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Abstract

In recent years, effective monitoring of queueing systems has in-
creasingly attracted attention of researchers in the area of statistical
process control (SPC). Most existing works in the literature, however,
did not consider the data autocorrelation, nor rigorously evaluate the
performance. In this paper, considering the data autocorrelation, a
control chart based on the weighted likelihood ratio test (WLRT) is
proposed to efficiently monitor the utilization of queueing systems,
particularly the M/M/1 queueing system. Our approach can be read-
ily extended to other general queueing systems if the likelihood func-
tion can be obtained. Numerical results and illustrative example show
that the performance of the proposed WLRT chart is quite satisfac-
tory.
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1 Introduction

In the literature, extensive research on queueing systems has been done to
estimate the system parameters based on the queueing observations (Clarke,
1957; Ross et al., 2007; Chowdhury and Mukherjee, 2013). In the recent
years, statistical monitoring the parameters of queueing systems, such as the
utilization, the service rate and the arrival rate, has increasingly attracted
attention of researchers. Undoubtedly, such detection methods can be fur-
ther used to assist root-cause identification and decision making for service-
operation improvement. There are, however, several challenges to develop the
statistical process control (SPC) methods in the queueing systems (Chen et
al., 2011; Chen and Zhou, 2014). 1) The observations collected from queueing
systems are only partially available in many situations (Pickands and Stine,
1997). 2) The observations from queueing systems are often auto-correlated
(Reynolds, 1968; Hendricks and McClain, 1993). Regrettably, ignoring the
date autocorrelation may influence the monitoring performance effectively
(Tsung et al., 2006). 3) The distribution of the observations from queueing
systems is often highly skewed (Shore, 2006).

The relevant research on this topic can be generally divided into two
groups, depending on whether the data autocorrelation is considered. In the
first group that ignored the autocorrelation, various control charts have been
developed, focusing on the partial sampling scheme (e.g., Bhat and Rao,
1972; Bhat, 1987; Shore, 2006). The partial sampling scheme here implies
that we can only observe the queue length 𝑄𝑛 after departure epoch, while
the complete sampling scheme implies that we should observe both queue
length and system times at arrival and departure epochs. Compared with
the complete sampling scheme, the partial sampling scheme is easy and/or
inexpensive. Chen et al. (2011) proposed an analytical method based on
Markov Chain model to evaluate the efficacy of the WZ chart (Bhat and
Rao, 1972) and the 𝑛𝐿 chart (Shore, 2006). In the second group that con-
sidered the autocorrelation, Chen and Zhou (2014) proposed the cumulative
sum (CUSUM) scheme to monitor typical queueing systems, in particular the
M/M/1 queueing system, for partial sampling scheme and the complete sam-
pling scheme, respectively. Noting that the performance of the CUSUM chart
might deteriorate if the real out-of-control (OC) parameters were far from
the designated region, Chen and Zhou (2014) suggested using the multiple
CUSUM charts with different design parameters or the generalized likelihood
ratio (GLR) chart. Nevertheless, the GLR chart cannot be updated recur-
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sively and has to be computed by maximizing the likelihood ratio with respect
to all possible change locations, which may lead to significant increasing of
computational load.

Note that all of the afore-mentioned research ignored the fact that recent
data may carry more up-to-date information. Many researchers have shown
that giving higher weights to recent data can lead to better monitoring per-
formance, which makes the exponentially weighted moving average (EWMA)
charts (e.g., Robert, 1959; Lucas and Saccucci, 1990; Zou and Tsung, 2010;
Su et al., 2011; Zi et al., 2013) be widely applied. In general, for EWMA-type
control charts, a small value of smoothing parameter leads to better detection
of small shifts (e.g., Lucas and Saccucci, 1990; Zhou et al., 2012). Moreover,
there is no clear winner between the CUSUM chart and the EWMA chart.
For example, Han et al. (2010) compared the performance of the CUSUM
and EWMA charts when the observations follow the Poisson distribution and
the results showed that the CUSUM charts were superior in dealing with a
large shift with a later change in time while the EWMA charts outperformed
the CUSUM charts in situations with a small shift and an early change in
time.

