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Abstract

This paper proposes a new chart with the generalized likelihood ratio (GLR) test
statistics for monitoring the process variance of a normally distributed process. The
new chart can be easily designed and constructed and the computation results show
that it provides quite a satisfactory performance, including the detection of the
decrease in the variance and the individual observation at the sampling point which
are very important in many practical applications. Average run length comparisons
between other procedures and the new chart are presented. The optimal parameters
that can be used as a design aid in selecting specific parameter values based on the
average run length (ARL) are described. The application of our proposed method
is illustrated by a real data example from chemical process control.
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1 Introduction

Control charts are effective statistical process control (SPC) tools that have
been widely used in industries for monitoring the quality of processes. Among
them, monitoring the increase in the process variance is one of the main fields
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in SPC that leads the output of the process to be more scattered. It is well
known that if the variance increases then an increased number of units will
be defective. Collani and Sheil (1989) indicated that some manufacturing cir-
cumstances may lead to an increase in process variability without influencing
the level of the process mean. On the other hand, when the process variance
decreases then more units will be closer to the target value. The decrease in
the process dispersion that leads the output of the process to be more con-
centrated should also be recognized (Nelson, 1990) since it may indicate ways
to improve the process. These charts are also important when interpreting
the results of a mean chart since it assumes that the process standard de-
viation remains constant. Thus, identifying process dispersion changes is a
crucial ingredient of SPC to ultimately improve product quality and process
productivity, which is the focus of this paper.

Shewhart 𝑅 and 𝑆 charts are basic tools to monitor the shifts in process dis-
persion, but both charts are effective in detecting large shifts and less effective
for small shifts because they are based only on the information of the current
sample. Consequently, Page (1963) proposed a one-sided CUSUM chart and a
Shewhart chart with warning lines based on R to detect the increase in process
standard deviation. Alt (1984) discussed Shewhart sample variance 𝑆2 chart
and 𝑆 chart. Tuprah and Ncube (1987) made a comparison of dispersion con-
trol charts. Ng and Case (1989) proposed an exponentially weighted moving
average (EWMA) dispersion chart based on the subgroup range. Crowder and
Hamilton (1992) developed a onesided EWMA based on the natural log of the
subgroup variance. Chang and Gan (1994) investigated the effect of reflecting
boundaries and proposed a one-sided EWMA chart based on ln 𝑆2 to detect
the decrease in process standard deviation.

In recent several years, Huang and Chen (2005) proposed a synthetic con-
trol chart for monitoring process dispersion with sample standard deviation.
Castagliola (2005) proposed a chart based on a three-parameters logarithmic
transformation combined with an EWMA approach to monitor the sample
variance. Knoth (2006) evaluated the performance of CUSUM charts based
on 𝑆2 for normal processes. Castagliola et al. (2007) introduced a variable
sampling interval 𝑆2-EWMA chart for monitoring process variance. Shu and
Jiang (2008) proposed a new EWMA dispersion chart by truncating nega-
tive normalized observations to zero in the traditional EWMA statistic. Riaz
(2008) proposed a 𝑄 chart based on the interquartile range for monitoring
changes in process dispersion. Riaz and Saghir (2009) proposed a mean devi-
ation based approach to monitor process variability. Castagliola and Marave-
lakis (2009) developed an EWMA chart for monitoring the process standard
deviation when parameters are estimated. Castagliola et al. (2009) proposed
a new CUSUM 𝑆2 chart for monitoring the process variance. Montgomery
(2009) suggested several charts to monitor the process dispersion. Human et
al. (2010) studied the Shewhart-type 𝑆2, 𝑆 and 𝑅 charts when the mean and
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variance of the process are estimated from the preliminary data. Huwang et
al. (2010) proposed EWMA control charts for monitoring process dispersion.
Zhang et al. (2011) developed an adaptive Shiryaev-Roberts procedure with
EWMA estimation for monitoring the dispersion over a range of variance
shifts.

