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Abstract

An outlier is defined as an observation that is significantly different from the others in its
dataset. In high-dimensional regression analysis, datasets often contain a portion of outliers.
It is important to identify and eliminate the outliers for fitting a model to a dataset. In this
paper, a novel outlier detection method is proposed for high-dimensional regression problems.
The leave-one-out idea is utilized to construct a novel outlier detection measure based on dis-
tance correlation, and then an outlier detection procedure is proposed. The proposed method
enjoys several advantages. First, the outlier detection measure can be simply calculated, and
the detection procedure works efficiently even for high-dimensional regression data. Moreover,
it can deal with a general regression, which does not require specification of a linear regression
model. Finally, simulation studies show that the proposed method behaves well for detecting
outliers in high-dimensional regression model and performs better than some other competing
methods.
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1 Introduction

As Barnett and Lewis (1994) pointed out, an outlier is an observation that appears to be inconsis-
tent with other observations in a set of data. In multiple regression models, data sets often contain
a proportion of outliers. Chatterjee and Hadi (1988) thought that outliers can be occurred in the
response variable, in the explanatory variable, or in both the response and explanatory variables.
Since the presence of outliers can lead to biased estimation of the parameters, misspecification of
the model and inappropriate predictions, it is of great concern to detect these observations and
eliminate them from the data set.

Various outlier detection methods have been developed in the literature. Hawkins et al. (1984)
studied the location of several outliers in multiple regression data by using elemental sets. Breunig
et al. (2000) proposed a distance-based approach which considers how isolated a point is with
respect to its 𝑘 nearest neighbors. Türkan et al. (2012) proposed a diagnostic measure based on
the robust estimator 𝑀 to detect influential points. Outlier detection applications may also be
found within some databases, such as Yoon et al. (2007). It is important to note that, all outlier
detection approaches mentioned above have been developed under the assumption that the number
of predictors in regression is fixed. As such, none is immediately applicable to high dimensional
regression analysis, where the number of predictors 𝑝 far exceeds the sample size 𝑛.

Address correspondence to Zhonghua Li, Institute of Statistics, Nankai University, China; E-mail:
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However, as many real data sets may contain hundreds or thousands of dimensions, detection
of outliers in high dimensional data analysis is important because the increased dimensionality and
complexity of the data may amplify the chance of an observation being outlying or influential as
well as its potential impact on the analysis. When the dimension 𝑝 of the data is greater than the
sample size 𝑛, many of the aforementioned outlier detection methods do not work well. Aggarwal
and Yu (2002) discussed a new technique for high dimensional outlier detection which finds the
outliers by studying the behavior of projections from the data set. Ro et al. (2015) proposed an
outlier detection procedure that replaces the classical minimum covariance determinant estimator
with a high-breakdown minimum diagonal product estimator. Zhao et al. (2013) proposed a
new high-dimensional measure (HIM) for diagnosis, which captures the influence on the marginal
correlations for high-dimensional linear model and is particularly useful in downstream analysis
including coefficient estimation, variable selection and screening. Actually, specifying a correct
linear model for high dimensional data may be challenging, and the problem of outlier detection
for a general regression model should be considered.

In this paper, we constructed a new measure and proposed a novel outlier detection proce-
dure for high dimensional regression model. Székely et al. (2007) and Székely and Rizzo (2009)
showed that the distance correlation (dCor) of two univariate normal random variables is a strictly
increasing function of the absolute value of the Pearson correlation of these two normal random
variables, and distance correlation provides a new approach to the problem of testing the joint
independence of random vectors. This property motivates us to use the distance correlation to
construct a novel measure for detecting outlying observations from a general high dimensional
regression model. Cook (1977, 1979) studied the problem of detection of influence observations
in linear regression, and proposed the Cook’s distance, which is a difference measure between the
ordinary least square (OLS) estimate of coefficient 𝛽 on the full data and that on the subset of data
without the observation in question. Similarly, we utilize this leave-one-out idea as classical Cook’s
distance and construct, based on distance correlation between the response and all predictors, a
novel outlier detection measure denoted as 𝒟𝑖, for 𝑖 = 1, . . . , 𝑛. Intuitively, the 𝑖-th observation
(𝑌𝑖,X𝑖) is more likely to be marked as an outlier if the 𝑖-th measure 𝒟𝑖 is large to some extent.
Concretely, for the hypothesis that the 𝑖-th observation is not an outlier versus its alternative
among the 𝑛 observations, it is not clear what the exact distribution of the proposed measure is in
high dimensional setting. We can obtain the asymptotic distribution by bootstrap method. Hence,
we use simulations to develop a threshold rule to determine whether an individual observation is an
outlier or not. Monte Carlo simulation studies and a real data example are conducted to examine
the performance of the proposed procedure. Outlier identification performance are evaluated by
the type I error rate, which is the proportion of good observations that are incorrectly deemed as
outliers, and the power rate, which is the proportion of contaminated observations that are cor-
rectly labelled as good ones. The novel produce enables us to control the type I error and deliver
robust outlier detection.