In this paper, we focus on developing a new control chart based on the
weighted likelihood ratio test (WLRT) (Zhou et al., 2012) and comparing it
with the CUSUM chart (Chen and Zhou, 2014). Henceforth, the proposed
control chart is called WLRT chart for short. Here, we use the WLRT chart
rather than the traditional EWMA chart for the following two reasons. On
the one hand, Chen and Zhou (2014) have obtained the log-likelihood func-
tions for both the partial and complete sampling schemes in M/M/1 queueing
system. Hence, we can extend the log-likelihood functions to the weighted
log-likelihood functions and then develop the WLRT chart. On the other
hand, the WLRT chart can be readily extended to more general types of
queues if we can obtain the likelihood function according to queueing theory.
Although we focus on the partial sampling scheme in the M/M/1 queue-
ing system, we can follow the similar procedure for the complete sampling
scheme. By our results, we find that, compared with the CUSUM charts,
the WLRT chart has more satisfactory IC run length distribution and stands
out at early detection.

The rest of this paper is organized as follows. In the next section, the
statistical model and the WLRT chart for M/M/1 queueing system are in-
troduced. The following section is devoted to comparing the performance of
five methods: WLRT, WZ (Bhat and Rao, 1972), 𝑛𝐿 (Chen et al., 2011),
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CUSUM and GLR (Chen and Zhou, 2014) charts. Finally, an illustrative
example and our conclusions are given. The proofs of some properties of the
proposed control chart are deferred to the Appendix.

2 The proposed WLRT chart

2.1 WLRT chart

The M/M/1 queueing system is a Poisson-input, exponential-service, single-
server queue (Gross and Harris, 1998). We use 𝜆, 𝜇 and 𝜌 to denote, respec-
tively, the arrival rate, the service rate and the utilization, where 𝜌 = 𝜆

𝜇
. We

suppose 𝜌 changes from 𝜌0 to another unknown value 𝜌1 immediately after an
unknown departure epoch 𝜏 , which suffices to test the following hypotheses{

𝐻0 : 𝜌 = 𝜌0,
𝐻1 : 𝜌 ∕= 𝜌0,

after each departure epoch.
Since the queue lengths 𝑄𝑛−1 and 𝑄𝑛 are dependent due to the queueing

dynamic, we observe the number of arrivals during the 𝑛𝑡ℎ service period

𝐴𝑛 = 𝑄𝑛 −𝑄𝑛−1 + 1− 𝑍𝑛−1,

where 𝑍𝑛−1 is an indicator variable which equals 1 if 𝑄𝑛−1 = 0 and equals
0 otherwise. According to queueing theory, 𝐴′

𝑛𝑠 are independent and identi-
cally distributed (iid) variables and

𝑃𝑟{𝐴𝑛 = 𝑘} =
1

1 + 𝜌
⋅ ( 𝜌

1 + 𝜌
)𝑘, 𝑘 = 0, 1 . . . .

After any departure epoch 𝑁 , the weighted-log-likelihood function can be
derived as

𝑙𝑁(𝜌) = ln 𝜌 ⋅
𝑁∑

𝑛=0

𝑤𝑛𝐴𝑛 − ln(1 + 𝜌) ⋅
𝑁∑

𝑛=0

𝑤𝑛(𝐴𝑛 + 1), (2.1)

where the weights 𝑤0 = (1− 𝜃)𝑁 , 𝑤𝑛 = 𝜃(1− 𝜃)𝑁−𝑛, 𝑛 = 1, ⋅ ⋅ ⋅𝑁 , such that∑𝑁
𝑛=0 𝑤𝑛 = 1, which are similar to those in Qiu et al. (2010) and Zhou et

al. (2012), and 𝜃 ∈ (0, 1) is a smoothing parameter. Including 𝑤0 and 𝐴0
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in equation (2.1) has its own merit, because 𝐴0 can be viewed as a pseudo
“sample”, and is chosen as 𝜌0 here, as 𝐸(𝐴𝑛) = 𝜌0 under the null hypothesis.