Apart from the references mentioned above, Abbasi et al. (2012) developed
two sensitizing rules in CUSUM dispersion chart to enhance the ability to
detect smaller changes in process variability. Abbas et al. (2013a) proposed a
memory-type control chart based on logarithmic transformation of the sample
variance. Abbas et al. (2013b) proposed another two new memory-type con-
trol chart for monitoring the process variance. Barbosa et al. (2013) presented
simpler alternative formulae and procedures of implementation to deal with
the relative range statistic used in the range control chart for process disper-
sion monitoring. Abbasi and Miller (2013) proposed an alternative EWMA
dispersion chart based on the mean absolute deviation from the median. Riar
(2013) investigated a set of interquartile range charts to monitor process dis-
persion. Nazir et al. (2013a,b) proposed robust CUSUM and Shewhart control
charts for process dispersion, respectively. Riaz et al. (2014) developed a set
Shewhart-type variability control chart based on the utilization of auxiliary
information for efficient Phase II process monitoring. Schoonhoven and Does
(2012) proposed a standard deviation control chart that is robust against both
diffuse disturbances and localized disturbances. Schoonhoven et al. (2011)
concerned the design and analysis of standard deviation control chart with
estimated parameters. Ahmad et al. (2013) proposed a control chart for moni-
toring process variability under double sampling scheme. Ahmad et al. (2014)
considered efficient use of auxiliary information for control charting.

All of the foregoing charts are shown to have satisfactory performance, how-
ever, most of the charts are based on the sample variance 𝑆2, that is to say,
the sample size must be larger than one. In such case, these charts may not be
appropriately used in the case that only an individual observation is available
at one sampling point. In addition, when the aim is to detect the increase and
decrease in the process variance simultaneously, a satisfied method is to use
a single chart. When a single chart is used, the design and operation of the
monitoring scheme can be greatly simplified compared with the combination-
type chart. Unfortunately, most of the existing charts cannot be used for this
purpose in this case. To this end, in this paper, we propose a dispersion chart
based on GLR test statistics integrating the EWMA procedure. The proposed
chart can be easily designed and constructed, can effectively detect the increase
and decrease in variability and is able to handle the case that the sample size
is one.

The rest of this paper is organized as follows. In the next section, some of the
existing competing charts are briefly reviewed. In Section 3, our new chart is
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introduced. After that, the optimal design of the new charts is discussed in
Section 4 and its run-length distribution is presented in Section 5. We compare
the performance of the proposed chart with the three existing charts in terms
of ARL in Section 6. The application of our proposed method is illustrated
by a real data example from chemical process control in Section 7. Several
remarks conclude the article in the last Section.

2 The existing charts

In this section, we briefly introduce three competing dispersion charts that
are widely used in literature to handle dispersion issue based on the ARL
performance. They are: the EWMA chart based on ln𝑆2 proposed by Crowder
and Hamilton (1992) (denoted as CH chart), the EWMA chart suggested by
Shu and Jiang (2008) (denoted as SJ chart) and the change point CUSUM
chart proposed by Acosta et al. (1999) (denoted as CPC chart).

2.1 The EWMA CH chart:

Let 𝑌𝑡 = ln𝑆2
𝑡 , where 𝑆2

𝑡 = 1
𝑛

∑𝑛
𝑖=1(𝑥𝑡𝑖 − �̄�𝑡)

2, �̄�𝑡 =
1
𝑛

∑𝑛
𝑖=1 𝑥𝑡𝑖, where 𝑛 is the

sample size. The mean and variance of 𝑌𝑡 are approximated by

𝜇𝑌 = ln𝜎2 − 1

𝑛− 1
− 1

3(𝑛− 1)2
+

2

15(𝑛− 1)4
, (1)

𝜎2
𝑌 =

2

𝑛− 1
+

2

(𝑛− 1)2
+

4

3(𝑛− 1)3
− 16

15(𝑛− 1)5
. (2)

To detect an increase in the process variance, Crowder and Hamilton (1992)
proposed an upper-sided EWMA chart based on

𝑄+
𝑡 = max{0, (1− 𝜆)𝑄𝑡−1 + 𝜆𝑌𝑡}, (3)

where 0 < 𝜆 ≤ 1 and 𝑄+
0 = 0. The chart signals an out-of-control (OC) if 𝑄+

𝑡

is greater than

ℎ+
𝑄 = 𝐿𝑄

√
𝜆

2− 𝜆
𝜎𝑌 , (4)

where 𝐿+
𝑄 can be determined to achieve a desired in-control (IC) ARL. Similar

to (3), in order to detect a decrease in the process variance, the lower-sided
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EWMA chart can be based on

𝑄−
𝑡 = min{0, (1− 𝜆)𝑄𝑡−1 + 𝜆𝑌𝑡}, (5)

where 𝑄−
0 = 0. The chart declares an OC signal if 𝑄−

𝑡 is less than

ℎ−
𝑄 = −𝐿−

𝑄

√
𝜆

2− 𝜆
𝜎𝑌 , (6)

where 𝐿−
𝑄 can be determined to achieve a desired IC ARL. The two-sided

control chart consisting of a lower-sided CH chart and an upper-sided CH
chart can be used together in order to detect an increase and a decrease in
the process variance, simultaneously.