The rest of this paper is organized as follows. In Section 2, we define a new outlier detection
measure, and propose a novel outlier detection procedure for high dimensional regression model.
In Section 3, we assess the performance of the proposed procedure by Monte Carlo simulation
studies. We further illustrate the proposed procedure by analyzing real-life dataset in Section 4.
We conclude with a discussion in Section 5.
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2 Method and Procedure

Let 𝑌 = (𝑌1, . . . , 𝑌𝑛)
⊤ be the 𝑛×1 response vector, and X = (X1, . . . ,X𝑛)

⊤=(𝑋1, . . . , 𝑋𝑝) denotes
the 𝑛× 𝑝 design matrix with the 𝑖-th row being 𝑝-dimensional vector X𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑝). A pair
of observation (𝑌𝑖,X𝑖) are assumed to be from the following regression model

𝑌 = 𝑓(X, 𝛽) + 𝜀, (1)

where 𝜀 = (𝜀1, . . . , 𝜀𝑛)
⊤, 𝜀𝑖, . . . , 𝜀𝑛 are independent, identically distributed (i.i.d.) random errors

with E(𝜀𝑖) = 0, var(𝜀𝑖) = 𝜎2 for 𝑖 = 1, . . . , 𝑛, 𝑓(X, 𝛽) = (𝑓(X1, 𝛽), . . . , 𝑓(X𝑛, 𝛽))
⊤ is a nonlinear

function, and 𝛽 = (𝛽1, . . . , 𝛽𝑝)
⊤ is a 𝑝-vector of parameters. In particular, if 𝑓(X, 𝛽) = X𝛽, the

equation (1) is a linear regression model.
As Hekimoglu et al. (2015) pointed, all the possible combinations of multiple outliers are

considered as model errors. Following this point, we will consider two perturbation models for
generating outliers. The first one is response perturbation model,

𝑌𝑖 = 𝑓(X𝑖, 𝛽) + 𝜅𝑖 + 𝜀𝑖, 𝑖 = 1, . . . , 𝑛∗, (2)

where 𝑛∗ is the number of outlier observations, the responses of the outliers are contaminated by
a random perturbation term 𝜅𝑖 = 𝜅𝑃𝑖, 𝑃𝑖 = X𝑖𝛾, 𝛾 is a 𝑝× 1 array vector, and 𝜅 is the parameter
that dictates the magnitude of the outliers, with a larger value of 𝜅 indicating a larger abnormal
of the outliers. When 𝜅 = 0, there is no outliers in the regression model. The other perturbation
model is a model with scale perturbation as

𝑌𝑖 = 𝑓(X𝑖, 𝛽) + 𝜀𝑖, 𝜀𝑖 ∼ 𝑁(0, 𝜎2/𝜔𝑖), (3)

where 𝜔𝑖 > 0 for 𝑖 = 1, . . . , 𝑛∗, and 𝜔𝑖 = 1 denotes the vector of null perturbation.
To quantify the influence of the 𝑖-th observation (𝑌𝑖,X𝑖) on linear regression under the classical

setup when 𝑝 < 𝑛, Cook (1977) employed the leave-one-out idea by studying the OLS estimate of
coefficient 𝛽 when the 𝑖-th observation is excluded from estimation, and proposed a discrepancy
measure, i.e., the Cook’s distance

𝐷𝑖 =
{𝛽(𝑖) − 𝛽}⊤X⊤X{𝛽(𝑖) − 𝛽}

(𝑝+ 1)𝜎̂2
,

where 𝛽 = (X⊤X)−1X⊤𝑌 , 𝛽(𝑖) = ((X(𝑖))⊤X(𝑖))−1(X(𝑖))⊤𝑌 (𝑖), and 𝜎̂2 = (𝑛 − 𝑝)−1
∑𝑛

𝑖=1(𝑌𝑖 −
X⊤

𝑖 𝛽)
2. Intuitively, if the 𝑖-th observation is an influential or outlying point, the difference between

𝛽 and 𝛽(𝑖) is expected to be large. However, in the high-dimensional regression setting, where the
number of predictors 𝑝 far exceeds the sample size 𝑛, the classical Cook’s distance is not directly
computable, because the OLS estimator 𝛽 becomes unstable.