Given the value of 𝜃, we can obtain the maximum weighted likelihood
estimate (MWLE) of 𝜌

𝜌𝑁 = argmax
𝜌

𝑙𝑁(𝜌) =
𝑁∑

𝑛=0

𝑤𝑛𝐴𝑛. (2.2)

Furthermore, we can express the WLRT statistic as

𝑊𝑁 = 2[𝑙𝑁(𝜌𝑁)− 𝑙𝑁(𝜌0)] = 2[𝜌𝑁 ⋅ ln 𝜌𝑁(1 + 𝜌0)

𝜌0(1 + 𝜌𝑁)
− ln

1 + 𝜌𝑁
1 + 𝜌0

]. (2.3)

When the WLRT statistic in (2.3) is larger than a prespecified upper control
limit (UCL), we can declare the system utilization 𝜌 has deviated from the
nominal value, which means the system is OC.

In practice, decreases of the service rate and/or increases of the arrival
rate are of most interests. Thus, a one-sided WLRT+ chart is desirable. For
this purpose, we can develop a one-sided chart for the hypotheses{

𝐻0 : 𝜌 = 𝜌0,
𝐻1 : 𝜌 > 𝜌0.

Following Zhou et al. (2012), by substituting 𝜌𝑁 = 𝜌𝑁𝐼(𝜌𝑁 > 𝜌0)+𝜌0𝐼(𝜌𝑁 ≤
𝜌0) (Shu et al., 2012) into (2.3), the monitoring statistic can be modified by

𝑊+
𝑁 = 𝑊𝑁𝐼(𝜌𝑁 > 𝜌0),

when 𝑊+
𝑁 is larger than a UCL, the corresponding control chart generates

OC signal.

2.2 Properties of WLRT chart

By some simple algebra (see the Appendix), we get the following properties
immediately.

P1. 𝜌𝑁 can be updated recursively

𝜌𝑁 = 𝜌𝑁−1 ⋅ (1− 𝜃) + 𝜃 ⋅ 𝐴𝑁 , (2.4)

where the initial value is 𝜌0 = 𝜌0 based on 𝐴0 and 𝑤0 defined above.
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P2.

𝐸(𝜌𝑁) = 𝜌, 𝑉 𝑎𝑟(𝜌𝑁) = (𝜌+ 𝜌2)
𝑁∑

𝑛=1

𝑤2
𝑛. (2.5)

P3. Under null hypothesis, we have

𝜌𝑁 − 𝜌0√
(𝜌0 + 𝜌20)

∑𝑁
𝑛=1 𝑤

2
𝑛

→𝑑 𝑁(0, 1), (2.6)

as 𝜃𝑁 → ∞ and 𝜃 → 0.

P4. WLRT statistic 𝑊𝑁 < 𝑈𝐶𝐿 (the system is in-control, IC) is essentially
equivalent to

𝑎 < 𝜌𝑁 < 𝑏, (2.7)

where 𝑎, 𝑏 (𝑎 < 𝜌0 < 𝑏) are the real roots of the equation 𝑊𝑁 = 𝑈𝐶𝐿.

The property P1 ensures that the computational load will decrease sig-
nificantly for our WLRT chart due to the recursive representation. And
the property P4 makes our proposed WLRT chart look like the traditional
EWMA chart, because 𝜌𝑁 admits the classical EWMA updating formulas.

3 Performance comparisons

In this section, we demonstrate the effectiveness of our approach through
Monte Carlo simulations (Li et al, 2014). The IC run length distribution,
the “true” detection capability, the average run length (ARL), the average
number of samples (ANOS) and the relative mean index (RMI) are five cri-
teria used for the performance comparison. Here, the IC run length distribu-
tion can be considered satisfactory if it is close to the geometric distribution
(Hawkins and Olwell, 1998; Zhou et al., 2012). The “true” detection capa-
bility of a chart is reflected by the quantity 𝛾𝑁 , where

𝛾𝑁 = 𝑃𝑟𝑂𝐶(𝑅𝐿 ≤ 𝑁)− 𝑃𝑟𝐼𝐶(𝑅𝐿 ≤ 𝑁).

A control chart with a larger value of 𝛾𝑁 is considered better (Zhou et al.,
2012). The ARL is the average number of points that must be plotted before
a point indicates an OC condition (Montgomery, 2013). In comparison of
various candidate control charts, ARL or ANOS is very important and also
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popular used criterion. When the process is IC, a chart with a larger IC ARL
(termed ARL0) or ANOS (termed ANOS0) indicates a lower false alarm rate
than other charts. When the process is OC, a chart with a smaller OC
ARL (termed ARL1) or ANOS (termed ANOS1) indicates a better detection
ability of process shifts than other charts. The RMI (Han and Tsung, 2006)
values can be considered as the average of all relative efficiency values, and
a control chart with a smaller RMI value is considered better in its overall
performance (Zhou et al., 2012).

