviation occurs (out of control situation).
To make these control chart procedures independent of the particular value of σ,
the chart statistics are expressed in standardized units. Let Ȳt =

∑n
j=1 Ytj/n and

St = (
∑n

j=1(Ytj − Ȳt)
2/(n − 1))1/2 be the tth sample mean and sample standard

deviation.

2.1 Design of EWMA-S control charts

To detect upward dispersion shifts, the charting statistic of the upper-sided EWMA-S
chart with the re-starting mechanism can be defined by

Et = max[(1− λ)Et−1 + λ(St/σ), c4(n)]. (1)

We set E0 = E(St/σ) = c4(n), where n is the sample size and c4(n), the bias
correcting coefficient, is defined by

c4(n) =

√
2

n− 1

Γ(n/2)

Γ((n− 1)/2)
. (2)

The upper asymptotic control limit of the EWMA-S chart is computed as

he = c4(n) + L
√

1− c24(n)

√
λ

2− λ
, (3)
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where the factor L controls the width of the control limit, and λ is the smoothing
parameter. An OC is signaled by the EWMA-S chart when Et plots beyond the limit
he.

2.2 Design of CUSUM-S control charts

The upper one-sided CUSUM-S statistic is defined as

Zt = max[0, Zt−1 + (St/σ)− kc], (4)

and the starting value of the CUSUM-S is given by Z0 = 0. Here, kc is the reference
value. Based on Tuprah and Ncube,24 the value of kc is generally taken to be half
between the expected values of St/σ given σ and δσ, where δ is the size of the
anticipated process dispersion shift that needs to be detected quickly. Accordingly,
kc = c4(n)(1 + δ)/2. The process is deemed to be OC and it is concluded that the
process dispersion has increased if Zt > hc, where hc determines the decision interval.

2.3 Design of CS-CUSUM-S control charts

The CS-CUSUM-S chart is a mixture of a Shewhart-S chart and CUSUM-S chart.
An upper one-sided CS-CUSUM-S chart gives an out of control (OC) signal when
either

(St/σ) > UCL, (5)

or

Zt = max[0, Zt−1 + (St/σ)− kc] > hcs, (6)

with Z0 = 0 as the starting value of the CUSUM statistic. UCL is the Shewhart
upper control limit, hcs is the control limit of the upper CUSUM chart, and kc is also
computed as kc = c4(n)(1 + δ)/2.

3 Phase I estimators of dispersion

In practice, The value of σ is usually unknown and has to be estimated from samples
taken when the process is assumed to be in control. This stage in the control-
charting process is called Phase I. Let σ̂ be an unbiased estimator of the process
dispersion parameter σ based on k Phase I samples of size n, which are denoted by

5



Xt = (Xt1, Xt2, · · · , Xtn), t = 1, 2, · · · , k. We set k = 50 and n = 5 for illustration
in this paper. There are many choices of σ̂. Schoonhoven et al.6 studied various
standard deviation estimators for designing the control chart and provided a com-
prehensive analysis on their efficiency under both uncontaminated and contaminated
environments for different phases. Schoonhoven and Ronald7 proposed several adap-
tive trimmers which perform substantially better than the traditional estimator and
some robust proposals when contaminations are present. In deriving the estimators
of the process standard deviation parameter, we will consider some of the estimators
discussed in Schoonhoven et al.6 as well as some other robust estimators that are
variants of Schoonhoven and Ronald.7 In the current section, the details about the
estimators used in this study are given. The pooled sample standard deviation is the
most widely used dispersion statistic for control charts and is defined as

Sp =

√√√√1

k

k∑
t=1

S2
t . (7)

The unbiased estimator is given by Sp/c4(k(n−1)+1). Mahmoud et al.25 showed that,
in the multiple samples case, this estimator is the most efficient unbiased estimator
when data are normally distributed.

Another commonly used dispersion statistic is the mean of the sample standard
deviations and is defined as

S =
1

k

k∑
t=1

St. (8)

The unbiased estimator of σ is given by S/c4(n).
We also take into account an estimator proposed by Rousseeuw and Croux,26

which can be written as

Qnt = 2.2219 ∗ {|Xti −Xtj|; i < j}(p) where p =

(
[n/2] + 1

2

)
. (9)

Here, the symbol [x] represents the ‘floor’ function and is defined as the largest
integer less than or equal to x. Qnt is 2.2219 times the pth order statistic of the
n-choose-2 distances between data points of sample t. The reason of choosing Qnt

is that it has the highest possible breakdown point (50%) and its efficiency under
normality is very high (about 82%). We use the mean of the sample Qnt’s, given by

Qn =
1

k

k∑
t=1

Qnt. (10)
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An unbiased estimator of σ is given by dnQn, the correction factor dn is obtained by
simulation. Extensive tables of dn can be found in Croux and Rousseeuw.27

The next dispersion estimator is based on the mean of the sample average absolute
deviation from the median, given by

ADM =
1

k

k∑
t=1

ADMt, (11)

where ADMt is the average absolute deviation to the median of sample t, given by

ADMt =
1

n

n∑
j=1

|Xtj −Mt|, (12)

with Mt the median of sample t. Based on Wu et al.,3 Riaz and Saghir5 and
Schoonhoven et al.,6 the ADM chart is less sensitive to non-normality than either
the R or S chart, and it provides quite a satisfactory performance when there are no
or only a few contaminations in the Phase I normal data. An unbiased estimator of
σ is given by ADM/t2(n). Wu et al.3 had provided a proposition for the analytical
result of t2(n) in the form of an integral.

Gini28 proposed the following estimator of σ:

Gt =
n−1∑
j=1

n∑
l=j+1

|Xtj −Xtl|/(n(n− 1)/2), (13)

which is the mean absolute difference between any two observations in the sample t,
known as Gini’s mean difference. for the multiple-sample case, we use the average of
the sample differences (Gt’s), given by

G =
1

k

k∑
t=1

Gt. (14)

Since E(Gt) = 2σ√
π
, so

√
π
2
G is the unbiased estimator of σ.

Next, we evaluate a robust estimator based on the sample interquartile ranges,
which are defined as

IQRt = Xt(b) −Xt(a), (15)

where Xt(o) denotes the oth ordered value in sample t, a = [n/4] + 1, b = n− a+ 1.
This definition is following Rocke1 and slightly differs from the usual definitions for
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the IQR. We consider the mean of the sample IQR’s, given by

IQR =
1

k

k∑
t=1

IQRt, (16)

and for n = 5, an unbiased estimator of σ is given by dividing IQR by 0.990.
We also consider a version of the 20% trimmed mean of the sample IQR’s as

proposed by Rocke1 and Zwetsloot et al.,9 which can be written as

IQR20 =
1

k − 2[kα]

k−[kα]∑
o=[kα]+1

IQR(o), α = 20%, (17)

where IQR(o) denotes the oth ordered value of the sample IQR’s. The normalizing
constant is 0.926 for n = 5. This estimator reduces the effect of outlying subgroups
and outliers in subgroups, although it is not very efficient under normality.

Tatum2 proposed a robust estimator, which is based on a variant of the bi-
weight A estimator. Many researchers studied the robustness of this estimator (cf.
Schoonhoven et al.,6 Schoonhoven and Ronald7 and Zwetsloot et al.9) and concluded
that the chart based on this estimator has a comparable performance in both normal
and contaminated normal cases, although this estimator is relatively complicated in
its use. This method begins by centering each observation on its sample median Mt,
calculating the residuals in each sample: restj = Xtj −Mt. Apparently, if n is odd,
each sample contains one residual equal to zero, which is dropped. The total n′k
residuals, with n′ = n− 1 when n is odd and n′ = n when n is even, are weighted by
utj =

htrestj
cM∗

, where M∗ is the median of the absolute values of the n′k residuals, and

ht =


1 Et ≤ 4.5,

Et − 3.5 4.5 < Et ≤ 7.5,

c Et > 7.5,

(18)

Et = IQRt/M
∗, and c is a tuning constant. Tatum’s estimator is given by

S∗c =
n′k√
n′k − 1

√∑k
t=1

∑
j:|utj |<1 res

2
tj(1− u2tj)4

|
∑k

t=1

∑
j:|utj |<1(1− u2tj)(1− 5u2tj)|

. (19)

We choose c = 7 in this paper, since the value is shown to be robust against various
contaminations by Tatum.2 An unbiased estimator of σ is given by S∗c /d(n, k, c),
where d(5, 50, 7) = 1.068. The resulting estimator is denoted by D7 as in Tatum.2
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To obtain a robust estimator of σ, many researchers recommended the use of
a two-step procedure (i.e. screening method), namely using a robust estimator to
estimate an initial dispersion and compute the control limits, deleting any subsample
that exceeds the control limits, and then an efficient estimator for post-screening
estimation. Rocke1 showed that “examination of the data and recomputation of
control limits adds to the effectiveness of any of the procedures that one may choose.”
In this paper, we therefore propose three screening methods, which are some variants
of Schoonhoven and Ronald,7 but we use an efficient unbiased estimator, the mean
of the sample standard deviations, based on the screened data as the final estimator
of σ. The first is a procedure for subgroup screening, which consists of the following
steps:

1. Choose ADM/t2(n) to be an initial unbiased estimator of σ, because ADM has
very similar efficiency as the traditional estimator Sp under normality, and it is
more robust against outliers. This estimator is then used to construct a Phase I
standard deviation control chart so that the subgroups can be screened.

2. Adopt S/c4(n) as the charting statistic, together with the control limits ÛCL =

UnADM/t2(n) and L̂CL = LnADM/t2(n). We derive the factors Un and Ln
from the 0.99865 and 0.00135 quantiles of the distribution of S/c4(n) through
100,000 Monte Carlo simulations. The factors for the limits are Un = 2.2406
and Ln = 0.1735 for n = 5. Any subgroup for which the corresponding statistic
S/c4(n) exceeds the Phase I control limits is deleted and ADM is recomputed from
the remaining subgroups. We continue until all subsample standard deviations
fall within the limits.

3. Obtain the final estimator of σ from the screened data. We select an efficient
estimator, based on the remaining samples, that is

Ssub =
1

k′

∑
t∈K

St/c4(n), (20)

with K the set of samples that are not excluded, k′ is the number of nonexcluded
samples, and St is the standard deviation of sample t. To obtain an overall
unbiased estimator of σ from the screened data, the final normalizing constant
is 0.999 for n = 5 (obtained through 100,000 Monte Carlo simulations). The
resulting estimator is denoted by ADMs.

Since the above procedure trims off samples instead of individual observation-
s, it performs better when there are localized disturbances. For diffuse outliers,

9



Schoonhoven and Ronald7 proposed an individuals chart that is expected to detect
outliers more quickly. Accordingly, the second procedure is a variant of Schoonhoven
and Ronald.7 The algorithm consists of the following steps:

1. To measure the variability within and not between subgroups, this method begins
by determining the residuals in each sample by subtracting the subgroup median
from each observation in the corresponding subgroup. Then an individuals chart
of the residuals is constructed with the control limits:

ÛCL = 3ADM/t2(n), L̂CL = −3ADM/t2(n), (21)

where ADM/t2(n) is used to estimate σ, and for simplicity, the factors for the
individuals chart are 3 and -3. The residuals that fall outside the control limits
are excluded from the dataset. Then the median values of the adjusted subgroups
are determined, the residuals and the control limits are recomputed using the
remaining observations. This repeats until all residuals fall within the control
limits.

2. Use an efficient estimator of σ as the post-screening estimation, that is

Sind =
1

k′

∑
t∈K

S ′t/c4(n
′
t), (22)

with K the set of samples that are not excluded (In rare occasion, all observations
in a sample are deleted, so the corresponding sample is excluded), k′ is the number
of nonexcluded samples, n′t is the number of nonexcluded observations in sample t,
and S ′t is the standard deviation of the remaining n′t observations. The normalizing
constant necessary to obtain an overall unbiased estimator of σ is 0.976 for n = 5.
The resulting estimator is denoted by ADMi.

The last procedure considered is an algorithm that combines the use of an indi-
viduals chart with subgroup screening. Our approach follows a similar procedure as
in the work of Schoonhoven and Ronald.7 The procedure involves the following steps
for an efficient implementation:

1. Similar to that of ADMs in step 1 (i.e., choose ADM/t2(n) to be an initial
unbiased estimator of σ for subgroup screening).

2. Adopt the standard deviation after trimming the observations in each sample as
a charting statistic, which is defined as

Sα =
( 1

n− 2[nα]− 1

n−[nα]∑
o=[nα]+1

(Xt(o) − X̄ ′t)
)1/2

, (23)
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where

X̄ ′t =
1

n− 2[nα]

n−[nα]∑
o=[nα]+1

Xt(o), (24)

with Xt(o) the oth ordered value in sample t, and α is the trimming percentage.
In this study, we take α = 20%. We employ S20 for screening purposes instead of
IQR used in Schoonhoven and Ronald,7 because S20 is expected to retain more
original sample information from the data than IQR. The constant required to
obtain an unbiased estimator of σ based on S20 is 0.520 for n = 5. Plot the
S20/0.520s of the Phase I samples on the standard deviation control chart with

control limits ÛCL = UnADM/t2(n) and L̂CL = LnADM/t2(n). The factors
Un and Ln derived from the 0.99865 and 0.00135 quantiles of the distribution of
S20/0.520 are 3.2169 and 0.0349, respectively. The subgroup screening is continued
until all S20/0.520s fall within the limits. Simulation revealed that the resulting
estimator of σ is slightly biased and the normalizing constant is 0.999 for n = 5.