2.2 The EWMA SJ chart:

Based on definition of 𝑌𝑡 defined above, let 𝑍𝑡 = (𝑌𝑡−𝜇𝑌 ∣𝜎 = 1)/𝜎𝑌 , in order
to detect an increase and decrease in the variance, define 𝑍+

𝑡 = max[0, 𝑍𝑡] and
𝑍−

𝑡 = min[0, 𝑍𝑡], Shu and Jiang (2008) proposed an EWMA chart based on

𝑊+
𝑡 = 𝜆(𝑍+

𝑡 −
1√
2𝜋

) + (1− 𝜆)𝑊+
𝑡−1, 𝑡 = 1, 2, . . . , (7)

where 𝑊+
0 = 0 and 0 < 𝜆 ≤ 1. The chart declares an OC signal when 𝑊𝑡

exceeds the upper control limit

ℎ+ = 𝐿+

√
𝜆

2− 𝜆
𝜎𝑍+

𝑡
, (8)

where 𝐿+ can be chosen to achieve a desired IC ARL. Analogously, in order
to detect a decrease in the process variance, the EWMA chart can be based
on

𝑊−
𝑡 = 𝜆(𝑍−

𝑡 +
1√
2𝜋

) + (1− 𝜆)𝑊−
𝑡−1, 𝑡 = 1, 2, . . . , (9)

where 𝑊−
0 = 0. Subsequently, the lower control limit of the chart is given by

ℎ− = −𝐿−
√

𝜆

2− 𝜆
𝜎𝑍−

𝑡
, (10)
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where 𝐿− can be determined to achieve a desired IC ARL and 𝜎𝑍+
𝑡
= 𝜎𝑍−

𝑡
.

The two-sided control chart consisting of a lower-sided and an upper-sided SJ
charts can be used together for detecting an increase and a decrease in the
process variance, simultaneously.

2.3 The change point CUSUM chart (Acosta et al., 1999):

Let 𝜎1 be the process standard deviations that needs to be detected, then the
two-sided procedure for detecting changes in the process variability can be
expressed as

𝐶+
𝑡 = max{0, 𝐶+

𝑡−1 +𝐷2
𝑡 −

𝑛𝜎2
1 log 𝜎

2
1

𝜎2
1 − 1

}(𝜎1 > 1), (11)

𝐶−
𝑡 = max{0, 𝐶−

𝑡−1 −𝐷2
𝑡 +

𝑛𝜎2
1 log 𝜎

2
1

𝜎2
1 − 1

}(𝜎1 < 1), (12)

respectively, where 𝐶+
0 = 𝐶−

0 = 0, 𝐷2
𝑡 =

∑𝑛
𝑖=1 𝑥

2
𝑡𝑖, 𝑡 = 1, 2, ⋅ ⋅ ⋅. The value

𝐶+
𝑡 is used to detect increase shifts in the process variance, while 𝐶−

𝑡 is used
to detect decrease shifts. The chart signals whenever 𝐶+

𝑡 or 𝐶−
𝑡 exceeds its

respective control limit, ℎ𝑈 or ℎ𝐿. This chart will be denoted as CPC chart
throughout the rest of this paper.

3 The new chart for monitoring the process variability

In this section, we will introduce our proposed chart that can be used to
monitor the dispersion of a normal processes. We will show that our proposed
charts are effective to detect both increases and decreases in process dispersion.

Let x𝑡 = (𝑥𝑡1, . . . , 𝑥𝑡𝑛) denote a sample of size 𝑛 ≥ 1 taken on a quality charac-
teristic 𝑥. The monitoring problems with 𝑛 > 1 and 𝑛 = 1 are usually referred
to as group observations case and individual observations case, respectively.
In industrial practice, sampling may be expensive, in such case, individual ob-
servation at sampling points is usually preferred. In what follows, we assume
that the x𝑡 for 𝑡 ≥ 1, the observations collected over time, come from the
following process model