As mentioned by some researchers (Borror et al., 1998; Chen et al., 2011;
Qiu and Li, 2011; Zhou et al., 2012), a critical issue is whether it is possible
and straightforward to find design parameters that ensure the specified IC
performance when the data are discrete. By simulation, we find the WLRT+

chart’s ARL0 can always be attained quite closely if 𝜃 ≤ 0.2. In order to
simplify the UCL calculation for practitioners, the simulated UCLs of the
WLRT+ chart for different smoothing parameters, obtained from 100,000
replications are reported in Table 1. A Fortran program is also available
from the authors upon request.

In the scenario with 𝐴𝑅𝐿0 = 370 and 𝜌0 = 0.5, the following simulation
is applied to determine the control limit of WLRT+ chart. The control limits
of WLRT+ chart in other scenarios follow the similar way. To generate the
simulated data, we suppose 𝑄0 = 0, which indicates the monitored system
starts from an empty queue, and which is common in practice (Chen et al.,
2011). We assume further that the arrival rate 𝜆 = 0.5 and the service rate
𝜇 = 1.0. Given the UCL, we generate random observation 𝑄𝑛’s and calculate
the monitor statistic𝑊+

𝑁 ’s until𝑊+
𝑁 > 𝑈𝐶𝐿. Then, we obtain the run length

(RL). We repeat this procedure 100,000 times and record the values of RL in
each repetition to use the bisection searching algorithms to find the control
limit such that ARL0 is about 370.

Hereafter, We use the notation ℎ to denote the control limit coefficients,
and obtain all results in this section based on 100,000 replications. For a
relatively fair comparison, we adjust the control limits of different charts to
make their ARL0 or ANOS0 as close as possible. We first compare the one-
sided WLRT+ chart with 𝑛𝐿, WZ and CUSUM charts under the assumption
that the process change occurs at the same time as the monitoring starts.
Two scenarios with the IC utilization 𝜌0 = 0.5 and 𝜌0 = 0.7 are considered.

In the scenario with 𝜌0 = 0.5, we only compare the WLRT+ chart with
CUSUM chart because Chen and Zhou (2014) have revealed that the CUSUM
chart outperforms the 𝑛𝐿 and WZ charts in this scenario. The comparisons
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Table 1: Simulated UCL values of WLRT+ chart

𝐴𝑅𝐿0

𝜌0 200 300 370 500 800 1000 2000 5000

𝜃 = 0.025

0.3 0.02511 0.03551 0.04123 0.05001 0.06406 0.07089 0.09228 0.12057
0.5 0.02498 0.03539 0.04126 0.04979 0.06394 0.07089 0.09193 0.11996
0.7 0.02494 0.03523 0.04104 0.04961 0.06344 0.07011 0.09163 0.11968
0.9 0.02504 0.03520 0.04091 0.04950 0.06362 0.07047 0.09176 0.11985

𝜃 = 0.05

0.3 0.08285 0.10679 0.11950 0.13824 0.16775 0.18185 0.22569 0.28293
0.5 0.08247 0.10634 0.11898 0.13743 0.16645 0.18008 0.22299 0.28000
0.7 0.08177 0.10570 0.11852 0.13716 0.16648 0.17998 0.22368 0.28088
0.9 0.08257 0.10578 0.11821 0.13678 0.16605 0.18003 0.22350 0.28060

𝜃 = 0.1

0.3 0.23917 0.28966 0.31567 0.35388 0.41470 0.44349 0.53398 0.65111
0.5 0.23400 0.28481 0.31181 0.35114 0.41263 0.44172 0.53134 0.65077
0.7 0.23686 0.28688 0.31347 0.35182 0.41176 0.44058 0.53105 0.64902
0.9 0.23613 0.28597 0.31217 0.35066 0.41034 0.43936 0.52908 0.64858