Székely et al. (2007) and Székely and Rizzo (2009) showed that the distance correlation provides
a new approach to the problem of testing the joint independence between two random vectors
𝑋 ∈ R𝑝 and 𝑌 ∈ R𝑞, where 𝑝, 𝑞 are the dimensions of 𝑋 and 𝑌 . More precisely, let 𝜑𝑋(𝑠), 𝜑𝑌 (𝑡)
be the respective characteristic functions of two random vectors 𝑋 and 𝑌 , and 𝜑𝑋,𝑌 (𝑠, 𝑡) be the
joint characteristic function of 𝑋 and 𝑌 . The definition of dCor and some of its properties are
shown below.

Definition 1 (Distance covariance). The distance covariance (dCov) between 𝑋 and 𝑌 is given
by

dCov2(𝑋,𝑌 ) =

∫
𝑅𝑝+𝑞

∥𝜑𝑋,𝑌 (𝑠, 𝑡)− 𝜑𝑋(𝑠)𝜑𝑌 (𝑡)∥2𝑤(𝑠, 𝑡)𝑑𝑠𝑑𝑡, (4)
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where ∥𝜓∥2 = 𝜓𝜓 for a complex-valued function 𝜓 = 𝜑𝑋,𝑌 (𝑠, 𝑡)−𝜑𝑋(𝑠)𝜑𝑌 (𝑡), 𝜓 is the conjugate of

𝜓, 𝑤(𝑠, 𝑡) = (𝑐𝑝𝑐𝑞∥𝑠∥1+𝑝
2 ∥𝑡∥1+𝑞

2 )−1 is a positive weight function with constants 𝑐𝑙 = 𝜋(1+𝑙)/2/Γ((1+
𝑙)/2) for 𝑙 ∈ ℕ and ∥⋅∥2 is the 𝐿2 norm. Similarly, distance variance (dVar) is defined as the square
root of

dCov2(𝑋,𝑋) =

∫
𝑅𝑝+𝑝

∥𝜑𝑋,𝑋(𝑠, 𝑡)− 𝜑𝑋(𝑠)𝜑𝑋(𝑡)∥2𝑤(𝑠, 𝑡)𝑑𝑠𝑑𝑡.

Definition 2 (Distance correlation). The distance correlation (dCor) between 𝑋 and 𝑌 with
finite first moments is then naturally defined as

dCor2(𝑋,𝑌 ) =
dCov2(𝑋,𝑌 )√

dCov2(𝑋,𝑋)dCov2(𝑌, 𝑌 )
, (5)

if dCov2(𝑋,𝑋)dCov2(𝑌, 𝑌 ) > 0 and equals 0 otherwise.
Lemma 1 (Properties of dCor). If 𝐸(∣𝑋∣𝑝 + ∣𝑌 ∣𝑞) < ∞, then 0 ≤ dCor(𝑋,𝑌 ) ≤ 1, and

dCor(𝑋,𝑌 ) = 0 if and only if 𝑋 and 𝑌 are independent.
The proof of Lemma 1 is similar to that of Theorem 3 in Székely et al. (2007), and thus it

is omitted here. The definition of dCor in (5) suggests that the distance dependence measure is
analogous to the corresponding product-moment correlation. By analogy, the results in Lemma 1
imply that dCor has certain properties of classical correlation definitions.

Coming back to outlier detection analysis, the distance correlation allows for arbitrary regres-
sion relationship of 𝑌 onto X, regardless of whether it is linear or nonlinear. So, we use the
leave-one-out principle as in the classical Cook’s distance case, and compute the distance correla-
tion between 𝑋𝑘 and 𝑌 while the 𝑖-th observation is excluded or not in high-dimensional regression
setting. Finally, we define a novel outlier detection measure based on the distance correlation, i.e.

𝒟𝑖 =
1

𝑝

𝑝∑
𝑘=1

(dCor(𝑋𝑘, 𝑌 )− dCor(𝑋
(𝑖)
𝑘 , 𝑌 (𝑖)))2, (6)

where dCor(𝑋𝑘, 𝑌 ) denotes the distance correlation between the 𝑘-th predictor𝑋𝑘 and the response

𝑌 . Analogously, dCor(𝑋
(𝑖)
𝑘 , 𝑌 (𝑖)) denotes the distance correlation between the 𝑘-th predictor and

the response with the 𝑖-th observation removed.