𝑥𝑡𝑖 = 𝜇𝑡 + 𝜀𝑡𝑖, 𝑖 = 1, . . . , 𝑛, 𝑡 = 1, 2, . . . , (13)

where 𝜀𝑡1, . . . 𝜀𝑡𝑖 are identically and independently distributed (i.i.d) normal
variables with mean zero and standard deviation 𝜎. When the process is in-
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control, 𝜇 = 𝜇0 and 𝜎 = 𝜎0. In this paper, we consider the Phase II case in
which the IC 𝜇0 and 𝜎0 are assumed to be known, i.e., it is assumed that the IC
data set used in Phase I is enough to estimate the parameters well. Without
loss of generality, in the remainder of this paper, we assume 𝜇0 = 0 and
𝜎0 = 1. Further assume that we are interested in detecting process variability,
including the increase and decrease. When a process shift occurs, we assume
𝜎 ∕= 1.

For a given sample x𝑡, consider the following hypothesis test

𝐻0 : 𝜎 = 1←→ 𝐻1 : 𝜎 ∕= 1. (14)

Then, the generalized likelihood ratio statistic can be obtained as follows

𝑙𝑡 = 𝑛(𝑠2𝑡 − ln 𝑠2𝑡 − 1), (15)

where 𝑠2𝑡 =
∑𝑛

𝑗=1 𝑥
2
𝑡𝑗/𝑛. It can be seen that 𝑙𝑡

ℒ→𝜒2(2) as 𝑛 → ∞. A large 𝑙𝑡
leads to reject the null hypothesis.

Note that the function 𝑓(𝑧) = 𝑧 − ln 𝑧 is monotonically increase (decrease)
when 𝑧 > 1 (0 < 𝑧 < 1) and attains its minimum at 𝑧 = 1. Hence, the testing
statistics 𝑙𝑡 will be sensitive to both the increase and decrease in variance.
Unlike other test statistics in the literature, 𝑙𝑡 is a likelihood ratio derived
under the setting in which the process variance may change, and thus naturally
adapts to be sensitive to various types of shifts. For simplicity, the coefficient
𝑛 and the constant term −1 can be ignored, so we have

𝐿𝑅𝑡 = 𝑠2𝑡 − ln 𝑠2𝑡 . (16)

In order to detect small or moderate shifts effectively, we incorporate the
EWMA procedure into the construction of 𝐿𝑅𝑡. First, let

𝑢𝑡= 𝜆𝑠2𝑡 + (1− 𝜆)𝑢𝑡−1, (17)

where 𝑢0 = 1 and 𝜆 is the smoothing parameter satisfying 0 < 𝜆 ≤ 1. In gen-
eral, a smaller 𝜆 leads to a quicker detection of smaller shifts. Then, substitute
𝑢𝑡 for 𝑠

2
𝑡 in (16) and obtain the following charting statistics

𝐸𝐿𝑅𝑡 = 𝑢𝑡 − ln(𝑢𝑡), 𝑡 = 1, 2, . . . , (18)

7



An alarm is trigged when 𝐸𝐿𝑅𝑡 > ℎ, where ℎ > 0 is chosen to achieve a
specified IC ARL. This chart is denoted as ELR chart. It can be seen that our
ELR chart still works when 𝑛 = 1 due to the definition of 𝑢𝑡.

Most of the existing charts need two one-sided charts to detect the process
variance change simultaneously, one is to detect an increase and another one
is to detect a decrease, so two individual control limits should be specified.
However, for the ELR chart, only one control limit is needed, so it is more
convenient in the practical application than some other charts.

Sometimes, we are interested in detecting process deteriorations in terms of
increase, i.e., 𝜎 > 1, in order to further improve the detection performance of
the control chart, define:

𝑢+
𝑡 = max(1, 𝜆𝑠2𝑡 + (1− 𝜆)𝑢+

𝑡−1), (19)

with 𝑢+
0 = 1 as the initial value. Clearly, the reset of the EWMA statistic

to one whenever it is less than one can ameliorate the inertia problem of the
EWMA statistic. Then, an upper-sided ELR chart aiming at detecting an
increase in the variance is defined as:

𝐸𝐿𝑅+
𝑡 = 𝑢+

𝑡 − ln𝑢+
𝑡 , 𝑡 = 1, 2, . . . . (20)

Similarly, in order to detect a decrease in the variance, i.e., 𝜎 < 1, define:

𝑢−
𝑡 = min(1, 𝜆𝑠2𝑡 + (1− 𝜆)𝑢−

𝑡−1), (21)

with 𝑢−
0 = 1 as the initial value and then, a lower-sided ELR chart aiming at

detecting a decrease in the variance is defined as:

𝐸𝐿𝑅−
𝑡 = 𝑢−

𝑡 − ln𝑢−
𝑡 , 𝑡 = 1, 2, . . . . (22)

The ELR chart signals whenever ELR+
𝑡 or ELR−

𝑡 exceeds its respective control
limit, ℎ𝑈 or ℎ𝐿.