𝜃 = 0.2

0.3 0.62125 0.72720 0.78392 0.86489 0.99707 1.05945 1.25211 1.50780
0.5 0.62429 0.73068 0.78665 0.86785 0.99454 1.05488 1.24454 1.49919
0.7 0.62190 0.72730 0.78274 0.86331 0.99154 1.05259 1.24511 1.49847
0.9 0.62130 0.72865 0.78339 0.86342 0.99059 1.05164 1.24067 1.49629
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of the IC run length distribution and the “true” detection capability when
𝑁 ≤ 100 are shown in Figure 1 and Figure 2, respectively. It is obvious from
Figure 1 that the IC run length distribution of our proposed WLRT+ chart
is satisfactory compared with the CUSUM chart because the distribution of
WLRT+ chart is more close to the geometric distribution. Figure 2 reveals
that WLRT0.025+ stands out at early detection. In addition, the compar-
isons of ARL are reported in Table 2. The exact values of ARL0 are listed in
the first row in Table 2, and the corresponding ARL1 for different shifts in
the utilization are summarized in the rest of Table 2. From Table 2, we can
observe that the performance of the CUSUM chart might deteriorate if the
real OC parameter is far from the design parameter 𝜌𝑑. For instance, when
𝜌 = 0.63, the ARL1 of the CUSUM0.6 chart is 97.7, while it is 107 for the
CUSUM0.99 chart. We can also find that the performance of WLRT+ charts
depends on the smoothing parameter, i.e., charts with smaller parameter 𝜃
perform better for detecting small shifts, while those with larger parameter
𝜃 perform better for detecting larger shifts. Additionally, the WLRT+ charts
perform slightly better at detecting large shifts compared with the CUSUM
charts. To evaluate overall performance, we also compute the RMI values
in Table 2. Considering the overall performance, WLRT0.025+ outperforms
other competitors.

In the scenario with 𝜌0 = 0.7, we compare the WLRT+ chart with 𝑛𝐿,
WZ and CUSUM charts. For the 𝑛𝐿 chart, nonoverlapping sample sums with
the sample size 𝑛 are monitored. The WZ chart generates OC signal when
the 𝐴′

𝑛𝑠 are consecutively larger than ℎ for 𝑑𝑢 observations. Note that the
control limits of the WZ charts are similar to those in Chen et al. (2011), but
different from those reported in Bhat and Rao (1972). For the illustration
purpose, we only present the comparisons of the ANOS in Table 3. The first
row in Table 3 are the exact values of ANOS0. From Table 3, it can be
seen that the performance of CUSUM chart is better than the 𝑛𝐿 and WZ
charts. This result is consistent with the findings by Chen and Zhou (2014).
Moreover, the performance of WLRT0.025+ is satisfactory compared with
other alternative methods.

Finally, we compare the two-sided WLRT chart with GLR chart. Here, we
modify the GLR chart proposed by Chen and Zhou (2014) with 𝜌𝑘𝑗 = 1

𝑗−𝑘+2

when 𝜌𝑘𝑗 = 0, where 𝜌𝑘𝑗 is the maximum likelihood estimator of the utiliza-
tion given the observations from the 𝑗th departure to the 𝑘th departure.
Considering the performance when detect small downward shift, we choose
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Figure 2: The “true” detection capability between CUSUM and WLRT+. The
legend in the first plot is applicable for all others.
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Table 2: Comparisons of ARL1 when 𝜌0 = 0.5

CUSUM WLRT+

𝜌 𝜌𝑑 = 0.6 0.7 0.85 0.99 𝜃 = 0.025 0.05 0.1 0.2
ℎ = 1.38597 2.09029 2.66849 2.99109 0.04126 0.11898 0.31181 0.78665