For ease of presentation, we write 𝑑𝑘 = dCor(𝑋𝑘, 𝑌 ) and 𝑑
(𝑖)
𝑘 = dCor(𝑋

(𝑖)
𝑘 , 𝑌 (𝑖)) for 𝑘 =

1, . . . , 𝑝, then 𝒟𝑖 defined in (6) can be rewritten as

𝒟𝑖 =
1

𝑝

𝑝∑
𝑘=1

(𝑑𝑘 − 𝑑
(𝑖)
𝑘 )2. (7)

Let {(𝑌𝑖,X𝑖); 𝑖 ∈ {1, . . . , 𝑛}} be i.i.d. observations of size 𝑛 from the population (𝑌,X). It is
natural to use its sample counterpart to estimate 𝒟𝑖 as follows

𝒟̂𝑖 =
1

𝑝

𝑝∑
𝑘=1

(𝑑𝑘 − 𝑑
(𝑖)
𝑘 )2, (8)

where 𝑑𝑘 and 𝑑
(𝑖)
𝑘 are the corresponding sample estimates of dCor(𝑋𝑘, 𝑌 ) and dCor(𝑋

(𝑖)
𝑘 , 𝑌 (𝑖)),

respectively.

4



We consider using 𝒟̂𝑖 as a novel measure to detect outliers in high-dimensional regression model.
Next we study the consistency of the proposed outlier detection measure built upon the distance
correlation. Toward that end, we impose the following conditions.

(C.1) For any fixed 𝑘 = 1, . . . , 𝑝, 𝑑𝑘 is a constant and will not change as 𝑝 increases.
(C.2) The predictor 𝑋𝑘 follows a multivariate normal distribution and the random noise 𝜀𝑖

follows a normal distribution.
Condition (C.1) only requires that for any fixed 𝑘, 𝑑𝑘 is a constant independent of 𝑝. The

normality assumption (C.2) on 𝑋 is mainly for convenience. And the error term is assumed
normal, then 𝑌 is normally distributed.

Lemma 2 Assume conditions (C1)- (C2) hold, and if 𝐸(∣𝑋𝑘∣) <∞ and 𝐸(∣𝑌 ∣) <∞, then

lim
𝑛→∞ 𝑑2𝑘 = 𝑑2𝑘 (9)

almost surely.
The proof of this lemma is similar to that of Corollary 1 of Theorem 2 in Székely et al. (2007)

and that of Theorem 1 in Li et al. (2012), and thus it is omitted here. It will be shown that, by

replacing 𝑑𝑘 with their consistent sample estimates 𝑑𝑘 in the novel measure, a robust procedure
can be constructed to detect the outliers reliably.

Theorem 1 Under the conditions for Lemma 2, we have

lim
𝑛→∞ 𝒟̂𝑖 = 𝒟𝑖 (10)

almost surely.

Proof: According to the definitions of 𝒟̂𝑖 and 𝒟𝑖, we have 𝒟𝑖 − 𝒟̂𝑖 =
1
𝑝

∑𝑝
𝑘=1[(𝑑𝑘 − 𝑑

(𝑖)
𝑘 )2 −

(𝑑𝑘 − 𝑑
(𝑖)
𝑘 )2]. Lemma 2 showed that 𝑑2𝑘 → 𝑑2𝑘 almost surely, then we have ∣𝒟𝑖 − 𝒟̂𝑖∣ = 𝑜𝑝(1) almost

surely under certain conditions, that is, lim𝑛→∞ 𝒟̂𝑖 = 𝒟𝑖 almost surely. □
Obviously, the 𝑖-th data (𝑌𝑖,X𝑖) is more likely to be an outlier observation if it has a large

measure 𝒟̂𝑖. A novel outlier detection approach can be formulated as 𝑛 hypothesis tests with null
hypothesis 𝐻0𝑖, the 𝑖-th observation is not an outlier versus its alternative. After calculating 𝒟̂𝑖,
we develop a threshold rule to determine whether an observation is an outlier or not. At a given
significance level 𝛼, the 𝑖-th observation is identified as an outlier if 𝒟̂𝑖 > 𝐹𝛼, where 𝐹𝛼 is the
upper 𝛼-th quantile of the cumulative distribution function of 𝒟𝑖 under the null hypothesis. The
exact distribution of the proposed outlier detection measure is complicated, hence, we obtain an
asymptotic distribution by bootstrap procedure. Indeed, our goal is to approximate the distribution
of 𝒟𝑖 under the null hypothesis that the 𝑖-th observation is not an outlier. Consequently, we draw

with replacement {𝑖[𝑏](1), . . . , 𝑖
[𝑏]
(𝑛)} from {1, 2, . . . , 𝑛} to form the bootstrap sample 𝒟[𝑏]

𝑖 for 𝑏 = 1 to

𝐵, and study the asymptotic distribution of 𝒟[𝑏]
𝑖 .