One can expect that the two one-sided charts based on equation (20) and (22)
will be more effective than the ELR chart based on equation (18) if the aim
is to detect the increase and decrease in the process variance.
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4 Run length distribution of the proposed chart

In this section, we discuss the run length distribution of the proposed chart.
Run length is the number of observations until the first OC signal is triggered
by the control chart. Figure 1 plots the IC and OC run-length probability mass
function (PMFs) for the upper-sided and lower-sided ELR charts, respectively.
The run-length distributions of the SJ chart and the CPC chart are also plotted
for comparison. In this comparison, the two EWMA-type charts are based on
𝜆 = 0.1 and n = 5 and for the CPC chart, 𝜎1 = 1.2 and 0.8 are used in
Equation (11) and (12) for monitoring the process increase and decrease in
dispersion, respectively. We plot the PMFs for different charts in Figure 1
when the run length 𝑇 ≤ 50.

Concerning the increasing case, as can be seen from Figure 1(a), in the IC
situation, the probability of a false alarm triggered on the ELR chart is lower
than those of the SJ chart and the CPC chart at short run length 𝑇 < 15,
and higher at run length 𝑇 > 15. In the OC situation (𝜎 = 1.2), as shown
in Figure 1(b), compared with SJ chart, the ELR chart has a slightly higher
signal probability at very short run length 𝑇 < 5, and has similar perfor-
mance compared with the CPC chart, and slightly higher signal probability
at run length 𝑇 > 5. Also we can see that the ELR chart almost has similar
performance compared with the CPC chart.

Concerning the decreasing case, as can be seen from Figure 1(c), in the IC
situation, the probability of a false alarm triggered on the ELR chart is much
lower than those of the SJ and CPC charts at short run length, 𝑇 < 15, and
much higher at run length, 𝑇 > 15. In the OC situation (𝜎 = 0.8), as shown
in Figure 1(d), the CPC chart has a slightly higher signal probability than
the ELR chart at very short run length, 𝑇 < 10, and slightly smaller signal
probability at run length 10 < 𝑇 < 25, but the difference is negligible. When
𝑇 > 25, both of the charts have similar run length distribution. On the other
hand, it can be seen that the run length distribution is significantly different
between the ELR chart and the SJ chart. The ELR chart has a much higher
signal probability than the SJ chart at short run length 8 < 𝑇 < 20, but
much smaller signal probability at run length 𝑇 > 20. The superior signal
probabilities of the ELR chart at short run lengths are very attractive for
early detection of process-dispersion changes.

To gain more insight into the run length distribution of the ELR, CPC and
SJ charts, we also present OC run length cumulative distribution function
(CDFs) of these charts concerning the increasing and decreasing cases in Fig-
ure 1(e) and (f), respectively. It can be observed that concerning the increasing
case, the CDF of the ELR chart is slightly higher than the SJ chart and the
CDF of the CPC chart is slightly higher than the ELR chart. Concerning the
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decreasing case, the CDF of the ELR chart is much higher than the SJ chart
when 𝑇 > 7 and slightly lower than the CPC chart when 𝑇 < 20. Note that
this high probability indicates that the shifts in the process variance will be
detected quickly with high probability.

The overall conclusion is that the ELR chart has high probability at shorter
run lengths, which implies that the ELR chart is a useful tool for practitioners
when taking into account its performance in detecting variance shifts.

5 Design of the ELR chart

The design approach recommended by Crowder and Hamilton (1992) will be
followed in this paper for the ELR chart. The approach involves the joint
choice of 𝜆 and ℎ that yields a desired zero-state IC ARL at the nominal
variability (𝜎 = 1) and also yields the smallest zero-state OC ARL for a
specified change in the process standard deviation. The zero-state OC ARL
performance assumes that the process is OC when the initial subgroup from
the process is obtained. The steady-state OC ARL performance assumes that
the process is initially IC but shifts to an OC state at the change point.