3. Use the above resulting estimator to screen observations with an individuals chart,
which is the similar procedure used to derive ADMi (step 1).

4. Use an efficient estimator of σ as the post-screening estimation, which is the similar
procedure used to derive ADMi (step 2). The normalizing constant necessary to
obtain an overall unbiased estimator of σ is 0.976 for n = 5. The resulting
estimator is denoted by ADMsi.

In practice, when the data are used to estimate the process parameters, they
may be contaminated, such as outliers, step changes or other contaminations. Many
different contaminations are studied in the literature (cf. Tatum,2 Schoonhoven et
al.,6 Schoonhoven and Ronald,7 Chen and Elsayed29 and Zwetsloot et al.9). In this
paper, we consider the uncontaminated case (i.e., the entire Phase I data are from the
N(0, 1) distribution) and six types of disturbances, including three diffuse scenarios
and three localized scenarios, which are given as follows:

1. Diffuse symmetric variance disturbances: each observation has a 95% probability
of being drawn from the N(0, 1) distribution and a 5% probability of being drawn
from the N(0, 2.52) distribution.

2. Diffuse asymmetric variance disturbances: each observation is drawn from the
N(0, 1) distribution and has a 5% probability of having a multiple of a χ2

1 variable
added to it, with the multiplier equal to 1.5.
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3. Diffuse mean disturbances: each observation has a 95% probability of being drawn
from the N(0, 1) distribution and a 5% probability of being drawn from the
N(2.5, 1) distribution.

4. Localized variance disturbances: all observations in a sample have a 95% proba-
bility of being drawn from the N(0, 1) distribution and a 5% probability of being
drawn from the N(0, 2.52) distribution.

5. A single step shift in the variance: all observations in the last three Phase I
samples are drawn from the N(0, 2.52) distribution.

6. Multiple step shifts in the variance: at each time point, the sample has a 1.8%
probability of being the first three consecutive samples drawn from the N(0, 2.52)
distribution. After any such step shift, each sample again has a 1.8% probability
of being the start of another step shift. If a shift occurs at the end of the Phase I
data set, for example, at k−1, only samples k−1 and k will be contaminated. This
model is adopted from Zwetsloot et al.9 for the determination of the probability of
1.8% such that all six contaminated scenarios have an approximate contamination
rate of 5%.

4 Design and derivation of Phase II control limits

of the charts

The above Phase I estimators are used to design the Phase II control charts, say
EWMA-S, CUSUM-S and CS-CUSUM-S charts. The IC standard deviation param-
eter σ in the three charts (i.e. Equations (1), (4), (5) and (6)) is unknown and
must be estimated by σ̂, which is any estimator from section 3 of the process dis-
persion parameter. To ensure a fair comparison, using a subgroup size of n = 5
and the IC ARL (ARL0) of 370, all the control charts are designed to detect 20%
increases in process standard deviation. We derive the optimal parameters for each
chart from σ known case. Specifically, for the EWMA-S chart, for a given ARL0 of
370, and λ = 0.05(0.005)1, the optimal (λ, L) combination would minimize the OC
ARL (ARL1) with respect to the specific shift δ = 1.2, subject to the chosen ARL0

constraint. The optimal smoothing parameter value is λ = 0.08 through simulation.
The reference value for the CUSUM-S and CS-CUSUM-S charts is obtained directly
from k = c4(n)(1 + δ)/2 = 1.034 for the particular shift δ = 1.2.

Several recent studies have shown that the number of Phase I samples required
for a Phase II control chart with estimated parameters to perform properly may
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be prohibitively high. Another more practical way suggested by many authors, e.g.
Mahmoud and Maravelakis30 and Jones,31 is to adjust the control limits of the chart
so that it produces the desired ARL0 when only a small number of samples are avail-
able. In order to have a fair comparison, the control limits are adjusted for each
of the eleven estimators to produce an ARL0 of 370 under uncontaminated normal
environment. We simulate the factors L for the EWMA-S, hc for the CUSUM-S and
UCL and hcs for the CS-CUSUM-S control chart, corresponding to each standard
deviation estimator using k = 50 Phase I samples of sizes n = 5 from an uncontam-
inated normal environment. Values of these factors are given in Table 1. Note that,
for the CS-CUSUM-S chart, we set UCL = 2.10, taking inspiration from Abujiya
et al.,17 and for simplicity we only adjust the value of hcs (the control limit of the
CUSUM component) to achieve ARL0 = 370 for any estimator σ̂. When it comes
to contaminated situations, we keep the control limits the same as we have used for
the corresponding uncontaminated cases.

[Insert Table 1 about here]

5 Performance comparisons

In this section, EWMA-S, CUSUM-S and CS-CUSUM-S charts corresponding to the
estimated parameters cases are presented along with the effects of estimation error
on their performance. The most commonly used metrics of the performance of the
control charts are the ARL and SDRL. However, since the run length distribution of
the charts with estimated parameters is usually highly right skewed, we also study
the percentiles of the run length distribution, including the 10th, 50th and 90th
percentiles, to obtain more insights on the charts’ performance.

5.1 Run length behaviour

Let RL be the random variable denoting the run length of the control chart. For
a given Phase I dataset of k samples of size n, we determine the estimator of the
standard deviation σ̂, and the conditional run length distribution can be written as
Pr(RL = rl|σ̂), where rl is a realization of RL. In order to evaluate the overall
run length behavior of the control chart, we study the unconditional run length
distribution, which can be obtained by integrating over the distribution of σ̂

P r(RL = rl) =

∫ ∞
0

Pr(RL = rl|σ̂)f(σ̂)dσ̂, (25)
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where f(σ̂) is probability density function of σ̂. It is not easy to get analytical
results for such a formulation. Therefore, we employ Monte Carlo simulations to
approximate the unconditional run length distribution of the proposed memory-type
control charts with estimated parameters.

We consider small to large upward shifts in the standard deviation δσ in Phase II,
namely, δ equal to 1.1, 1.2, 1.4 and 1.8. For the Phase I uncontaminated environment
and six contamination scenarios presented in section 3, the IC and OC performance
characteristics of the run length distribution, including the ARL, the SDRL and
several percentiles, are obtained on the basis of 100,000 replicates. The simulation
results are shown in Tables 2-8. Further, to get more visual insights into the IC and
OC run length distributions, Figures 1-7 plot the IC and OC run-length cumula-
tive distribution function (CDF) curves of the EWMA-S chart with both known and
estimated parameters for the uncontaminated and six contaminated cases, respec-
tively. In each figure, the first plot depicts the CDF of IC run length distribution
for RL ≤ 1000, and the other two plots show the OC CDF curves, respectively for
δ = 1.1 and 1.4 when RL ≤ 200 and RL ≤ 30, which corresponding to early detec-
tion. Note that, the CUSUM-S and CS-CUSUM-S charts are not included in these
figures, because the general patterns for their CDF curves are similar to that of the
EWMA-S chart and thus, only the results of the EWMA-S chart are provided for
illustration. It is also worth mentioning that in Table 2 and Figures 1-7, we also
provide the simulation results when the IC σ is known (entitled σ in Table 2 and
Figures 1-7), which can be regarded as a basis for comparison. We judge the perfor-
mance of the proposed charts as good, provided that their run length distribution
profiles are closer to that of σ known case.

[Insert Tables 2-8 about here]

[Insert Figures 1-7 about here]

5.2 Simulation results comparisons

We compare the performance of the aforementioned control charts based on standard
deviation estimator, parent environment, chart type and change magnitude. The
comparisons that cover the findings of Tables 2-8 and Figures 1-7 are summarized as
follows.

1. Impact of different standard deviation estimators.

First, we compare the differences between the estimators in the situation where the
Phase I data are uncontaminated. From Table 2 and Figure 1, it is observed that
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the SDRL values for all charts with estimated parameters are larger than those
with known parameters, and the actual run length distribution for the estimated-
parameter case behaves differently from the known-parameter case. For example,
by adjusting the control limits, ARL0 = 370 is achieved for all charts under nor-
mality, but the 10th and 50th percentiles of the IC run length distribution of the
chart with estimated parameters are smaller than those with known parameters.
This indicates that, in terms of the percentiles, the false alarm rates of the chart
with estimated parameters are higher than the analogous known-parameter case
though they have the same ARL0 value. In other words, the ARL is not a typical
index of the run length for an IC process. Similar findings still hold for small
shifts.

When the Phase I data are uncontaminated, among the estimators under consid-
eration, the estimators Sp, S, ADM , G, D7, ADMs, ADMi and ADMsi perform
relatively well, whereas the charts based on the estimators Qn, IQR and IQR20

have the worse performance. The SDRL values of the latter charts are larger than
the formers, and these charts achieve the special ARL0 with elevated probabilities
of very short and very long runs. For example, the 10th percentile of the IC run
length distribution is 8 in the EWMA-S chart based on the estimator IQR20 com-
pared with 19 in the EWMA-S chart when the estimator is Sp. Note that, from
Figure 1, one can see that under the OC model, the CDF curves of the EWMA-S
charts based on the estimators Qn, IQR and IQR20 are higher than the other
estimators in short-runs, however, this “advantage” is mainly due to very large
short-run false alarms due to randomness.

The performance of the charts in the case of contaminated data are tabulated
in Tables 3-8 and Figures 2-7. The results provide surprising insights into the
significant deterioration of the charts’ performance due to the contamination, that
is, a substantially increased ARL0, ARL1 and SDRL for all charts with estimated
parameters. The reason is that σ is much more overestimated when the Phase I
data are contaminated. As a result, the upper control limit will become higher
and hence its sensitivity to find an increase in the standard deviation in Phase II
reduces. As it is obvious in the figures, the shape of the run length distribution
for the estimated-parameter case changes more severely from the shape for the
known-parameter case under the contaminated environment as compared to that
under the uncontaminated environment, where the severity is more pronounced
when the process is IC or slightly OC. The main points of the impact of different
estimators in the contaminated cases are summarized as follows.

• The performance of the traditional chart with Sp estimator is the most seri-
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ously affected by the presence of contamination. For example, the ARL0 of
the EWMA-S, CUSUM-S and CS-CUSUM-S charts based on the estimator
Sp are seen to be nearly 12.04, 11.88 and 10.49 times the target ARL0 of
370 respectively, when diffuse symmetric variance disturbances are present
in Phase I.

• Among the robust estimators, the ARL1 values of the charts based on the
estimator IQR20 are relatively small in all contaminated cases considered,
but when the process is IC, the false alarm rates of these charts in short-
runs are rather high compared with the known-parameter case and the charts
based on the other estimators. Moreover, the charts based on IQR20 perform
the worst when there are no contaminations. Based on these reasons, we do
not recommend using IQR20.

• The charts based on the estimators ADM and G perform equally well as the
traditional charts in the uncontaminated case, but not very well in contam-
inated situations.

• The charts based on the estimator D7 are efficient under normality and
perform relatively well in most contaminated scenarios.

• The charts based on the estimators supplemented with a screening method,
i.e. the estimators ADMs, ADMi and ADMsi considered in this paper, per-
form well under normality and outperform any of the other charts in most
contaminated situations. When diffuse disturbances are likely to occur in
Phase I, the charts based on ADMi perform better. On the other hand, the
charts based on ADMs have the better performance when there are local-
ized disturbances. Moreover, from Figures 1-7, it is observed that the CDF
curves of the EWMA-S charts with the estimators ADMsi and ADMi are
not distinguishable in diffuse contaminated situations, and under localized
contaminated environments, the CDF curves of the EWMA-S charts based
on ADMsi are similar to those based on ADMs. It reveals that the estima-
tor ADMsi, which combines the advantages of the above two estimators, is
robust against both types of disturbances.

In summary, when the Phase I data are uncontaminated, the charts with all
estimators show similar performance except that the charts based on Qn, IQR
and IQR20 have the worse performance under normality. When there are diffuse
contaminations, the best OC behavior is obtained withADMi as estimator. When
there are localized contaminations, the charts based on the estimator ADMs have
the best performance. If it is unknown what type of contaminations are present
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in Phase I, the proposed estimator ADMsi is considered to be the best choice for
a Phase I analysis, since it is robust against both types of contaminations and the
charts based on this estimator provide quite a robust overall performance.

2. Impact of different parent environments.

In practice, when estimating the unknown process parameters in Phase I, one
may encounter with different types of parent environments. In this paper, we
consider the uncontaminated normal environment and six contaminated normal
environments as described in section 3. We distinguish between diffuse and lo-
calized special causes of variation. We evaluate three diffuse scenarios and three
localized scenarios (i.e., one localized variance disturbance and two sustained shift
scenarios). A general conclusion of the impact of different parent environments is
summarized as follows.