Under these considerations, the novel outlier detection procedure for high dimensional regres-
sion can be summarized by the following algorithm.

step 1. Create a sample (𝑌𝑖;X𝑖) = (𝑌𝑖;𝑋𝑖1, . . . , 𝑋𝑖𝑝)1≤𝑖≤𝑛;

step 2. Compute 𝒟̂𝑖, an estimator of the dependence measure 𝒟𝑖 for each observation (𝑌𝑖;X𝑖);

step 3. Realize 𝐵 bootstrap samplings 𝒟[𝑏]
𝑖 (1 ≤ 𝑏 ≤ 𝐵) of the sample 𝒟𝑖 under 𝐻0;

step 4. Compute the 𝐵 bootstrap estimators of the measure 𝒟[𝑏]
𝑖 , and denoted as 𝒟̂[𝑏]

𝑖 ;
step 5. Compute the bootstrapped upper 𝛼-th quantile of the cumulative distribution function

of 𝒟̂[𝑏]
𝑖 , denoted as 𝐹𝛼;

step 6. The 𝑖-th observation is identified as an outlier if 𝒟̂𝑖 > 𝐹𝛼, otherwise 𝐻0 is accepted.
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3 Simulation

In this section, we will numerically investigate the algorithm proposed above for outliers detection
purpose, and evaluate the performance of the proposed methodology through a simulation study.
The simulation studies are conducted using Matlab 2014a software.

3.1 Simulation Models

Consider a general regression problem with a response variable 𝑌 and an explanatory variable
X. Let the observations {(𝑌𝑖,X𝑖); 𝑖 = 1, . . . , 𝑛} be from the regression model (1) referred in
Section 2, where X𝑖 is multivariate normal 𝑁(0,Σ). We consider autoregressive (AR) correlation
with Σ = (𝜌𝑗𝑘)𝑝×𝑝 = 0.5∣𝑗−𝑘∣ and moving average (MA) structures. The moving average model is
constructed by𝑋𝑖𝑗 = Σ𝐿

𝑘=1𝜂𝑘𝑧𝑖,(𝑗+𝑘−1)/(Σ
𝐿
𝑘=1𝜂

2
𝑘)

1/2 (𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑝), where 𝜂𝑘 and {𝑧𝑖𝑘}
are independent 𝑈𝑛(0, 1) and 𝑁(0, 1) variables respectively. We allow 𝐿 = [𝑝1/2]. 𝜀 = (𝜀1, . . . , 𝜀𝑛)
are i.i.d. normal distribution 𝑁(0, 𝜎2), and 𝜎 = 1 in the following simulation study.

We fix the sample size 𝑛 = 100, and the number of predictors 𝑝 = 200, 500, 1000, respectively.
Each dataset is composed of 𝑛− 𝑛∗ observations from the regression model (1), and 10% of total
observations are from the perturbation model (2) or model (3), so that the number of outlier
observations 𝑛∗ = 10. In the simulation study, we consider the following two models: one is a
simple linear model, and the other is a nonlinear model.

Model I (Linear model). If 𝑓(X, 𝛽) = X𝛽, model (1) is a linear model. The observations of
null perturbation are from the following linear model:

𝑌𝑖 = X𝑖𝛽 + 𝜀𝑖, (11)

for 𝑖 = 1, . . . , 100, and 𝛽 = (1, 1, 1, 1, 1, 0, . . . , 0)⊤ is a 𝑝 × 1 array vector with the first five ele-
ments being 1, and the rest being 0. We consider two different type outliers coming from per-
turbation model (2) or perturbation model (3) with the size of 10. Concretely, we simulated
𝑛 = 100 i.i.d. observations from model (11). Next we reset the 𝑛∗ = 10 data observations com-
ing from another perturbation model (2) with perturbation term 𝜅𝑖 = 𝜅𝑃𝑖, 𝑃𝑖 = X𝑖𝛾 where
𝛾 = (0, 0, 0, 0, 0, 1, . . . , 1)⊤ is a 𝑝 × 1 array vector with the first five elements being 0, and the
rest being 1. 𝜅 is the perturbation parameter, and let 𝜅 = 0.2, 0.5, 0.8, 1.0, 1.5 respectively. Sim-
ilarly, we reset the 𝑛∗ = 10 data observations coming from another perturbation model (3) with
perturbation parameter 𝜔 = 0.01, 0.02, 0.05, 0.1, 0.15 respectively.