For a target OC 𝜎 and a fixed sample size 𝑛, we search the corresponding
values of ℎ with a wide range values of 𝜆 (𝜆 = 0.01, ⋅ ⋅ ⋅ , 0.99, 1.0) to yield the
desired zero-state IC ARL. The pair (𝜆, ℎ) will be considered to be optimal if
among all the possible combinations of 𝜆 and ℎ, which produces the smallest
zero-state OC ARL at the target OC 𝜎.

Tables 1-3 present a list of optimal parameters of an upper-sided ELR chart
based on Equation (20) and lower-sided ELR chart based on Equation (22)
when 𝑛 = 1, 5 and 10, respectively, for providing a desired IC ARL. These
parameters are adequate for most practical purposes and are obtained using
a numerical search method through the Monte Carlo simulation.

Examination of Tables 1-3 indicates that, for a fixed IC ARL, the optimal
value of 𝜆 increases as the target dispersion changes increase. Therefore, as
expected, a small value of 𝜆 is more sensitive to small changes while a large
value of 𝜆 is more sensitive to large changes. Moreover, the optimal 𝜆 values
for detecting a specific dispersion change may be different when 𝑛 is different.
For example, when the sample size increases from 𝑛 = 5 to 10, the optimal
𝜆 value of the upper-sided ELR chart increases from 0.08 to 0.13 in order to
efficiently detect a dispersion change of 20% with an IC ARL of 200.
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Fig. 1. One-sided run length PMFs and CDFs of the ELR, CPC and SJ charts
when 𝜆 = 0.1, 𝑛 = 5 and IC ARL=200. (a) upper-sided IC run length PMFs; (b)
upper-sided OC run length PMFs when 𝜎 = 1.2; (c) lower-sided IC run length
PMFs; (d) lower-sided OC run length PMFs when 𝜎 = 0.8; (e)upper-sided OC run
length CDFs when 𝜎 = 1.2; (f) lower-sided OC run length CDFs when 𝜎 = 0.8

6 Performance comparison

To evaluate the sensitivity against shifts in the process standard deviation,
we assume in our comparisons that the process mean does not change. The
discussions will be based on the subgroup size of 𝑛 = 5. The cases based on
other different sample sizes can be similarly discussed, which provide qualita-
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tively the same conclusions. For simplicity, we only present the results based
on 𝑛 = 5 in this paper.

6.1 Comparison of upper-sided EWMA-type charts

First, we compare three upper-sided EWMA-type charts, i.e., the ELR chart,
the SJ chart and the CH chart when there is an increase in the process stan-
dard deviation. Each chart is calibrated so that the IC ARL is approximately
equal to 200. The ARL values are obtained using at least 200,000 run length
simulations. A FORTRAN computer program is coded for these simulations.
In each independent run, the run length for that run is recorded as the number
of simulated samples that must be observed until the control chart signals. The
estimated ARL is the average of these independent run lengths. The steady-
state OC ARLs are obtained when the monitoring statistics are processed for
100 in-control observations before the run lengths are accumulated to signal.
If a signal occurred before those first 100 in-control observations, then that
particular run was discarded and a new set of 100 samples were generated.

Table 4 and Table 5 present the zero-state and steady-state ARL values for
various shifts in the process mean and different 𝜆 when 𝑛 = 5. We also plot
the zero-state and steady-state ARLs of the three charts at a given percent
increasing change in the process standard deviation from 10% to 100% for
𝜆 = 0.05, 0.1, 0.2 and 0.3 for illustration in Figures 2-3.

From Table 4 and Table 5, it can be observed that for detecting the increase
in the variance, for a given value of 𝜆, the zero-state OC ARL values of the
ELR chart are almost uniformly smaller than those of the SJ chart, except
for the case when 𝜎 = 1.1 and 𝜆 < 0.9. We also notice that the ELR chart
almost always has smaller steady-state ARL values. When 𝜆 = 1, the ELR
chart performs much better than the SJ chart, and in this case, the SJ chart
and the CH chart reduce to an upper-sided Shewhart chart of 𝑍𝑡 and thus
show essentially the same performance. On the other hand, the ELR chart
consistently produces smaller ARL than the CH chart and the difference is
more significant for the smaller 𝜆. For instance, when 𝜆 = 0.1 and 𝜎 = 1.1,
the OC ARL in this case is 35.29 for the ELR chart and 44.19 for the CH
chart. However, when 𝜆 = 0.9 and 𝜎 = 1.1, the OC ARL is 59.16 for the ELR
chart and 62.38 for the CH chart. In this case, the difference is small.