When diffuse mean disturbances or multiple step shifts in the variance is present
in Phase I, the most of the charts perform worse than those when the other
contaminations are present in Phase I. It indicates that a much larger value of
σ estimated in Phase I results in a higher value for the upper control limit and
hence the ability of detecting an increase in the standard deviation under the two
scenarios reduces a lot.

3. Impact of different memory-type control charts.

The performance of the design structures of the EWMA-S, CUSUM-S and CS-
CUSUM-S charts with estimated parameters under different environments are
comprehensively compared. A general conclusion of the impact of three Phase II
memory-type control charts is summarized as follows.

• When the Phase I data are uncontaminated, the performance of the EWMA-
S and CUSUM-S charts with both known and estimated paremeters are
comparable, and slightly better than the CS-CUSUM-S chart for detecting
small shifts in the process variability (δ ≤ 1.2), however, for detecting relative
large shifts in variance (δ ≥ 1.4), the converse is true. When the process is
IC, the CS-CUSUM-S chart provide the best IC run length behavior, followed
by the CUSUM-S chart.

• When the Phase I data are contaminated, from Tables 3-8, it is observed
that the IC performance of the EWMA-S, CUSUM-S and CS-CUSUM-S
charts with estimated parameters are highly affected by the presence of the
contaminations. For all three charts with estimated parameters, the ARL0

values are much higher than the nominal ARL0 of 370, and the IC SDRL
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(SDRL0) values are also dramatically increased. The ARL0 values of the
CS-CUSUM-S charts are relatively less affected as compared to the ARL0

values of the EWMA-S and CUSUM-S charts. The CUSUM-S chart performs
slightly better than the EWMA-S chart when the process is IC in most cases.

• When the Phase I data are contaminated, the EWMA-S chart is the optimal
one for the target OC value δ = 1.2 in most cases. However, the CUSUM-S
chart has roughly the same ARL profiles. For small shift of size δ = 1.1,
the best OC behavior is obtained by the EWMA-S chart and the CUSUM-S
chart based on the estimators supplemented with a screening method in most
cases except for diffuse mean contaminations where the CS-CUSUM-S chart
performs slightly better. If larger shifts of size δ ≥ 1.4 occur in the process
variance, the performance of the three charts are very similar.

Overall the best IC performance is obtained by the CS-CUSUM-S chart and the
EWMA-S and CUSUM-S charts are more efficient in detecting small and moderate
shifts in most cases. However, the three schemes exhibit similar performance with
subtle differences in most cases, which indicates the influence of the types of the
charts is limited.

4. Impact of different change magnitudes.

From Figures 1-7, it is seen that when the shift is small (δ ≤ 1.2), the shape
of the run length distribution for the case with estimated parameters is far from
that with known parameters, where the difference is more pronounced in the
contaminated situations. However, for larger shifts (δ ≥ 1.4), the performance
discrepancy between the known and estimated parameters cases is diminished.
It indicates that the deterioration is lessened as the magnitude of the shift gets
larger.

5.3 Effect of the Phase I sample size

We have noted that in general one way to improve the performance of a Phase II
control chart is to increase the amount of Phase I data. We make a few comments here
in this direction. To study the effect of the Phase I sample size on the performance of
the charts studied, we estimate the unknown parameters from k Phase I samples, each
of size n = 5. The values of k considered in our study range from 50 to 3000. Note
that, in all contaminated cases, we keep 5% of the data in Phase I are contaminated
for each k to ensure a fair comparison. We found similar results to hold for three
memory charts with estimated parameters in all contaminated cases. Therefore, to
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save space, only the simulation results for the EWMA-S chart with the estimator
ADMsi and the different values of k are presented in Table 9. The first part of the
table shows the performance of the EWMA-S chart under normality, following by the
results when Phase I contains diffuse symmetric variance disturbances or localized
variance disturbances for illustration. The last row in the uncontaminated normal
scenario (entitled k =∞) displays the performance of the EWMA-S chart when the
process parameters are known, which is also regarded as a basis for comparison. We
adjust the control limit parameter L for each value of k to produce an ARL0 of 370
under normality. The values of L are also provided in Table 9. It is observed that
the value of L associated with the estimated-parameter case converges to that of
the known-parameter case as k increases. To obtain a more global view of the run
length distribution, Figure 8 presents the IC and OC run-length CDF curves of the
EWMA-S chart with both known and estimated parameters for the uncontaminated
and two contaminated cases, respectively.

[Insert Table 9 about here]

[Insert Figure 8 about here]

From Table 9 and Figure 8, we can see that, when the Phase I data are uncontam-
inated, the performance discrepancy between the known and estimated parameters
cases is diminished as the Phase I sample size k increases. In the contaminated cas-
es, the SDRL and 90th percentile decrease, whereas the 10th and 50th percentiles
increase as k increases when the process is IC or slightly OC (δ ≤ 1.2), except for
minor sampling fluctuations. This indicates that the negative effects of the variabil-
ity added by the estimation process reduce as k increases. However, as it is obvious
in Figure 8, when parameters are estimated, the OC CDF curves for the early runs
tend to be lower and farther from that of the known-parameter case when k becomes
larger, indicating that the ability of early detection reduces as k increases in the
contaminated cases. Therefore, unlike in the uncontaminated cases, larger Phase
I sample sizes do not necessarily lead to a better performance under contaminated
environments.

6 Conclusions and considerations

In this article, we present a comparison of three memory-type control charts with
different estimators. Different parent environments are used to evaluate the perfor-
mance of these charts in terms of their run length distributions. We recommend
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using ADMi when the dataset is likely to be contaminated by diffuse disturbances.
On the other hand, we prefer ADMs when localized disturbances are likely to occur
in Phase I. If it is unknown what type of contaminations are present in Phase I, the
estimator ADMsi, which combines the advantages of the above two estimators, is
considered to be the best choice for a Phase I analysis. The comparisons showed that
there is no single control chart which behaves well in all environments. The best IC
behavior is obtained by the CS-CUSUM-S chart. Overall the best OC performance
in the contaminated cases is obtained by the EWMA-S chart based on the ADMsi
estimator, although the differences with the other charts are insignificant.

As noted by Hawkins and Olwell,32 a chart tuned to be more sensitive to small
shifts is affected by parameter estimation more than one tuned to large shifts and
that a one-sided CUSUM chart is more severely impacted than a two-sided CUSUM
chart. This is also true in general of the charts studied in this paper. The EWMA-S,
CUSUM-S and CS-CUSUM-S charts considered in this paper are designed to be one-
sided and sensitive to small shifts. It is observed that their performance are strongly
impacted by parameter estimation when the process is IC or slightly OC, even using
the adjusted control limits to achieve the specified nominal ARL0 for each chart
under uncontaminated normal environments. The estimation effect is more severe in
the contaminated cases. It is worth emphasizing that there is a significant difference
between the run length distribution of the memory chart with estimated parameters
and the analogous case with known parameters, no matter whether the Phase I data
are contaminated or not. This difference is gradually diminished when a large number
of Phase I samples is used under normality, but it is not true in the contaminated
cases. Therefore, these memory-type charts with estimated parameters need to be
used more cautiously in practice.
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Table 1: Factors of the EWMA-S, CUSUM-S and CS-CUSUM-S charts under un-
contaminated normal environment with k = 50, n = 5 at ARL0 = 370.

Phase I estimators

Chart Factor Sp S IQR IQR20 G ADM Qn D7 ADMs ADMi ADMsi
EWMA L 2.289 2.268 1.924 1.786 2.262 2.250 1.975 2.230 2.256 2.187 2.185
CUSUM hc 1.801 1.781 1.438 1.322 1.778 1.763 1.482 1.738 1.771 1.696 1.695

CS-CUSUM hcs 1.958 1.938 1.488 1.349 1.934 1.905 1.541 1.878 1.918 1.811 1.812
(UCL = 2.10)
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Table 2: Performance comparisons between the CUSUM-S, EWMA-S and CS-CUSUM-S charts for
k = 50, n = 5 with ARL0=370 under uncontaminated normal environment.

ARL(SDRL; percentiles) of the unconditional run length distribution
chart estimator δ=1.0 δ=1.1 δ=1.2 δ=1.4 δ=1.8

EWMA σ 369.81( 361.82; 47, 259, 841) 53.84( 45.40; 13, 40, 113) 20.93( 14.40; 7, 17, 40) 8.79( 4.57; 4, 8, 15) 4.20( 1.80; 2, 4, 7)
Sp 372.80( 935.28; 19, 112, 799) 48.85( 85.75; 8, 27, 104) 17.94( 17.13; 5, 13, 35) 7.54( 4.54; 3, 6, 13) 3.68( 1.71; 2, 3, 6)

S 370.79( 938.66; 18, 108, 803) 48.82( 100.09; 8, 26, 101) 17.79( 17.29; 5, 13, 35) 7.46( 4.49; 3, 6, 13) 3.65( 1.70; 2, 3, 6)

Qn 371.40( 1184.88; 11, 62, 674) 51.74( 199.98; 6, 19, 96) 16.79( 33.30; 4, 11, 33) 6.66( 4.72; 3, 5, 12) 3.27( 1.64; 2, 3, 5)

ADM 370.82( 962.36; 17, 103, 789) 48.43( 104.78; 8, 26, 101) 17.67( 17.24; 5, 13, 35) 7.41( 4.49; 3, 6, 13) 3.63( 1.70; 2, 3, 6)

G 372.09( 957.25; 18, 106, 792) 48.61( 87.28; 8, 26, 103) 17.76( 17.22; 5, 13, 35) 7.44( 4.48; 3, 6, 13) 3.64( 1.69; 2, 3, 6)

IQR 372.04( 1222.40; 10, 56, 656) 52.45( 237.34; 6, 18, 93) 16.49( 34.73; 4, 10, 32) 6.49( 4.68; 3, 5, 12) 3.19( 1.63; 2, 3, 5)

IQR20 371.54( 1288.02; 8, 44, 602) 57.19( 295.60; 5, 16, 90) 16.26( 41.18; 3, 9, 31) 6.16( 4.88; 2, 5, 11) 3.03( 1.63; 1, 3, 5)
D7 370.11( 976.17; 17, 100, 780) 48.68( 98.20; 8, 25, 102) 17.57( 18.32; 5, 13, 35) 7.36( 4.49; 3, 6, 13) 3.61( 1.70; 2, 3, 6)

ADMs 369.03( 950.73; 18, 105, 785) 48.74( 97.99; 8, 26, 103) 17.76( 17.52; 5, 13, 35) 7.41( 4.50; 3, 6, 13) 3.63( 1.69; 2, 3, 6)

ADMi 370.34( 1002.48; 15, 93, 773) 48.02( 113.83; 7, 24, 99) 17.40( 19.15; 5, 12, 34) 7.20( 4.48; 3, 6, 13) 3.55( 1.67; 2, 3, 6)

ADMsi 370.20( 1000.05; 15, 92, 784) 48.72( 106.00; 7, 24, 102) 17.39( 18.30; 5, 12, 35) 7.23( 4.55; 3, 6, 13) 3.54( 1.68; 2, 3, 6)
CUSUM σ 370.40( 361.44; 48, 260, 840) 52.27( 43.40; 13, 39, 109) 20.70( 13.72; 8, 17, 38) 8.82( 4.47; 4, 8, 15) 4.25( 1.79; 2, 4, 7)

Sp 371.62( 917.44; 19, 115, 805) 48.38( 78.10; 8, 26, 104) 17.90( 17.49; 5, 13, 35) 7.35( 4.49; 3, 6, 13) 3.56( 1.69; 2, 3, 6)

S 370.21( 922.21; 18, 111, 799) 48.97( 88.54; 8, 26, 105) 17.70( 17.68; 5, 13, 35) 7.28( 4.54; 3, 6, 13) 3.53( 1.69; 2, 3, 6)

Qn 369.40( 1155.03; 10, 66, 695) 53.17( 193.79; 6, 20, 101) 16.74( 25.95; 4, 10, 33) 6.45( 4.76; 2, 5, 12) 3.10( 1.64; 1, 3, 5)

ADM 371.17( 950.79; 17, 106, 794) 49.47( 96.02; 8, 26, 104) 17.62( 17.76; 5, 12, 35) 7.22( 4.47; 3, 6, 13) 3.51( 1.69; 2, 3, 6)

G 371.13( 934.69; 18, 108, 804) 49.43( 99.80; 8, 26, 104) 17.75( 17.53; 5, 13, 36) 7.27( 4.52; 3, 6, 13) 3.53( 1.68; 2, 3, 6)

IQR 369.99( 1196.09; 9, 59, 668) 55.91( 247.16; 5, 19, 100) 17.00( 35.28; 4, 10, 34) 6.37( 5.01; 2, 5, 12) 3.04( 1.63; 1, 3, 5)

IQR20 371.00( 1258.81; 8, 48, 636) 58.45( 287.24; 5, 16, 98) 16.88( 44.80; 3, 9, 32) 6.04( 5.30; 2, 5, 11) 2.88( 1.63; 1, 3, 5)
D7 371.87( 973.71; 16, 101, 786) 48.39( 98.50; 7, 25, 102) 17.53( 18.19; 5, 12, 35) 7.17( 4.51; 3, 6, 13) 3.47( 1.69; 2, 3, 6)