Model II (Nonparametric additive model). Let 𝑔1(𝑥) = 𝑥, 𝑔2(𝑥) = (2𝑥 − 1)2, 𝑔3(𝑥) =
sin(2𝜋𝑥)/(2 − sin(2𝜋𝑥)), 𝑔4(𝑥) = 0.1 sin(2𝜋𝑥) + 0.2 cos(2𝜋𝑥) + 0.3 sin(2𝜋𝑥)2 + 0.4 cos(2𝜋𝑥)3 +
0.5 sin(2𝜋𝑥)3. Consider the observations from the following nonlinear model

𝑌𝑖 = 2𝑔1(𝑋𝑖1) + 6𝑔2(𝑋𝑖2) + 4𝑔3(𝑋𝑖3) + 𝑔4(𝑋𝑖4) + 𝜀𝑖. (12)

Similar to Model I, we simulated 𝑛 = 100 i.i.d. observations from model (12). Next we reset 𝑛∗ = 10
data observations as coming from another perturbation model (2) or model (3) corresponding to
two different type outliers with the size 10.

The goal in this section is to detect those outliers by the proposed detection procedure, and
remove them from the datset by simulation procedure.

3.2 Performance Evaluation

For the hypothesis that the 𝑖-th observation is not influential versus its alternative, we utilize
bootstrap procedure and develop a threshold rule to determine whether an individual is an outlier.

6



We evaluate our proposed outlier identification procedure by the type I error rate and the power.
Denote 𝑛∗ as the number of outlier observations among the 𝑛 observations, 𝑛𝑡𝑝 and 𝑛𝑓𝑝 as the
number of the observations that are truly rejected and falsely rejected. Then the type I error
rate=𝑛𝑓𝑝/(𝑛− 𝑛∗) and power rate =𝑛𝑡𝑝/𝑛

∗.
Under the same settings, the nominal significance level 𝛼 is chosen to be 0.01, 0.05 or 0.1. We use

simulations to find the cutoff values such that a desired type I error is achieved. Zhao et al. (2013)
proposed the high dimensional influence diagnosis measure (HIM), evaluated the corresponding
𝑝-value, and applied the multiple testing procedure of Benjamini and Hochberg (1995), with the
false discovery rate fixed at 𝛼 = 0.05, then obtained a reduced data set by removing those flagged
influential or outlier observations. Therefore, we compare our proposed outlier detection procedure
with HIM in terms of type I error rate and power rate.

3.3 The Results

Response perturbation and scale perturbation are considered under the AR and MA structure for
model I and model II, respectively. To obtain the upper 𝛼-th quantile of the cumulative distribution

function of 𝒟̂[𝑏]
𝑖 , we set the bootstrap time 𝐵 = 500 in the algorithm summarized in Section 2.

The averages of a total of 200 random replications are reported in Tables 1-6.
Insert Tables 1-6 about here.
(1) Tables 1-2 report the type I error rate and power of the proposed method in Model I under

various values of 𝑝. The nominal type I error 𝛼 = 0.01, 0.05, 0.1, and the perturbation parameter
𝜅 = 1.5 and 𝜔 = 0.02. For AR correlation and MA structures, the simulated type I error rates
are close to the nominal levels in most settings, which shows the effectiveness of the suggested
detection procedure. Next, we evaluate the power of the proposed method. Tables 1-2 present
power results for Model I when 𝑝 = 200, 500, 1000. It is shown that the power rates increases as
the dimension 𝑝 increases, and the proposed method has better efficiency with larger 𝑝 as expected.
Similarly, Tables 3-4 report the type I error rates and power rates in Model II of the proposed
method respectively. In most cases, the proposed method can maintain the desired type I error
rate and a better power rate regardless of Model I or Model II.

(2) Next, we compare the proposed outlier detection procedure with HIM of Zhao et al. (2013)
under Model I and Model II. Simulation results with nominal size 𝛼 = 0.05 and 𝑛∗ = 10 are
summarized in Tables 5-6. In contrast, the HIM method does not work well, with the power rates
being less than that of our method in most cases. In fact, as 𝜅 or 1/𝜔 increases, the power for the
proposed method to detect outlier observations increases. Thus, those outliers are more likely to
be detected and eliminated from the data analysis by our method.

(3) To summarize, our simulation results confirm that the proposed outlier detection procedure
for high dimensional regression model is useful to control the type I error and deliver robust outlier
detection.