0.50 370(339) 369(351) 368(356) 369(362) 370(369) 370(367) 370(368) 370(370)
0.51 320(290) 323(303) 324(311) 327(317) 316(313) 322(318) 329(326) 335(333)
0.55 195(167) 200(181) 207(195) 214(204) 183(175) 197(190) 212(208) 231(230)
0.58 145(118) 148(129) 154(142) 161(152) 132(122) 144(137) 161(157) 180(178)
0.63 97.7(72.9) 98.3(81.2) 103(90.8) 107(98.2) 85.4(75.5) 94.1(86.7) 107(103) 124(122)
0.71 63.1(42.1) 61.5(46.1) 62.6(51.7) 64.9(56.4) 52.4(42.6) 56.8(49.3) 64.5(59.8) 76.2(73.8)
0.91 32.8(18.8) 30.3(19.5) 29.3(21.0) 29.4(22.5) 25.5(18.0) 26.1(20.1) 28.2(24.0) 33.0(30.5)
1.70 11.8(5.91) 10.4(5.67) 9.44(5.67) 9.01(5.70) 8.62(5.23) 8.27(5.38) 8.03(5.72) 8.21(6.54)
3.00 6.13(3.17) 5.48(2.97) 4.87(2.85) 4.60(2.76) 4.53(2.65) 4.28(2.64) 4.06(2.64) 3.91(2.77)
10.0 2.34(1.28) 2.18(1.21) 1.99(1.12) 1.94(1.07) 1.94(1.06) 1.85(1.03) 1.76(0.99) 1.67(0.96)
30.0 1.44(0.68) 1.37(0.64) 1.31(0.58) 1.30(0.56) 1.30(0.56) 1.27(0.54) 1.24(0.51) 1.21(0.48)

RMI 0.244 0.188 0.157 0.160 0.047 0.068 0.113 0.191

1 NOTE: Standard deviations are in parentheses.

Table 3: Comparisons of ANOS1 when 𝜌0 = 0.7

𝑛𝐿 WZ CUSUM WLRT+

𝜌 𝑛 = 5 10 𝑑𝑢 = 5 15 𝜌𝑑 = 0.75 0.98 𝜃 = 0.025 0.1
ℎ = 40 70 7 4 0.68769 2.20254 0.04104 0.31347

0.70 368 372 365 367 370 370 370 370
0.72 309 311 306 307 294 300 290 309
0.76 222 223 220 220 199 206 187 218
0.80 165 167 165 165 146 149 133 162
0.86 114 117 113 116 103 102 87.9 110
0.91 87.9 90.5 87.2 90.5 81.7 78.3 66.9 83.6
0.99 61.8 64.9 61.6 65.7 60.9 55.7 47.4 57.3
1.31 26.8 30.2 26.6 32.6 30.3 25.1 21.1 22.6
1.64 17.5 21.1 17.4 24.4 20.3 16.2 13.6 13.4
1.99 13.4 17.0 13.3 20.9 15.1 11.8 9.95 9.38
2.71 9.87 13.1 9.89 18.3 10.1 7.84 6.62 6.00
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Figure 3: The ARL1 comparison between WLRT and GLR: (a) ℎ𝑊𝐿𝑅𝑇 =
0.06179, ℎ𝐺𝐿𝑅 = 4.86283; (b) ℎ𝑊𝐿𝑅𝑇 = 0.06158, ℎ𝐺𝐿𝑅 = 4.95644. The legend
in the plot (a) is applicable for the plot (b).

the smoothing parameter 𝜃 of the WLRT chart as 0.025. We adjust their
control limits such that the 𝐴𝑅𝐿0 is around 370 by convention. We suppose
that only the service rate 𝜇 changes in different magnitudes which causes the
system utilization 𝜌 in both scenarios to shift from 0.02 to 1.96. The corre-
sponding ARL1 are compared in Figure 3. From Figure 3, we find that there
is no evident difference between these two charts in their ability to detect
small downward shifts in the utilization. Furthermore, the WLRT0.025 chart
performs worse at detecting large downward shifts, but performs better at
detecting medium upward shifts.
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4 Illustrative Example

In this section, we change the M/G/1 make-to-order production plant model
proposed by Chen and Zhou (2014) into M/M/1 as an illustrative example.
The orders arrive according to a Poisson process with rate 𝜆 = 2.0 per day.
Each order needs to be transacted in an integrated machine center, and only
one order can be processed at one time. The service times are independent
and exponentially distributed random variables with rate 𝜇 = 3.0, and the
utilization rate when the operation is normal is therefore 𝜌 = 0.67. As
mentioned earlier, in the partial sampling scheme, we only observe queue
length after departure epoch, and do not know the system times. We consider
the service rate changes from 1/8 per hour to 1/10.8 per hour after departure
epoch 𝜏 , which means 𝜌 changes from 0.67 to 0.9 correspondingly.