ADMs 371.70( 920.21; 18, 109, 815) 49.17( 94.24; 8, 26, 105) 17.73( 18.00; 5, 13, 35) 7.28( 4.52; 3, 6, 13) 3.52( 1.68; 2, 3, 6)

ADMi 372.11( 993.11; 15, 96, 788) 49.31( 106.23; 7, 24, 104) 17.54( 19.08; 5, 12, 35) 7.04( 4.55; 3, 6, 13) 3.41( 1.67; 2, 3, 6)

ADMsi 370.10( 982.93; 15, 95, 791) 49.16( 106.99; 7, 24, 105) 17.50( 19.32; 5, 12, 35) 7.06( 4.60; 3, 6, 13) 3.41( 1.67; 2, 3, 6)
CS-CUSUM σ 371.57( 367.01; 45, 260, 847) 56.34( 47.99; 12, 42, 119) 21.56( 15.09; 6, 18, 41) 8.51( 5.26; 2, 8, 15) 3.47( 2.29; 1, 3, 7)

Sp 371.24( 847.34; 19, 122, 841) 52.64( 93.90; 8, 28, 114) 18.57( 18.85; 5, 13, 37) 7.22( 4.89; 2, 6, 13) 3.15( 1.97; 1, 3, 6)

S 371.33( 867.75; 19, 119, 836) 52.88( 96.31; 8, 28, 114) 18.42( 18.90; 5, 13, 37) 7.21( 4.91; 2, 6, 13) 3.13( 1.96; 1, 3, 6)

Qn 371.67( 1129.72; 10, 68, 730) 54.29( 198.26; 6, 20, 104) 17.20( 29.87; 4, 10, 34) 6.38( 5.00; 2, 5, 12) 2.87( 1.76; 1, 3, 5)

ADM 369.87( 876.25; 18, 113, 831) 52.82( 102.85; 8, 27, 112) 18.18( 19.23; 5, 13, 37) 7.11( 4.87; 2, 6, 13) 3.12( 1.93; 1, 3, 6)

G 372.04( 868.95; 19, 118, 838) 52.58( 97.93; 8, 27, 113) 18.50( 19.00; 5, 13, 37) 7.18( 4.91; 2, 6, 13) 3.14( 1.96; 1, 3, 6)

IQR 370.76( 1167.62; 10, 60, 703) 54.68( 210.43; 5, 19, 103) 16.85( 30.14; 3, 10, 34) 6.22( 5.06; 2, 5, 12) 2.85( 1.77; 1, 3, 5)

IQR20 369.64( 1249.50; 8, 49, 627) 60.21( 285.04; 4, 16, 99) 17.18( 46.71; 3, 9, 33) 5.98( 5.31; 2, 5, 11) 2.74( 1.69; 1, 2, 5)
D7 369.23( 899.75; 17, 110, 824) 52.31( 98.65; 7, 26, 111) 18.19( 19.20; 5, 13, 37) 7.09( 4.92; 2, 6, 13) 3.11( 1.94; 1, 3, 6)

ADMs 372.78( 866.56; 18, 116, 850) 52.56( 92.44; 8, 28, 112) 18.34( 19.38; 5, 13, 37) 7.19( 4.93; 2, 6, 13) 3.12( 1.95; 1, 3, 6)

ADMi 371.99( 950.91; 15, 101, 808) 51.73( 107.45; 7, 25, 110) 17.85( 20.19; 4, 12, 36) 6.93( 4.85; 2, 6, 13) 3.07( 1.90; 1, 3, 6)

ADMsi 371.02( 932.75; 16, 102, 822) 51.69( 105.56; 7, 25, 111) 17.90( 20.46; 4, 12, 36) 6.96( 4.87; 2, 6, 13) 3.06( 1.91; 1, 3, 6)
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Table 3: Performance comparisons between the CUSUM-S, EWMA-S and CS-CUSUM-S charts for
k = 50, n = 5 when diffuse symmetric variance disturbances are present in Phase I. The control limits
used are those producing an ARL0 of 370 under uncontaminated normal environment.

ARL(SDRL; percentiles) of the unconditional run length distribution
chart estimator δ=1.0 δ=1.1 δ=1.2 δ=1.4 δ=1.8

EWMA Sp 4453.34( 4220.52; 115, 2489,10000) 1041.76( 2299.35; 20, 161, 2863) 161.13( 677.30; 9, 36, 251) 15.27( 24.36; 4, 10, 29) 4.92( 2.65; 2, 4, 8)

S 3146.86( 3777.91; 73, 1103,10000) 480.85( 1332.23; 16, 98, 976) 66.99( 227.26; 8, 27, 129) 12.04( 11.07; 4, 9, 22) 4.56( 2.33; 2, 4, 8)

Qn 1382.97( 2704.40; 20, 208, 4991) 206.64( 796.33; 8, 38, 340) 37.66( 158.83; 5, 16, 69) 8.94( 8.23; 3, 7, 17) 3.75( 1.99; 2, 3, 6)

ADM 2482.47( 3413.36; 56, 729,10000) 313.05( 924.92; 14, 76, 614) 49.75( 135.47; 8, 24, 99) 10.98( 8.70; 4, 9, 20) 4.36( 2.17; 2, 4, 7)

G 2835.07( 3617.38; 66, 912,10000) 390.53( 1124.14; 15, 87, 769) 56.70( 167.99; 8, 25, 113) 11.45( 9.43; 4, 9, 21) 4.46( 2.24; 2, 4, 7)

IQR 935.48( 2193.20; 14, 124, 2416) 130.79( 559.60; 7, 28, 212) 27.54( 87.43; 5, 13, 52) 7.96( 6.75; 3, 6, 15) 3.52( 1.88; 2, 3, 6)

IQR20 780.97( 2036.02; 11, 83, 1784) 122.83( 583.21; 6, 23, 181) 27.45( 148.85; 4, 11, 46) 7.38( 7.17; 3, 6, 14) 3.30( 1.83; 2, 3, 6)
D7 1429.77( 2571.92; 33, 324, 4653) 152.02( 474.19; 11, 47, 300) 31.82( 56.33; 6, 18, 65) 9.33( 6.67; 4, 8, 17) 4.06( 2.01; 2, 4, 7)

ADMs 1914.39( 3045.95; 39, 452, 8278) 237.65( 781.72; 12, 58, 440) 41.16( 117.40; 7, 20, 80) 10.05( 7.66; 4, 8, 18) 4.21( 2.11; 2, 4, 7)

ADMi 1076.74( 2222.18; 23, 210, 2970) 116.10( 386.77; 9, 37, 224) 27.10( 54.93; 6, 16, 55) 8.67( 6.21; 3, 7, 16) 3.87( 1.91; 2, 3, 6)

ADMsi 1074.85( 2217.19; 23, 209, 3005) 120.85( 405.53; 9, 38, 233) 26.98( 44.48; 6, 16, 55) 8.61( 6.15; 3, 7, 16) 3.87( 1.91; 2, 3, 6)
CUSUM Sp 4394.77( 4200.01; 115, 2423,10000) 1023.36( 2269.10; 20, 162, 2747) 163.65( 666.60; 9, 36, 259) 15.20( 38.18; 4, 10, 29) 4.75( 2.63; 2, 4, 8)

S 3111.61( 3751.13; 74, 1089,10000) 474.35( 1308.86; 16, 99, 956) 67.06( 220.19; 8, 27, 130) 11.88( 11.86; 4, 9, 22) 4.41( 2.30; 2, 4, 7)

Qn 1330.20( 2609.72; 19, 213, 4474) 198.69( 745.68; 8, 40, 339) 38.09( 145.04; 5, 16, 72) 8.80( 8.66; 3, 7, 17) 3.58( 1.99; 2, 3, 6)

ADM 2466.25( 3380.35; 57, 746,10000) 315.33( 928.66; 14, 78, 624) 50.01( 121.54; 7, 23, 102) 10.82( 9.11; 4, 8, 20) 4.23( 2.16; 2, 4, 7)

G 2809.96( 3586.55; 66, 925,10000) 399.48( 1141.33; 15, 90, 790) 58.41( 180.66; 8, 25, 116) 11.31( 9.56; 4, 9, 21) 4.33( 2.24; 2, 4, 7)

IQR 911.08( 2125.78; 14, 132, 2307) 135.28( 557.87; 7, 29, 227) 29.11( 103.99; 4, 13, 55) 7.79( 7.18; 3, 6, 15) 3.36( 1.87; 2, 3, 6)

IQR20 779.18( 2002.15; 11, 90, 1831) 129.81( 595.75; 5, 24, 197) 27.95( 121.97; 4, 11, 51) 7.34( 7.79; 2, 5, 14) 3.14( 1.84; 1, 3, 5)
D7 1386.48( 2498.36; 33, 330, 4286) 152.95( 478.80; 11, 48, 304) 32.04( 59.10; 6, 18, 65) 9.14( 6.76; 3, 7, 17) 3.91( 1.97; 2, 3, 6)

ADMs 1904.60( 3025.27; 40, 459, 8048) 232.41( 750.68; 12, 58, 440) 41.39( 120.12; 7, 20, 82) 9.96( 7.92; 4, 8, 18) 4.08( 2.08; 2, 4, 7)

ADMi 1059.76( 2174.13; 23, 215, 2913) 122.96( 417.97; 9, 38, 239) 27.51( 50.76; 5, 16, 56) 8.48( 6.28; 3, 7, 16) 3.71( 1.89; 2, 3, 6)

ADMsi 1061.16( 2184.68; 23, 216, 2909) 120.98( 396.82; 9, 38, 235) 27.45( 48.42; 5, 16, 56) 8.44( 6.23; 3, 7, 15) 3.72( 1.91; 2, 3, 6)
CS-CUSUM Sp 3882.20( 3971.32; 114, 1903,10000) 928.21( 2031.38; 20, 171, 2425) 161.69( 607.90; 9, 38, 278) 15.54( 24.41; 4, 10, 30) 4.46( 2.96; 1, 4, 8)

S 2771.65( 3452.02; 79, 1033,10000) 460.94( 1196.04; 16, 107, 999) 72.18( 220.42; 8, 29, 143) 12.01( 11.31; 3, 9, 23) 4.09( 2.63; 1, 4, 7)

Qn 1297.99( 2542.91; 20, 219, 4195) 202.62( 750.97; 8, 40, 356) 39.50( 153.28; 5, 16, 74) 8.80( 8.88; 2, 7, 17) 3.38( 2.16; 1, 3, 6)

ADM 2209.45( 3100.45; 60, 713, 8813) 313.87( 858.87; 14, 83, 656) 53.51( 129.12; 7, 25, 110) 10.91( 9.46; 3, 9, 21) 3.90( 2.48; 1, 4, 7)

G 2523.60( 3307.16; 70, 884,10000) 380.23( 1003.63; 15, 94, 825) 63.03( 178.64; 7, 27, 126) 11.55( 10.26; 3, 9, 22) 4.01( 2.56; 1, 4, 7)

IQR 905.95( 2090.19; 15, 136, 2344) 135.00( 545.56; 7, 30, 232) 29.73( 111.32; 4, 13, 57) 7.80( 7.53; 2, 6, 15) 3.16( 2.00; 1, 3, 6)

IQR20 770.81( 1975.19; 10, 92, 1787) 126.77( 578.69; 5, 24, 197) 28.53( 133.64; 4, 11, 51) 7.31( 7.70; 2, 5, 14) 3.01( 1.92; 1, 3, 5)
D7 1300.11( 2320.53; 35, 341, 3822) 160.71( 464.85; 11, 51, 332) 33.96( 59.58; 6, 19, 71) 9.18( 7.15; 3, 7, 17) 3.58( 2.26; 1, 3, 7)

ADMs 1717.74( 2752.69; 41, 467, 5913) 234.71( 702.28; 12, 62, 466) 43.07( 109.73; 6, 21, 86) 9.98( 8.32; 3, 8, 19) 3.73( 2.38; 1, 3, 7)

ADMi 987.57( 2010.18; 23, 222, 2647) 122.71( 362.30; 9, 40, 252) 28.60( 50.16; 5, 16, 59) 8.42( 6.68; 2, 7, 16) 3.40( 2.15; 1, 3, 6)

ADMsi 1008.24( 2041.11; 24, 225, 2714) 125.43( 390.10; 9, 40, 254) 28.74( 52.08; 5, 16, 59) 8.47( 6.72; 3, 7, 16) 3.40( 2.15; 1, 3, 6)
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Table 4: Performance comparisons between the CUSUM-S, EWMA-S and CS-CUSUM-S charts for
k = 50, n = 5 when diffuse asymmetric variance disturbances are present in Phase I. The control
limits used are those producing an ARL0 of 370 under uncontaminated normal environment.