4 A Real Data Analysis

In this section, we apply the proposed procedure to discuss a real dataset analysis.
Example (Cardiomyopathy microarray dataset). The data was once used by Segal et al. (2003)

to evaluate regression-based approaches to microarry analysis. Hall and Miller (2009) and Li et
al. (2012) also used this cardiomyopathy microarray dataset to illustrate their proposed screening
procedure in terms of ranking.

7



The dataset analysis is related to studying all types of human heart disease. In this dataset,
the response 𝑌 is the Ro1 expression level, and the predictor 𝑋𝑘 is gene expression level for
𝑘 = 1, . . . , 𝑝. The sample size 𝑛 = 30 and the dimension 𝑝 = 6319. We observe that 𝑝≫ 𝑛, so this
is a high dimension data analysis problem. We aim to identify the most influential genes for over
expression of a G protein-coupled receptor (Ro1) in mice.

Firstly, we fit an additive model :

𝑌𝑖 = 𝑔1(𝑋𝑖𝑗) + 𝑔2(𝑋𝑖𝑘) + 𝜀𝑖, 𝑖 = 1, . . . , 30; 𝑗, 𝑘 = 1, . . . , 6319,

where 𝑔1, 𝑔2 are unknown link functions and we fit them using the R mgcv package. Moreover,
we apply outlier detection procedure for high dimensional regression proposed in Section 2, and
detected three outlying specimens from 30 specimens. After that, we utilize the feature screening
procedure based on distance correlation (DCS, Li et al., 2012) to identify the most influential genes.
Our analysis is based on ranking the dCor between predictors and the response by the remaining
27 data pairs. This approach leads us to rank the two genes, labeled Msa.2134.0 and Msa.28021.0,
as the top two genes. Figures 1-2 indicate the scatter plots and corresponding cubic-spline fit
curves. Actually, they show clearly the existence of nonlinear patterns.

Insert Figures 1-2 about here.
Compared the performance of the proposed method (denoted by R-DCS) with the generalized

correlation ranking (GC) method of Hall and Miller (2009) and the DCS method of Li et al. (2012),
we can see from Table 7 that, R-DCS clearly achieves better performance than GC and DCS with
better 𝑅2 and deviance performance. Note that deviance means the proportion of the null deviance
explained by the proposed model, with a larger value indicating better performance. This suggests
that the proposed method helps DCS in removing three perturbation observations firstly, and then
using the DCS procedure to screen the important genes, the adjusted 𝑅2 values and the explained
deviance are better than the results of other two procedures.

Insert Table 7 about here.

5 Conclusion and Discussion

In this paper, we constructed an outlier detection measure based on the distance correlations
between the response and all predictors and proposed a novel outlier detection procedure for high
dimensional regression model. We examined the performance of the proposed outlier detection
procedure for linear model and nonlinear model via simulation studies, and illustrated the proposed
methodology through a real data example. We would like to comment on the main advantages
delivered in our work. Firstly, the new high dimensional influence measure is easy to compute
regardless of high dimension setting. Moreover, it is model-free because its implementation does
not require specification of the regression model. In addition, both the Monte Carlo simulation
examples and a real-life data show that the proposed outlier detection procedure can greatly detect
those outlier observations, and improve the filtering accuracy in feature screening problem.
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Table 1: Average type I errors (size) and power rates in Model I of response perturbation setting,
with perturbation parameter 𝜅 = 1.5 for various values of 𝑝 = 200, 500, 1000. 𝛼 is the nominal
significance level, and 𝑛 = 100, 𝑛∗ = 10.

Model I 𝛼 =0.01 𝛼=0.05 𝛼=0.1

Correlation 𝑝 size power size power size power

AR 200 0.015 0.801 0.051 0.866 0.099 0.897

500 0.014 0.886 0.050 0.926 0.101 0.951

1000 0.014 0.925 0.051 0.939 0.100 0.944

MA 200 0.015 0.833 0.049 0.893 0.099 0.907

500 0.014 0.904 0.050 0.932 0.100 0.942

1000 0.013 0.919 0.050 0.938 0.101 0.948

AR, autoregressive; MA, moving average.
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Table 2: Average type I errors (size) and power rates in Model I of scale perturbation setting,
with perturbation parameter 𝜔 = 0.02 for various values of 𝑝 = 200, 500, 1000. 𝛼 is the nominal
significance level, and 𝑛 = 100, 𝑛∗ = 10.