For the illustration purpose, we only compare the WLRT+ chart with
the CUSUM chart. The smoothing parameter 𝜃 of the WLRT+ chart is
chosen as 0.025. The design parameter 𝜌𝑑 of the CUSUM chart is chosen as
0.9 because the corresponding CUSUM chart has the smallest 𝐴𝑅𝐿1. We
compare the conditional expected delay (CED) (Kenett and Zacks,1998; Lee
and Jun, 2012) due to the detection ability being dependent on the time
point of the change (Sonesson and Bock, 2003). We discard any series in
which a signal occurs before the (𝜏 +1)𝑡ℎ observation. The CED comparison
results of the WLRT+ and CUSUM charts are given in Table 4. It is clear
that the performance of the WLRT+ chart is satisfactory, especially when
the change time 𝜏 is early.

Table 4: The CEDs of the control charts

𝜏 5 10 50 100 200 300 500 1000 ARL0 UCL

CUSUM 65.9 64.2 60.8 60.7 60.6 60.6 60.3 60.6 369 2.04603
WLRT+ 58.0 57.9 59.4 60.6 60.5 60.8 60.4 60.8 370 0.04090

5 Concluding Remarks

In this paper, we propose a control chart for monitoring the M/M/1 queue-
ing system. The proposed chart, termed the weighted likelihood ratio test
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(WLRT) chart, is essentially based on calculating the weighted log-likelihood
ratio test statistics. The proposed WLRT chart is compared with some ex-
isting charts, such as CUSUM, 𝑛𝐿 and WZ charts, based on the average
run length (ARL) and average number of samples (ANOS). Moreover, the
WLRT charts have more satisfactory in-control (IC) run length distribution
and stand out at early detection.

We focus on the partial sampling scheme not only because the observa-
tions from queueing systems are only partially available in many situations,
but also we can follow the similar procedure in the complete sampling scheme.
The proposed WLRT chart can be readily extended to more general types of
queues, e.g, M/G/1, only if we can obtain the likelihood function according
to queueing theory, which will be investigated by the authors in the near
future. Future research may also include a self-starting version of the new
chart (Li et al., 2010), which is not immediate because the transformation in
Li et al (2010) is not easy to derive for the queueing systems.

Appendix

In this Appendix, we sketch the proofs of the properties in Section 2.

1. Apparently, 𝜌𝑁 can be updated recursively.

2. According to queueing theory, we have the following

𝐸(𝐴𝑛) = 𝐸(𝐸(𝐴𝑛∣𝑇𝑛)) = 𝜌,

𝑉 𝑎𝑟(𝐴𝑛) = 𝑉 𝑎𝑟(𝐸(𝐴𝑛∣𝑇𝑛)) + 𝐸(𝑉 𝑎𝑟(𝐴𝑛∣𝑇𝑛)) = 𝜌2 + 𝜌,

where 𝑇𝑛 is the service time corresponding to the 𝑛𝑡ℎ departure. Thus,
we obtain the property (2.5) immediately.

3. It is not difficult to see that 𝜌𝑁−𝜌0√
(𝜌0+𝜌20)

∑𝑁
𝑛=1 𝑤

2
𝑛

can be expressed as a

linear combination of iid variables, say

𝜌𝑁 − 𝜌0√
(𝜌0 + 𝜌20)

∑𝑁
𝑛=1 𝑤

2
𝑛

=

∑𝑁
𝑛=1 𝑤𝑛(𝐴𝑛 − 𝜌0)

𝜎
√∑𝑁

𝑛=1 𝑤
2
𝑛

,

where 𝜎2 = 𝑉 𝑎𝑟(𝐴𝑛) = 𝜌0 + 𝜌20. This, together with

max
1≤𝑛≤𝑁

𝑤2
𝑛∑𝑁

𝑛=1 𝑤
2
𝑛

=
𝜃2∑𝑁

𝑛=1 𝑤
2
𝑛

→ 0,
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give the property (2.6) by the Hajek-Sidak’s Theorem.

4. By some simple algebra we get

∂𝑊𝐿𝑅𝑇𝑁

∂𝜌𝑁
= 2 ⋅ ln 𝜌𝑁(1 + 𝜌0)

𝜌0(1 + 𝜌𝑁)
= 2 ⋅ ln 𝜌𝑁 + 𝜌0𝜌𝑁

𝜌0 + 𝜌0𝜌𝑁
.

It is easy to see that WLRT𝑁 is monotonically increasing (decreasing)
on the right (left) side of 𝜌0. This completes the proof (2.7).
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