ARL(SDRL; percentiles) of the unconditional run length distribution
chart estimator δ=1.0 δ=1.1 δ=1.2 δ=1.4 δ=1.8

EWMA Sp 4710.89( 4428.67; 82, 2635,10000) 2102.15( 3615.68; 18, 178,10000) 868.87( 2467.69; 9, 39, 1762) 156.85( 1040.97; 4, 11, 56) 10.24( 186.21; 2, 4, 10)

S 3028.05( 3837.52; 54, 855,10000) 638.73( 1801.92; 14, 85, 1232) 110.15( 569.86; 8, 25, 148) 12.77( 40.01; 4, 9, 23) 4.52( 2.42; 2, 4, 7)

Qn 954.21( 2198.63; 16, 138, 2493) 132.95( 563.07; 7, 30, 214) 27.11( 69.41; 5, 14, 52) 8.09( 6.69; 3, 6, 15) 3.58( 1.87; 2, 3, 6)

ADM 2242.50( 3335.65; 44, 542,10000) 331.05( 1094.82; 13, 64, 575) 53.32( 220.36; 7, 22, 95) 10.73( 10.01; 4, 8, 20) 4.29( 2.18; 2, 4, 7)

G 2583.54( 3568.09; 49, 664,10000) 443.14( 1383.57; 13, 73, 778) 68.65( 323.21; 7, 23, 111) 11.36( 12.34; 4, 9, 21) 4.39( 2.26; 2, 4, 7)

IQR 733.27( 1913.72; 12, 95, 1618) 96.73( 425.47; 6, 24, 159) 23.94( 107.65; 4, 12, 44) 7.44( 6.14; 3, 6, 14) 3.42( 1.80; 2, 3, 6)

IQR20 614.04( 1771.89; 10, 65, 1215) 89.87( 449.69; 5, 20, 136) 22.51( 93.58; 4, 10, 41) 6.89( 6.28; 2, 5, 13) 3.20( 1.74; 2, 3, 5)
D7 845.23( 1844.64; 24, 191, 2074) 90.18( 255.74; 9, 35, 182) 24.06( 32.22; 6, 15, 48) 8.39( 5.62; 3, 7, 15) 3.85( 1.85; 2, 3, 6)

ADMs 1034.38( 2132.89; 26, 222, 2758) 109.68( 364.88; 10, 38, 210) 26.62( 49.27; 6, 16, 53) 8.69( 5.97; 3, 7, 16) 3.92( 1.90; 2, 4, 6)

ADMi 688.50( 1649.09; 19, 141, 1578) 75.63( 230.94; 8, 30, 152) 21.63( 30.00; 5, 14, 44) 7.91( 5.22; 3, 7, 14) 3.71( 1.79; 2, 3, 6)

ADMsi 672.95( 1619.36; 19, 141, 1530) 76.52( 233.24; 8, 30, 154) 21.80( 29.24; 5, 14, 44) 7.94( 5.29; 3, 7, 14) 3.71( 1.79; 2, 3, 6)
CUSUM Sp 4694.78( 4417.21; 82, 2638,10000) 2067.08( 3583.34; 17, 180,10000) 865.61( 2460.42; 9, 39, 1749) 158.33( 1038.55; 4, 11, 57) 11.48( 208.93; 2, 4, 10)

S 2992.36( 3810.56; 55, 849,10000) 635.98( 1779.15; 14, 86, 1240) 106.76( 540.89; 7, 25, 146) 12.68( 29.17; 4, 9, 23) 4.40( 2.41; 2, 4, 7)

Qn 930.20( 2133.10; 15, 141, 2413) 128.14( 511.20; 7, 31, 221) 28.51( 90.61; 4, 14, 55) 7.91( 7.15; 3, 6, 15) 3.41( 1.86; 2, 3, 6)

ADM 2215.95( 3296.08; 44, 547,10000) 326.55( 1056.79; 12, 65, 582) 53.66( 218.28; 7, 21, 96) 10.52( 10.56; 4, 8, 20) 4.16( 2.16; 2, 4, 7)

G 2580.91( 3552.82; 50, 686,10000) 436.41( 1342.35; 13, 74, 783) 72.00( 347.78; 7, 23, 114) 11.37( 33.88; 4, 8, 21) 4.26( 2.24; 2, 4, 7)

IQR 703.05( 1820.57; 12, 100, 1574) 101.27( 438.80; 6, 25, 169) 24.48( 83.36; 4, 12, 47) 7.27( 7.72; 2, 6, 14) 3.26( 1.80; 2, 3, 6)

IQR20 600.40( 1710.09; 9, 71, 1212) 98.25( 473.09; 5, 21, 153) 23.26( 93.63; 4, 10, 43) 6.83( 6.97; 2, 5, 13) 3.04( 1.76; 1, 3, 5)
D7 837.61( 1819.09; 24, 192, 2058) 90.48( 243.61; 9, 36, 188) 24.12( 32.44; 6, 15, 49) 8.19( 5.64; 3, 7, 15) 3.72( 1.84; 2, 3, 6)

ADMs 1037.55( 2120.11; 26, 227, 2769) 111.21( 364.87; 9, 39, 217) 26.69( 53.81; 6, 16, 54) 8.55( 6.01; 3, 7, 15) 3.81( 1.88; 2, 3, 6)

ADMi 690.71( 1630.01; 19, 147, 1595) 76.59( 213.32; 8, 30, 157) 21.83( 29.90; 5, 14, 44) 7.72( 5.30; 3, 6, 14) 3.57( 1.78; 2, 3, 6)

ADMsi 668.66( 1585.68; 19, 147, 1535) 76.87( 210.24; 8, 30, 158) 22.01( 31.50; 5, 14, 44) 7.74( 5.35; 3, 6, 14) 3.57( 1.79; 2, 3, 6)
CS-CUSUM Sp 4315.46( 4280.43; 83, 2097,10000) 1894.02( 3379.96; 18, 184,10000) 798.12( 2303.40; 9, 42, 1578) 147.76( 971.53; 4, 11, 61) 10.51( 185.00; 1, 4, 10)

S 2692.11( 3545.08; 57, 816,10000) 571.23( 1577.08; 14, 92, 1170) 110.62( 524.50; 7, 26, 160) 13.11( 35.90; 3, 9, 24) 4.07( 2.74; 1, 4, 7)

Qn 907.77( 2068.55; 15, 144, 2373) 138.43( 556.83; 7, 31, 235) 29.26( 82.78; 4, 14, 57) 7.81( 7.03; 2, 6, 15) 3.21( 2.03; 1, 3, 6)

ADM 1996.49( 3038.88; 45, 536, 8139) 319.16( 984.15; 13, 70, 615) 56.05( 207.41; 7, 22, 102) 10.58( 10.32; 3, 8, 20) 3.80( 2.46; 1, 3, 7)

G 2319.92( 3277.89; 52, 666,10000) 421.03( 1237.34; 14, 81, 821) 73.45( 317.44; 7, 25, 125) 11.44( 13.26; 3, 9, 22) 3.93( 2.57; 1, 4, 7)

IQR 703.87( 1806.08; 12, 103, 1585) 102.60( 431.42; 6, 25, 177) 24.88( 79.22; 4, 12, 48) 7.21( 6.56; 2, 6, 14) 3.06( 1.92; 1, 3, 5)

IQR20 610.74( 1725.04; 9, 72, 1241) 96.56( 447.38; 5, 21, 155) 23.44( 85.93; 3, 10, 44) 6.76( 6.66; 2, 5, 13) 2.91( 1.84; 1, 3, 5)
D7 804.54( 1684.40; 25, 206, 2000) 97.90( 264.66; 9, 38, 200) 25.57( 39.65; 5, 16, 52) 8.21( 6.13; 2, 7, 15) 3.38( 2.12; 1, 3, 6)

ADMs 950.81( 1913.24; 27, 235, 2486) 116.99( 338.77; 10, 42, 240) 28.11( 48.36; 6, 17, 57) 8.54( 6.52; 3, 7, 16) 3.44( 2.17; 1, 3, 6)

ADMi 649.23( 1489.57; 19, 153, 1548) 79.84( 212.21; 8, 32, 167) 22.59( 34.62; 5, 14, 47) 7.64( 5.66; 2, 6, 14) 3.23( 2.02; 1, 3, 6)

ADMsi 647.90( 1486.27; 19, 156, 1538) 81.44( 224.18; 8, 32, 170) 22.54( 31.13; 5, 14, 46) 7.68( 5.68; 2, 6, 14) 3.24( 2.02; 1, 3, 6)
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Table 5: Performance comparisons between the CUSUM-S, EWMA-S and CS-CUSUM-S charts for
k = 50, n = 5 when diffuse mean disturbances are present in Phase I. The control limits used are
those producing an ARL0 of 370 under uncontaminated normal environment.

ARL(SDRL; percentiles) of the unconditional run length distribution
chart estimator δ=1.0 δ=1.1 δ=1.2 δ=1.4 δ=1.8

EWMA Sp 5279.15( 4183.69; 224, 4558,10000) 1055.45( 2133.36; 28, 236, 2817) 130.45( 387.46; 11, 44, 263) 15.47( 15.30; 5, 11, 30) 5.08( 2.65; 2, 4, 8)

S 4417.46( 4103.19; 150, 2620,10000) 746.79( 1699.52; 22, 167, 1775) 94.09( 271.18; 10, 36, 190) 13.84( 12.31; 5, 10, 26) 4.83( 2.48; 2, 4, 8)

Qn 2337.31( 3475.37; 32, 480,10000) 420.73( 1334.08; 10, 62, 753) 66.36( 282.64; 6, 21, 116) 10.83( 13.40; 3, 8, 21) 4.08( 2.25; 2, 4, 7)

ADM 3810.47( 3967.98; 114, 1791,10000) 566.32( 1398.62; 19, 132, 1252) 77.00( 220.99; 9, 32, 155) 12.84( 10.89; 4, 10, 24) 4.69( 2.40; 2, 4, 8)

G 4152.02( 4050.83; 136, 2214,10000) 659.07( 1554.57; 21, 151, 1502) 84.23( 235.51; 9, 34, 170) 13.38( 11.42; 4, 10, 26) 4.77( 2.44; 2, 4, 8)

IQR 1707.03( 3028.93; 21, 263, 7934) 290.83( 1042.83; 9, 44, 482) 49.34( 223.29; 5, 17, 85) 9.58( 10.65; 3, 7, 18) 3.82( 2.10; 2, 3, 6)

IQR20 1283.18( 2680.61; 14, 146, 4561) 233.70( 957.05; 7, 31, 342) 44.05( 230.89; 4, 14, 70) 8.67( 10.03; 3, 6, 16) 3.54( 2.00; 2, 3, 6)
D7 3065.14( 3721.26; 71, 1074,10000) 440.24( 1214.35; 16, 96, 889) 61.91( 176.60; 8, 27, 125) 11.76( 9.79; 4, 9, 22) 4.49( 2.29; 2, 4, 7)

ADMs 4037.72( 4062.90; 112, 2007,10000) 684.79( 1640.09; 20, 145, 1571) 87.49( 271.83; 9, 33, 173) 13.31( 12.00; 4, 10, 25) 4.73( 2.43; 2, 4, 8)

ADMi 2533.65( 3522.45; 43, 652,10000) 364.63( 1109.82; 13, 71, 709) 55.47( 187.64; 7, 23, 107) 10.92( 9.39; 4, 8, 20) 4.31( 2.23; 2, 4, 7)

ADMsi 2521.11( 3513.47; 43, 649,10000) 365.56( 1120.71; 13, 71, 696) 55.09( 177.76; 7, 23, 106) 10.91( 9.39; 4, 8, 20) 4.29( 2.21; 2, 4, 7)
CUSUM Sp 5185.11( 4175.14; 222, 4293,10000) 1047.84( 2098.94; 28, 241, 2829) 132.82( 405.76; 10, 45, 268) 15.30( 15.29; 5, 11, 30) 4.92( 2.62; 2, 4, 8)

S 4348.88( 4078.57; 151, 2524,10000) 739.04( 1678.46; 22, 168, 1751) 94.91( 274.32; 9, 37, 192) 13.62( 12.52; 4, 10, 26) 4.69( 2.48; 2, 4, 8)

Qn 2244.93( 3385.39; 31, 477,10000) 394.78( 1226.95; 10, 65, 746) 66.16( 277.55; 6, 21, 119) 10.81( 12.56; 3, 8, 21) 3.90( 2.25; 2, 3, 7)

ADM 3761.09( 3939.14; 113, 1757,10000) 567.52( 1387.60; 19, 134, 1271) 78.80( 221.47; 9, 32, 162) 12.70( 11.38; 4, 10, 24) 4.54( 2.37; 2, 4, 8)

G 4111.56( 4021.36; 137, 2218,10000) 664.70( 1560.58; 21, 156, 1500) 86.30( 237.05; 9, 35, 176) 13.27( 11.61; 4, 10, 26) 4.63( 2.43; 2, 4, 8)

IQR 1645.16( 2945.11; 21, 269, 6988) 286.57( 1023.63; 8, 46, 486) 50.47( 206.83; 5, 17, 91) 9.55( 13.49; 3, 7, 18) 3.64( 2.10; 2, 3, 6)

IQR20 1267.29( 2635.34; 14, 157, 4362) 233.09( 921.18; 6, 34, 363) 44.95( 216.67; 4, 14, 76) 8.69( 12.53; 2, 6, 17) 3.37( 2.04; 1, 3, 6)
D7 3008.18( 3679.96; 73, 1052,10000) 427.45( 1160.33; 15, 98, 892) 63.06( 169.14; 8, 27, 128) 11.60( 9.99; 4, 9, 22) 4.34( 2.28; 2, 4, 7)