Model I 𝛼 =0.01 𝛼=0.05 𝛼=0.1

Correlation 𝑝 size power size power size power

AR 200 0.014 0.821 0.051 0.872 0.100 0.917

500 0.015 0.848 0.051 0.892 0.100 0.924

1000 0.014 0.855 0.052 0.893 0.101 0.917

MA 200 0.016 0.720 0.051 0.827 0.100 0.869

500 0.015 0.769 0.051 0.834 0.101 0.883

1000 0.014 0.773 0.051 0.838 0.100 0.888

Table 3: Average type I errors (size) and power rates in Model II of response perturbation setting,
with perturbation parameter 𝜅 = 1.5 for various values of 𝑝 = 200, 500, 1000. 𝛼 is the nominal
significance level, and 𝑛 = 100, 𝑛∗ = 10.

Model II 𝛼 =0.01 𝛼=0.05 𝛼=0.1

Correlation 𝑝 size power size power size power

AR 200 0.014 0.340 0.049 0.542 0.096 0.725

500 0.014 0.580 0.049 0.718 0.095 0.826

1000 0.014 0.720 0.049 0.810 0.094 0.881

MA 200 0.015 0.593 0.048 0.765 0.094 0.844

500 0.014 0.784 0.048 0.871 0.094 0.908

1000 0.014 0.878 0.048 0.918 0.098 0.942
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Table 4: Average type I errors (size) and power rates in Model II of scale perturbation setting,
with perturbation parameter 𝜔 = 0.02 for various values of 𝑝 = 200, 500, 1000. 𝛼 is the nominal
significance level, and 𝑛 = 100, 𝑛∗ = 10.

Model II 𝛼 =0.01 𝛼=0.05 𝛼=0.1

Correlation 𝑝 size power size power size power

AR 200 0.015 0.489 0.049 0.660 0.096 0.789

500 0.013 0.544 0.050 0.704 0.095 0.809

1000 0.013 0.548 0.049 0.712 0.097 0.814

MA 200 0.014 0.440 0.050 0.620 0.095 0.758

500 0.014 0.485 0.048 0.648 0.094 0.765

1000 0.014 0.53 0.049 0.683 0.096 0.803

Table 5: Power rate results for Model I and Model II of response perturbation setting, perturbation
parameter 𝜅 = 0.2, 0.5, 0.8, 1.0, 1.5, the nominal significance level 𝛼 = 0.05, and 𝑝 = 1000, 𝑛 = 100,
𝑛∗ = 10.

𝜅

Method Correlation 0.2 0.5 0.8 1.0 1.5
HIM AR 0.474 0.551 0.566 0.548 0.565

Model I HDC 0.639 0.844 0.896 0.921 0.939
HIM MA 0.538 0.550 0.550 0.551 0.553
HDC 0.762 0.901 0.934 0.938 0.938
HIM AR 0.251 0.476 0.525 0.546 0.555

Model II HDC 0.159 0.491 0.667 0.724 0.810
HIM MA 0.480 0.535 0.566 0.547 0.544
HDC 0.510 0.795 0.872 0.892 0.918

HIM, the method of Zhao et al. (2013),
HDC, the high dimensional outlier detection method based on dCor proposed in this paper.
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Table 6: Power rate results for Model I and Model II of scale perturbation setting, with perturbation
parameter 𝜔 = 0.01, 0.02, 0.05, 0.10, 0.15, the nominal significance level 𝛼 = 0.05, and 𝑝 = 1000,
𝑛 = 100, 𝑛∗ = 10.

𝜔

Method Correlation 0.01 0.02 0.05 0.1 0.15
HIM AR 0.567 0.543 0.496 0.398 0.293

Model I HDC 0.934 0.893 0.722 0.505 0.333
HIM MA 0.571 0.545 0.477 0.342 0.225
HDC 0.922 0.838 0.625 0.339 0.170
HIM AR 0.552 0.528 0.397 0.226 0.133

Model II HDC 0.851 0.712 0.328 0.131 0.076
HIM MA 0.549 0.536 0.416 0.240 0.140
HDC 0.843 0.683 0.349 0.141 0.078

Table 7: Simulation results for Example. Performance of the adjusted 𝑅2 and the deviance under
three procedures.

Produces Top two genes 𝑅2 Deviance

GC Msa.2877.0, Msa.1166.0 0.659 71.6%
DCS Msa.2877.0, Msa.2134.0 0.653 70.5%

R-DCS Msa.2134.0, Msa.28021.0 0.78 81.4%

GC, the generalized correlation ranking method in Hall and Miller (2009);
DCS, feature screening via dCor by Li et al. (2012);
R-DCS, removing outlying observations by outlier detection procedure in this paper, and then
using DCS method.
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Figure 1: The scatter plot of 𝑌 versus Msa.2134.
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Figure 2: The scatter plot of 𝑌 versus Msa.28021.
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