ADMs 4011.26( 4040.80; 114, 1999,10000) 676.97( 1609.43; 19, 146, 1569) 89.55( 265.31; 9, 34, 180) 13.25( 12.53; 4, 10, 25) 4.61( 2.43; 2, 4, 8)

ADMi 2453.67( 3456.61; 43, 636,10000) 364.58( 1095.17; 12, 73, 712) 56.13( 178.00; 7, 23, 110) 10.78( 9.56; 4, 8, 21) 4.14( 2.22; 2, 4, 7)

ADMsi 2476.13( 3465.32; 43, 649,10000) 366.33( 1100.83; 12, 74, 711) 56.64( 190.59; 7, 23, 109) 10.81( 9.73; 4, 8, 21) 4.14( 2.19; 2, 4, 7)
CS-CUSUM Sp 4556.37( 3994.64; 204, 3077,10000) 959.41( 1882.25; 28, 251, 2508) 135.65( 368.25; 11, 48, 282) 15.68( 15.57; 4, 11, 31) 4.61( 2.97; 1, 4, 8)

S 3856.34( 3842.91; 151, 2086,10000) 697.92( 1514.86; 23, 180, 1687) 101.82( 283.36; 10, 39, 209) 14.02( 13.14; 4, 11, 28) 4.38( 2.81; 1, 4, 8)

Qn 2199.92( 3317.65; 33, 493,10000) 402.92( 1230.67; 10, 67, 781) 70.31( 296.29; 6, 22, 126) 10.86( 14.37; 3, 8, 21) 3.71( 2.41; 1, 3, 7)

ADM 3327.69( 3678.60; 113, 1510,10000) 550.43( 1284.25; 20, 145, 1260) 81.45( 202.85; 9, 34, 172) 13.01( 11.95; 4, 10, 25) 4.23( 2.70; 1, 4, 8)

G 3653.70( 3775.40; 138, 1858,10000) 636.53( 1421.75; 22, 166, 1494) 93.41( 243.91; 9, 37, 196) 13.62( 12.71; 4, 10, 27) 4.32( 2.76; 1, 4, 8)

IQR 1640.89( 2922.82; 21, 278, 6826) 287.57( 994.11; 8, 47, 513) 53.04( 219.90; 5, 17, 94) 9.53( 10.56; 3, 7, 19) 3.48( 2.25; 1, 3, 6)

IQR20 1271.68( 2626.14; 14, 160, 4378) 233.73( 927.44; 6, 34, 363) 45.55( 208.99; 4, 14, 79) 8.66( 13.52; 2, 6, 17) 3.25( 2.13; 1, 3, 6)
D7 2723.41( 3425.78; 73, 1004,10000) 420.35( 1083.40; 16, 105, 915) 65.81( 174.42; 8, 28, 135) 11.81( 10.64; 3, 9, 23) 4.02( 2.56; 1, 4, 7)

ADMs 3572.81( 3791.86; 113, 1721,10000) 649.14( 1483.11; 20, 154, 1543) 93.66( 253.75; 9, 36, 195) 13.45( 12.99; 4, 10, 26) 4.28( 2.75; 1, 4, 8)

ADMi 2268.76( 3249.28; 43, 633,10000) 351.45( 996.68; 12, 78, 737) 58.20( 174.73; 7, 24, 118) 10.93( 10.36; 3, 8, 21) 3.83( 2.46; 1, 3, 7)

ADMsi 2273.56( 3253.88; 44, 637,10000) 351.87( 1010.80; 12, 76, 725) 59.09( 171.41; 7, 24, 118) 10.98( 11.35; 3, 8, 21) 3.83( 2.46; 1, 3, 7)
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Table 6: Performance comparisons between the CUSUM-S, EWMA-S and CS-CUSUM-S charts for
k = 50, n = 5 when localized variance disturbances are present in Phase I. The control limits used
are those producing an ARL0 of 370 under uncontaminated normal environment.

ARL(SDRL; percentiles) of the unconditional run length distribution
chart estimator δ=1.0 δ=1.1 δ=1.2 δ=1.4 δ=1.8

EWMA Sp 4322.48( 4353.15; 67, 1936,10000) 1450.84( 2946.89; 16, 139, 6762) 352.14( 1361.16; 8, 34, 442) 21.63( 126.12; 4, 10, 34) 5.02( 3.14; 2, 4, 8)

S 2455.57( 3507.37; 44, 582,10000) 393.25( 1259.50; 13, 67, 689) 61.69( 279.56; 7, 22, 104) 11.03( 10.80; 4, 8, 20) 4.35( 2.25; 2, 4, 7)

Qn 1849.40( 3223.00; 20, 254,10000) 371.35( 1323.36; 9, 43, 569) 71.53( 421.03; 5, 17, 94) 10.11( 13.48; 3, 7, 19) 3.89( 2.18; 2, 3, 7)

ADM 2407.13( 3486.59; 42, 557,10000) 401.78( 1292.91; 12, 65, 687) 62.68( 299.10; 7, 22, 103) 10.95( 13.45; 4, 8, 20) 4.31( 2.21; 2, 4, 7)

G 2436.18( 3496.58; 43, 579,10000) 391.38( 1255.16; 13, 67, 683) 61.38( 270.37; 7, 22, 104) 11.06( 11.30; 4, 8, 20) 4.33( 2.23; 2, 4, 7)

IQR 1766.50( 3177.67; 17, 213,10000) 375.25( 1363.84; 8, 39, 547) 72.36( 438.19; 5, 16, 93) 9.99( 18.01; 3, 7, 18) 3.80( 2.21; 2, 3, 6)

IQR20 756.43( 2015.93; 10, 77, 1681) 119.80( 580.75; 6, 22, 170) 26.81( 143.27; 4, 11, 46) 7.23( 7.96; 2, 5, 13) 3.27( 1.81; 2, 3, 5)
D7 1009.20( 2134.80; 24, 202, 2648) 115.45( 418.16; 10, 37, 209) 26.63( 52.09; 6, 16, 53) 8.63( 6.04; 3, 7, 15) 3.90( 1.91; 2, 4, 6)

ADMs 708.30( 1684.80; 21, 152, 1604) 80.77( 270.59; 9, 31, 155) 22.23( 37.24; 6, 14, 44) 8.08( 5.31; 3, 7, 14) 3.79( 1.81; 2, 3, 6)

ADMi 864.08( 1956.59; 20, 164, 2126) 98.00( 351.50; 9, 33, 182) 24.37( 44.65; 6, 15, 48) 8.24( 5.83; 3, 7, 15) 3.78( 1.85; 2, 3, 6)

ADMsi 753.62( 1787.32; 19, 145, 1748) 86.40( 302.70; 8, 31, 164) 23.06( 49.18; 5, 14, 45) 8.04( 5.46; 3, 7, 14) 3.73( 1.83; 2, 3, 6)
CUSUM Sp 4268.23( 4330.19; 67, 1881,10000) 1447.69( 2931.36; 16, 142, 6638) 349.16( 1340.36; 8, 34, 455) 22.28( 139.18; 4, 10, 34) 4.84( 3.01; 2, 4, 8)

S 2438.56( 3486.19; 44, 595,10000) 392.24( 1240.32; 12, 68, 696) 61.23( 259.19; 7, 22, 106) 10.90( 13.09; 4, 8, 20) 4.22( 2.23; 2, 4, 7)

Qn 1786.05( 3140.90; 20, 255, 9518) 364.80( 1283.94; 8, 45, 579) 70.00( 394.13; 5, 17, 99) 10.07( 15.31; 3, 7, 19) 3.71( 2.21; 2, 3, 6)

ADM 2381.94( 3450.38; 42, 564,10000) 391.18( 1244.35; 12, 67, 706) 63.54( 284.20; 7, 22, 108) 10.82( 11.30; 4, 8, 20) 4.16( 2.20; 2, 4, 7)

G 2412.88( 3464.94; 44, 583,10000) 397.79( 1264.48; 12, 68, 705) 62.93( 280.25; 7, 22, 105) 10.91( 15.13; 4, 8, 20) 4.22( 2.21; 2, 4, 7)

IQR 1691.59( 3078.79; 17, 219, 8568) 375.47( 1347.84; 7, 41, 568) 72.00( 415.56; 5, 16, 96) 10.21( 33.09; 3, 7, 19) 3.63( 2.19; 2, 3, 6)

IQR20 738.22( 1946.37; 10, 82, 1689) 122.29( 570.44; 5, 23, 186) 27.63( 127.42; 4, 11, 49) 7.27( 10.29; 2, 5, 14) 3.11( 1.83; 1, 3, 5)
D7 996.80( 2101.10; 24, 205, 2614) 115.04( 409.22; 9, 37, 213) 26.72( 60.33; 6, 15, 54) 8.41( 6.22; 3, 7, 15) 3.76( 1.88; 2, 3, 6)

ADMs 704.82( 1667.95; 21, 154, 1585) 81.68( 268.60; 9, 31, 159) 22.35( 36.09; 5, 14, 45) 7.93( 5.36; 3, 7, 14) 3.67( 1.81; 2, 3, 6)

ADMi 866.27( 1953.81; 20, 167, 2128) 100.56( 350.18; 8, 33, 190) 24.60( 54.12; 5, 14, 49) 8.05( 5.86; 3, 6, 15) 3.63( 1.83; 2, 3, 6)

ADMsi 758.46( 1774.69; 19, 151, 1787) 88.33( 306.33; 8, 31, 170) 23.08( 39.37; 5, 14, 46) 7.85( 5.64; 3, 6, 14) 3.59( 1.81; 2, 3, 6)
CS-CUSUM Sp 3867.72( 4136.55; 71, 1592,10000) 1289.87( 2675.58; 16, 149, 4613) 314.27( 1202.88; 8, 35, 446) 22.99( 136.62; 3, 10, 35) 4.56( 3.52; 1, 4, 8)

S 2182.22( 3201.37; 46, 586, 9918) 376.34( 1128.31; 13, 73, 733) 66.05( 273.20; 7, 23, 116) 11.02( 11.28; 3, 8, 21) 3.88( 2.53; 1, 3, 7)

Qn 1751.84( 3077.95; 20, 268, 8533) 369.55( 1281.31; 8, 46, 602) 71.05( 403.15; 5, 17, 101) 10.12( 18.21; 3, 7, 19) 3.52( 2.36; 1, 3, 6)

ADM 2141.76( 3187.52; 43, 549, 9692) 378.57( 1162.13; 12, 70, 719) 65.90( 273.76; 7, 23, 114) 11.02( 12.36; 3, 8, 21) 3.84( 2.50; 1, 3, 7)

G 2180.62( 3197.10; 46, 585, 9860) 382.17( 1155.28; 13, 73, 735) 65.73( 253.85; 7, 23, 117) 11.00( 11.99; 3, 8, 21) 3.87( 2.52; 1, 3, 7)

IQR 1693.49( 3064.12; 17, 229, 8353) 364.99( 1300.01; 7, 42, 573) 74.42( 418.21; 5, 16, 102) 9.97( 18.45; 2, 7, 19) 3.44( 2.31; 1, 3, 6)

IQR20 739.58( 1939.46; 10, 84, 1677) 126.46( 596.46; 5, 23, 189) 26.90( 105.70; 3, 11, 49) 7.15( 7.95; 2, 5, 14) 2.97( 1.89; 1, 3, 5)
D7 945.62( 1951.87; 25, 216, 2458) 118.81( 379.05; 9, 39, 232) 27.84( 54.05; 5, 16, 57) 8.43( 6.56; 2, 7, 16) 3.40( 2.15; 1, 3, 6)

ADMs 668.95( 1519.03; 21, 164, 1574) 85.80( 269.49; 9, 33, 169) 23.50( 39.29; 5, 15, 47) 7.85( 5.80; 2, 7, 15) 3.28( 2.07; 1, 3, 6)

ADMi 806.58( 1779.54; 21, 175, 2006) 104.15( 348.78; 8, 34, 202) 25.69( 49.68; 5, 15, 52) 7.98( 6.18; 2, 7, 15) 3.30( 2.09; 1, 3, 6)

ADMsi 718.48( 1649.56; 19, 158, 1708) 91.12( 294.74; 8, 32, 179) 24.07( 51.60; 5, 14, 49) 7.83( 6.02; 2, 6, 15) 3.25( 2.04; 1, 3, 6)
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Table 7: Performance comparisons between the CUSUM-S, EWMA-S and CS-CUSUM-S charts for
k = 50, n = 5 when a single step shift in the variance is present in Phase I. The control limits used
are those producing an ARL0 of 370 under uncontaminated normal environment.

ARL(SDRL; percentiles) of the unconditional run length distribution
chart estimator δ=1.0 δ=1.1 δ=1.2 δ=1.4 δ=1.8

EWMA Sp 5473.53( 4266.84; 197, 5316,10000) 1515.86( 2791.31; 27, 270, 5703) 245.29( 899.51; 11, 48, 396) 17.96( 31.88; 5, 12, 34) 5.20( 2.85; 2, 5, 9)

S 2789.35( 3514.70; 77, 978,10000) 313.50( 842.33; 16, 88, 653) 50.16( 105.04; 8, 26, 104) 11.32( 8.61; 4, 9, 21) 4.45( 2.20; 2, 4, 7)

Qn 2054.86( 3288.54; 27, 380,10000) 349.92( 1173.65; 10, 54, 604) 56.39( 238.59; 6, 19, 99) 10.33( 11.06; 3, 8, 19) 3.99( 2.19; 2, 4, 7)

ADM 2712.96( 3494.93; 71, 906,10000) 327.58( 911.21; 15, 87, 672) 50.80( 118.73; 8, 25, 105) 11.26( 8.77; 4, 9, 21) 4.43( 2.20; 2, 4, 7)

G 2770.58( 3503.76; 74, 958,10000) 323.18( 877.57; 16, 88, 676) 50.49( 111.49; 8, 26, 105) 11.26( 8.55; 4, 9, 21) 4.44( 2.21; 2, 4, 7)

IQR 1949.62( 3244.42; 23, 314,10000) 358.40( 1235.08; 9, 49, 596) 59.19( 282.69; 5, 18, 97) 10.11( 11.79; 3, 7, 19) 3.92( 2.19; 2, 3, 7)

IQR20 801.00( 2062.67; 11, 87, 1878) 123.37( 585.92; 6, 23, 180) 27.12( 127.40; 4, 11, 48) 7.42( 7.01; 3, 6, 14) 3.30( 1.81; 2, 3, 6)
D7 1065.15( 2134.98; 27, 239, 2898) 110.16( 324.33; 10, 40, 223) 26.78( 40.57; 6, 17, 55) 8.79( 6.05; 3, 7, 16) 3.93( 1.91; 2, 4, 6)

ADMs 729.66( 1674.06; 22, 163, 1724) 81.45( 246.45; 9, 33, 163) 22.55( 29.22; 6, 15, 45) 8.17( 5.33; 3, 7, 14) 3.81( 1.81; 2, 3, 6)

ADMi 905.60( 1967.87; 21, 185, 2315) 97.85( 294.23; 9, 35, 195) 24.76( 38.03; 6, 15, 51) 8.36( 5.75; 3, 7, 15) 3.82( 1.88; 2, 3, 6)

ADMsi 783.30( 1790.22; 20, 158, 1896) 86.05( 264.90; 9, 32, 172) 23.01( 31.28; 5, 14, 47) 8.14( 5.54; 3, 7, 15) 3.75( 1.83; 2, 3, 6)
CUSUM Sp 5403.56( 4256.25; 201, 4982,10000) 1457.85( 2720.29; 27, 265, 5187) 240.23( 885.16; 11, 48, 392) 17.79( 36.48; 5, 11, 34) 5.05( 2.84; 2, 4, 9)

S 2718.68( 3459.40; 77, 958,10000) 324.38( 876.02; 16, 92, 678) 50.86( 99.58; 8, 26, 108) 11.10( 8.59; 4, 9, 21) 4.32( 2.19; 2, 4, 7)

Qn 1973.36( 3200.78; 27, 376,10000) 343.36( 1128.58; 9, 56, 613) 59.75( 250.96; 5, 19, 106) 10.23( 12.12; 3, 7, 20) 3.80( 2.18; 2, 3, 7)

ADM 2672.70( 3452.19; 72, 901,10000) 322.85( 877.90; 15, 89, 668) 51.62( 130.07; 8, 25, 107) 11.07( 8.86; 4, 9, 21) 4.30( 2.21; 2, 4, 7)

G 2714.10( 3466.76; 75, 946,10000) 319.53( 855.13; 16, 90, 677) 51.40( 110.79; 8, 26, 108) 11.13( 8.72; 4, 9, 21) 4.32( 2.19; 2, 4, 7)

IQR 1866.21( 3143.06; 23, 322, 9409) 346.30( 1164.25; 9, 51, 610) 59.95( 257.82; 5, 18, 105) 10.09( 12.69; 3, 7, 19) 3.73( 2.17; 2, 3, 6)

IQR20 789.64( 2011.03; 11, 93, 1867) 125.92( 566.20; 6, 24, 197) 28.79( 140.83; 4, 11, 51) 7.37( 7.61; 2, 5, 14) 3.16( 1.85; 1, 3, 5)
D7 1049.29( 2097.72; 27, 243, 2805) 111.86( 330.98; 10, 41, 229) 27.09( 42.02; 6, 16, 56) 8.58( 6.00; 3, 7, 16) 3.79( 1.89; 2, 3, 6)

ADMs 735.23( 1679.82; 22, 167, 1724) 81.10( 222.81; 9, 33, 166) 22.50( 28.79; 5, 15, 46) 8.03( 5.36; 3, 7, 14) 3.69( 1.81; 2, 3, 6)

ADMi 902.28( 1944.21; 22, 192, 2298) 99.64( 304.66; 9, 35, 203) 25.27( 41.07; 5, 15, 52) 8.18( 5.86; 3, 7, 15) 3.67( 1.85; 2, 3, 6)

ADMsi 779.18( 1763.63; 20, 166, 1882) 86.97( 258.00; 8, 33, 177) 23.24( 33.44; 5, 14, 48) 7.97( 5.63; 3, 6, 14) 3.62( 1.82; 2, 3, 6)
CS-CUSUM Sp 4787.38( 4115.88; 193, 3392,10000) 1321.80( 2469.71; 28, 277, 4127) 235.52( 802.92; 11, 51, 425) 18.52( 36.03; 4, 12, 36) 4.75( 3.17; 1, 4, 9)

S 2416.57( 3158.92; 79, 911, 9380) 325.36( 810.83; 17, 100, 712) 54.29( 110.96; 8, 27, 114) 11.33( 9.28; 3, 9, 22) 3.98( 2.53; 1, 4, 7)

Qn 1958.33( 3148.92; 29, 394, 9328) 343.89( 1108.70; 10, 58, 634) 60.39( 243.88; 5, 20, 109) 10.26( 11.84; 3, 7, 20) 3.62( 2.34; 1, 3, 7)

ADM 2381.45( 3160.16; 73, 864, 9389) 324.81( 829.06; 16, 95, 713) 54.10( 109.93; 8, 27, 115) 11.22( 9.39; 3, 9, 22) 3.96( 2.50; 1, 4, 7)

G 2415.18( 3162.82; 77, 907, 9445) 328.67( 810.37; 16, 99, 727) 53.80( 106.73; 8, 27, 115) 11.31( 9.32; 3, 9, 22) 3.99( 2.51; 1, 4, 7)

IQR 1868.27( 3119.81; 24, 334, 9021) 349.08( 1158.43; 9, 53, 628) 61.16( 264.14; 5, 19, 107) 10.08( 12.87; 3, 7, 20) 3.53( 2.31; 1, 3, 6)

IQR20 796.19( 2013.10; 11, 95, 1896) 132.70( 608.03; 5, 25, 204) 28.78( 115.43; 4, 12, 53) 7.33( 8.06; 2, 5, 14) 3.02( 1.93; 1, 3, 5)
D7 984.27( 1922.59; 28, 255, 2589) 116.59( 308.76; 10, 43, 246) 28.46( 42.59; 6, 17, 59) 8.59( 6.49; 3, 7, 16) 3.46( 2.16; 1, 3, 6)

ADMs 701.54( 1536.99; 22, 178, 1704) 85.81( 223.05; 9, 35, 178) 23.70( 35.71; 5, 15, 48) 7.94( 5.80; 2, 7, 15) 3.32( 2.09; 1, 3, 6)

ADMi 854.23( 1807.34; 22, 199, 2157) 102.45( 282.37; 9, 37, 213) 25.90( 38.93; 5, 15, 54) 8.11( 6.26; 2, 7, 15) 3.34( 2.09; 1, 3, 6)

ADMsi 754.37( 1659.65; 20, 174, 1863) 91.48( 255.53; 8, 34, 190) 24.15( 34.71; 5, 15, 50) 7.92( 5.96; 2, 7, 15) 3.29( 2.06; 1, 3, 6)
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Table 8: Performance comparisons between the CUSUM-S, EWMA-S and CS-CUSUM-S charts for
k = 50, n = 5 when multiple step shifts in the variance are present in Phase I. The control limits
used are those producing an ARL0 of 370 under uncontaminated normal environment.

ARL(SDRL; 10th, 50th, 90th percentiles) of the unconditional run length distribution
chart estimator δ=1.0 δ=1.1 δ=1.2 δ=1.4 δ=1.8

EWMA Sp 4167.20( 4509.65; 38, 1155,10000) 1981.50( 3568.49; 13, 106,10000) 763.21( 2277.45; 7, 29, 1385) 72.84( 576.68; 4, 10, 50) 5.35( 5.98; 2, 4, 9)

S 2787.90( 3882.46; 32, 494,10000) 777.71( 2161.29; 11, 63, 1588) 171.61( 898.24; 7, 22, 169) 14.62( 79.29; 4, 8, 23) 4.47( 2.59; 2, 4, 7)

Qn 2157.66( 3576.74; 17, 231,10000) 632.98( 1979.35; 8, 40, 1027) 161.48( 898.03; 5, 17, 135) 15.30( 144.01; 3, 7, 21) 4.00( 2.58; 2, 3, 7)

ADM 2752.65( 3868.81; 31, 472,10000) 763.39( 2146.68; 11, 60, 1522) 172.35( 901.88; 7, 21, 166) 15.10( 100.32; 4, 8, 23) 4.42( 2.60; 2, 4, 7)

G 2770.89( 3871.57; 32, 489,10000) 771.44( 2147.80; 11, 62, 1583) 174.59( 910.25; 7, 21, 169) 14.82( 93.17; 4, 8, 23) 4.44( 2.81; 2, 4, 7)

IQR 2016.48( 3479.10; 15, 195,10000) 616.97( 1959.67; 7, 37, 977) 158.85( 898.15; 5, 16, 129) 14.89( 135.39; 3, 7, 21) 3.92( 2.59; 2, 3, 7)

IQR20 874.71( 2239.47; 10, 78, 2110) 162.64( 805.15; 6, 22, 195) 34.92( 245.88; 4, 11, 49) 7.61( 16.42; 2, 5, 14) 3.30( 1.87; 2, 3, 6)
D7 1263.15( 2569.78; 23, 203, 4029) 196.41( 849.20; 9, 37, 270) 39.55( 248.53; 6, 16, 59) 9.07( 12.95; 3, 7, 16) 3.94( 1.98; 2, 4, 6)

ADMs 825.79( 1955.47; 21, 152, 1904) 112.53( 536.46; 9, 32, 169) 28.12( 168.75; 6, 14, 46) 8.34( 9.20; 3, 7, 15) 3.83( 1.86; 2, 3, 6)

ADMi 1027.21( 2280.50; 19, 163, 2768) 149.21( 670.35; 9, 33, 217) 31.11( 161.42; 5, 15, 52) 8.52( 8.67; 3, 7, 15) 3.82( 1.92; 2, 3, 6)

ADMsi 899.26( 2091.13; 19, 149, 2180) 124.73( 572.45; 8, 31, 188) 27.48( 113.00; 5, 14, 49) 8.28( 7.44; 3, 7, 15) 3.76( 1.87; 2, 3, 6)
CUSUM Sp 4151.34( 4496.66; 38, 1171,10000) 1958.27( 3537.22; 12, 107,10000) 745.72( 2239.61; 7, 30, 1353) 72.71( 580.31; 4, 9, 49) 5.23( 5.85; 2, 4, 9)

S 2757.91( 3859.07; 33, 494,10000) 764.20( 2128.27; 11, 63, 1567) 168.58( 869.91; 7, 21, 171) 15.00( 101.69; 4, 8, 24) 4.32( 2.61; 2, 4, 7)

Qn 2090.56( 3498.89; 17, 235,10000) 625.75( 1950.56; 7, 42, 1034) 159.54( 885.61; 5, 17, 142) 14.80( 130.91; 3, 7, 21) 3.82( 2.64; 2, 3, 7)

ADM 2701.15( 3831.98; 31, 470,10000) 772.53( 2149.76; 11, 62, 1607) 165.66( 859.60; 6, 21, 166) 15.24( 117.20; 4, 8, 23) 4.28( 2.55; 2, 4, 7)

G 2761.00( 3855.14; 32, 499,10000) 759.18( 2122.92; 11, 63, 1554) 178.68( 914.09; 6, 21, 176) 14.87( 103.18; 4, 8, 23) 4.32( 2.56; 2, 4, 7)

IQR 1975.27( 3425.78; 15, 201,10000) 600.62( 1910.65; 7, 39, 968) 154.97( 875.06; 5, 16, 137) 15.11( 135.35; 3, 6, 21) 3.73( 2.64; 2, 3, 6)

IQR20 876.10( 2215.30; 10, 85, 2145) 165.84( 790.13; 5, 23, 214) 36.50( 225.13; 4, 11, 54) 7.64( 15.37; 2, 5, 14) 3.14( 1.88; 1, 3, 5)
D7 1246.79( 2531.62; 23, 208, 3930) 188.03( 814.39; 9, 37, 265) 39.61( 225.36; 6, 16, 62) 8.90( 15.15; 3, 7, 16) 3.79( 1.95; 2, 3, 6)

ADMs 843.66( 1976.63; 21, 158, 1964) 116.97( 550.13; 9, 32, 174) 27.63( 152.96; 5, 14, 47) 8.15( 8.06; 3, 7, 15) 3.70( 1.84; 2, 3, 6)

ADMi 1012.48( 2231.48; 19, 169, 2674) 151.28( 676.17; 8, 34, 219) 31.55( 161.38; 5, 14, 54) 8.40( 7.66; 3, 7, 15) 3.66( 1.90; 2, 3, 6)

ADMsi 884.51( 2051.29; 19, 152, 2136) 127.95( 568.79; 8, 31, 196) 27.74( 125.74; 5, 14, 50) 8.13( 8.14; 3, 6, 15) 3.63( 1.86; 2, 3, 6)
CS-CUSUM Sp 3859.86( 4345.20; 39, 1066,10000) 1777.06( 3312.14; 12, 112,10000) 686.74( 2079.51; 7, 31, 1299) 69.49( 525.70; 3, 10, 53) 4.98( 10.99; 1, 4, 9)

S 2532.14( 3632.45; 34, 507,10000) 714.18( 1981.51; 11, 67, 1496) 166.93( 834.57; 6, 23, 185) 15.03( 82.64; 3, 8, 24) 3.98( 2.88; 1, 3, 7)

Qn 2054.39( 3449.31; 17, 241,10000) 617.01( 1909.59; 8, 44, 1055) 154.64( 846.19; 5, 17, 145) 14.98( 117.55; 2, 7, 22) 3.62( 2.76; 1, 3, 7)

ADM 2479.74( 3609.63; 32, 478,10000) 698.01( 1950.66; 11, 65, 1452) 163.08( 820.76; 6, 22, 181) 14.90( 81.96; 3, 8, 24) 3.96( 2.98; 1, 3, 7)

G 2524.73( 3630.27; 34, 501,10000) 720.66( 1988.50; 11, 68, 1528) 166.49( 826.72; 6, 22, 185) 15.19( 87.94; 3, 8, 24) 4.00( 2.91; 1, 3, 7)

IQR 1950.26( 3387.78; 15, 206,10000) 599.72( 1892.39; 7, 40, 996) 155.59( 860.90; 4, 16, 143) 14.61( 104.66; 2, 7, 21) 3.53( 2.75; 1, 3, 6)

IQR20 859.46( 2178.75; 10, 85, 2098) 168.46( 792.75; 5, 23, 220) 37.26( 242.94; 3, 11, 55) 7.66( 19.17; 2, 5, 14) 3.00( 1.98; 1, 3, 5)
D7 1157.57( 2340.42; 24, 219, 3390) 195.76( 796.56; 9, 40, 294) 40.75( 216.72; 5, 16, 66) 8.90( 9.69; 2, 7, 17) 3.46( 2.25; 1, 3, 6)

ADMs 780.82( 1795.05; 22, 168, 1825) 117.56( 499.28; 9, 34, 191) 29.16( 151.79; 5, 15, 50) 8.11( 7.43; 2, 7, 15) 3.33( 2.14; 1, 3, 6)

ADMi 944.59( 2071.07; 20, 176, 2447) 149.56( 632.09; 8, 35, 235) 32.09( 149.20; 5, 15, 56) 8.28( 9.94; 2, 7, 15) 3.33( 2.13; 1, 3, 6)

ADMsi 877.22( 1975.02; 19, 165, 2189) 129.13( 544.29; 8, 33, 211) 29.10( 114.70; 5, 15, 53) 8.14( 11.57; 2, 6, 15) 3.30( 2.10; 1, 3, 6)

Table 9: Performance of the EWMA-S chart with the estimator ADMsi when k Phase I samples
each of size n = 5 are used to estimate the unknown parameters.

ARL(SDRL; 10th, 50th, 90th percentiles) of the unconditional run length distribution
Scenario k(L) δ=1.0 δ=1.1 δ=1.2 δ=1.4 δ=1.8

Normality 50(2.185) 370.20( 1000.05; 15, 92, 784) 48.72( 106.00; 7, 24, 102) 17.39( 18.30; 5, 12, 35) 7.23( 4.55; 3, 6, 13) 3.54( 1.68; 2, 3, 6)
100(2.385) 370.58( 776.53; 23, 139, 846) 49.34( 66.35; 9, 29, 106) 18.67( 16.12; 6, 14, 36) 7.83( 4.48; 3, 7, 13) 3.81( 1.74; 2, 3, 6)
200(2.514) 371.35( 613.55; 31, 181, 868) 51.16( 55.18; 11, 34, 110) 19.61( 15.19; 6, 15, 38) 8.27( 4.55; 4, 7, 14) 3.98( 1.77; 2, 4, 6)
300(2.563) 371.01( 531.62; 35, 201, 875) 51.68( 51.15; 11, 36, 111) 20.05( 14.77; 7, 16, 38) 8.43( 4.56; 4, 7, 14) 4.06( 1.78; 2, 4, 6)
400(2.586) 369.38( 485.75; 37, 211, 865) 52.07( 49.71; 12, 37, 110) 20.28( 14.75; 7, 16, 39) 8.49( 4.55; 4, 7, 14) 4.09( 1.78; 2, 4, 6)
500(2.605) 370.10( 462.69; 39, 222, 858) 52.62( 49.19; 12, 37, 113) 20.41( 14.70; 7, 16, 39) 8.56( 4.56; 4, 8, 14) 4.12( 1.78; 2, 4, 6)
1000(2.637) 371.56( 414.83; 42, 238, 859) 52.97( 47.30; 12, 39, 112) 20.69( 14.51; 7, 17, 39) 8.66( 4.54; 4, 8, 15) 4.15( 1.80; 2, 4, 6)
3000(2.656) 370.31( 377.66; 46, 251, 845) 53.44( 45.81; 13, 39, 113) 20.86( 14.39; 7, 17, 40) 8.72( 4.53; 4, 8, 15) 4.19( 1.80; 2, 4, 7)
∞(2.666) 369.81( 361.82; 47, 259, 841) 53.84( 45.40; 13, 40, 113) 20.93( 14.40; 7, 17, 40) 8.79( 4.57; 4, 8, 15) 4.20( 1.80; 2, 4, 7)

Diffuse symmetric 50(2.185) 1074.85( 2217.19; 23, 209, 3005) 120.85( 405.53; 9, 38, 233) 26.98( 44.48; 6, 16, 55) 8.61( 6.15; 3, 7, 16) 3.87( 1.91; 2, 3, 6)
100(2.385) 1144.70( 2071.00; 40, 344, 3061) 104.12( 221.56; 12, 48, 227) 27.47( 30.16; 7, 19, 56) 9.28( 5.84; 4, 8, 16) 4.15( 1.93; 2, 4, 7)
200(2.514) 1180.74( 1854.88; 64, 488, 3016) 101.25( 143.24; 14, 58, 228) 28.22( 25.77; 8, 20, 57) 9.72( 5.70; 4, 8, 17) 4.33( 1.95; 2, 4, 7)
300(2.563) 1187.68( 1717.32; 78, 561, 2968) 100.58( 125.36; 16, 61, 226) 28.56( 24.52; 8, 21, 57) 9.92( 5.69; 4, 9, 17) 4.42( 1.97; 2, 4, 7)
400(2.586) 1177.26( 1606.59; 88, 614, 2878) 99.45( 112.62; 16, 64, 222) 28.63( 23.72; 8, 22, 57) 9.98( 5.65; 4, 9, 17) 4.45( 1.98; 2, 4, 7)
500(2.605) 1179.42( 1555.63; 93, 640, 2840) 100.52( 108.78; 17, 66, 224) 29.01( 23.63; 8, 22, 58) 10.11( 5.70; 4, 9, 17) 4.47( 1.97; 2, 4, 7)
1000(2.637) 1162.29( 1364.81; 108, 708, 2743) 100.14( 100.35; 18, 69, 221) 29.26( 22.84; 9, 23, 58) 10.19( 5.66; 5, 9, 18) 4.53( 1.99; 2, 4, 7)
3000(2.656) 1138.51( 1206.31; 122, 755, 2638) 99.89( 94.05; 18, 71, 220) 29.40( 22.40; 9, 23, 58) 10.30( 5.69; 5, 9, 18) 4.57( 2.00; 2, 4, 7)

Localized 50(2.185) 760.48( 1804.14; 19, 145, 1762) 85.79( 298.28; 8, 30, 164) 22.89( 46.86; 5, 14, 46) 8.02( 5.62; 3, 7, 14) 3.72( 1.81; 2, 3, 6)
100(2.385) 755.90( 1552.70; 31, 228, 1817) 76.17( 150.83; 11, 39, 164) 23.19( 23.92; 6, 16, 47) 8.62( 5.22; 4, 7, 15) 3.99( 1.84; 2, 4, 6)
200(2.514) 728.47( 1252.75; 43, 308, 1750) 73.74( 95.37; 13, 44, 163) 23.84( 20.15; 7, 18, 47) 9.08( 5.20; 4, 8, 16) 4.18( 1.88; 2, 4, 7)
300(2.563) 723.41( 1111.22; 52, 353, 1736) 73.42( 83.45; 13, 47, 162) 24.28( 19.66; 7, 19, 48) 9.23( 5.20; 4, 8, 16) 4.25( 1.89; 2, 4, 7)
400(2.586) 707.54( 1013.18; 58, 374, 1679) 74.15( 79.58; 14, 49, 163) 24.37( 19.16; 8, 19, 48) 9.26( 5.12; 4, 8, 16) 4.27( 1.89; 2, 4, 7)
500(2.605) 704.89( 946.29; 62, 391, 1674) 74.55( 76.72; 14, 50, 162) 24.55( 19.02; 8, 19, 48) 9.38( 5.19; 4, 8, 16) 4.32( 1.89; 2, 4, 7)
1000(2.637) 690.62( 799.42; 69, 431, 1624) 74.21( 70.77; 15, 52, 162) 24.85( 18.57; 8, 20, 48) 9.49( 5.18; 4, 8, 16) 4.36( 1.90; 2, 4, 7)
3000(2.656) 672.24( 706.00; 75, 451, 1544) 74.17( 67.22; 15, 54, 160) 25.01( 18.20; 8, 20, 48) 9.53( 5.12; 4, 8, 16) 4.38( 1.89; 2, 4, 7)

Diffuse symmetric denotes diffuse symmetric variance contaminated normal environment; Localized denotes localized variance contaminated normal environment.
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Figure 1: The IC and OC CDF curves for the EWMA-S chart with different estimators and with
known parameters for k = 50, n = 5 and ARL0=370 under uncontaminated normal environment: (a)
IC CDF curves; (b) OC CDF curves when δ = 1.1; (c) OC CDF curves when δ = 1.4.
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Figure 2: The IC and OC CDF curves for the EWMA-S chart with different estimators and with
known parameters for k = 50, n = 5 under diffuse symmetric variance contaminated normal environ-
ment: (a) IC CDF curves; (b) OC CDF curves when δ = 1.1; (c) OC CDF curves when δ = 1.4.
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Figure 3: The IC and OC CDF curves for the EWMA-S chart with different estimators and with
known parameters for k = 50, n = 5 under diffuse asymmetric variance contaminated normal envi-
ronment: (a) IC CDF curves; (b) OC CDF curves when δ = 1.1; (c) OC CDF curves when δ = 1.4.
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Figure 4: The IC and OC CDF curves for the EWMA-S chart with different estimators and with
known parameters for k = 50, n = 5 under diffuse mean contaminated normal environment: (a) IC
CDF curves; (b) OC CDF curves when δ = 1.1; (c) OC CDF curves when δ = 1.4.
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Figure 5: The IC and OC CDF curves for the EWMA-S chart with different estimators and with
known parameters for k = 50, n = 5 under localized variance contaminated normal environment: (a)
IC CDF curves; (b) OC CDF curves when δ = 1.1; (c) OC CDF curves when δ = 1.4.
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Figure 6: The IC and OC CDF curves for the EWMA-S chart with different estimators and with
known parameters for k = 50, n = 5 when a single step shift in the variance is present in Phase I: (a)
IC CDF curves; (b) OC CDF curves when δ = 1.1; (c) OC CDF curves when δ = 1.4.
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Figure 7: The IC and OC CDF curves for the EWMA-S chart with different estimators and with
known parameters for k = 50, n = 5 when multiple step shifts in the variance are present in Phase I:
(a) IC CDF curves; (b) OC CDF curves when δ = 1.1; (c) OC CDF curves when δ = 1.4.
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Figure 8: The IC and OC CDF curves for the EWMA-S chart with the estimator ADMsi for
n = 5 and k ∈ {50, 200, 400, 1000, 3000,∞} under various scenarios: (a) IC CDF curves under
uncontaminated normal environment; (b) OC CDF curves when δ = 1.1 under uncontaminated
normal environment; (c) IC CDF curves under diffuse symmetric variance contaminated normal
environment; (d) OC CDF curves when δ = 1.1 under diffuse symmetric variance contaminated
normal environment; (e) IC CDF curves under localized variance contaminated normal environment;
(f) OC CDF curves when δ = 1.1 under localized variance contaminated normal environment.
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