Comparing Table 4 with Table 5, it is also observed that for the ELR chart
and the CH chart, the steady-state OC ARL is notably smaller than the zero-
state OC ARL when the process variance increases, and the difference is more
significant for the smaller 𝜆. As for the SJ chart, the steady-state OC ARL
is larger than the zero-state OC ARL at an increase in the process variance
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when 𝜆 = 0.05 and 0.1, but the direction of the discrepancy is not clear and
they are not significantly different as 𝜆 ≥ 0.2.
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Fig. 2. The zero-state OC ARL for the ELR, CH and SJ charts when the process
variance increases. (a) 𝜆 = 0.05; (b) 𝜆 = 0.1; (c) 𝜆 = 0.2; (d) 𝜆 = 0.3

The standard deviation of the run length (denoted as SDRL) is usually used
as another measure to evaluate the performance of control charts. The smaller
the values of SDRL, the better the performance of a control chart. The SDRLs
for the three charts are summarized in Table 6 when 𝜆 = 0.1 and 𝜆 = 0.3. It
can be seen that the ELR chart is almost always more under dispersed than
the other two charts. For instance, when 𝜆 = 0.3 and 𝜎 = 1.2, the zero-state
SDRL of the ELR chart is 14.84, while for the SJ and the CH charts, the
corresponding values are 15.06 and 17.32, respectively. We also conduct some
simulations for other choices of sample size, 𝜆 and IC ARL, the preceding
findings still hold. The simulation results show that the ELR chart has quite
a satisfactory performance in other cases as well.
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Fig. 3. The steady-state OC ARL for the ELR, CH and SJ charts when the process
variance increases. (a) 𝜆 = 0.05; (b) 𝜆 = 0.1; (c) 𝜆 = 0.2; (d)𝜆 = 0.3

6.2 Comparison of lower-sided EWMA-type charts

Second, the zero-state and steady-state OC ARL comparison for monitoring
decreases in process dispersion is tabulated in Table 7 and Table 8. (We plot
the zero-state and steady-state ARLs of the three charts at a given percent
decreasing change in the process standard deviation from -10% to -50% for
𝜆 = 0.05, 0.1, 0.2 and 0.3 for illustration in Figures 4-5.) It can be seen that
the ELR chart with small 𝜆 (𝜆 ≤ 0.3) is more efficient at detecting small
to moderate shifts than the SJ chart, while the SJ chart is more efficient at
detecting large shifts. For instance, when 𝜆 = 0.2, 𝜎 = 0.8, the OC ARL in this
case is 13.51 for the ELR chart and 30.78 for the SJ chart. Also notice that
the ELR chart with large 𝜆 (𝜆 > 0.3) always outperforms the SJ chart. On the
other hand, the ARL values of the ELR chart are uniformly smaller than those
of the CH chart. The performance improvement of the ELR chart is profound
especially when 𝜆 is small. Moreover, for small 𝜆 values, the difference in the
ARLs between the ELR and the other two charts becomes significant when
the degree of decrease in the variance is small.
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It can be observed that when the aim is to monitor decreases in variability,
the improvement achieved in terms of ARL performance by the ELR chart is
considerably greater than those for monitoring increases. The use of the ln𝑆2

statistic or other transformed statistics result in improved performance but
they are not the best choice. In addition, it is not always desirable to monitor
a process using a transformed scale.

The SDRLs concerning the decreasing case of the three charts are presented
in Table 9. From this Table, we can see that the SDRLs of the ELR chart are
always much smaller than the other two charts. For instance, when 𝜆 = 0.3
and 𝜎 = 0.8, the zero-state SDRL of the ELR chart is 12.92, while for the SJ
and the CH charts, the corresponding values are 36.32 and 27.78, respectively.
Again, the ELR chart is always more under dispersed than the other two
charts.
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Fig. 4. The zero-state OC ARL for the ELR, CH and SJ charts when the process
variance decreases (a)𝜆 = 0.05; (b)𝜆 = 0.1; (c)𝜆 = 0.2; (d)𝜆 = 0.3
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Fig. 5. The steady-state OC ARL for the ELR, CH and SJ charts when the process
variance decreases (a)𝜆 = 0.05; (b)𝜆 = 0.1; (c)𝜆 = 0.2; (d)𝜆 = 0.3

6.3 Comparison with the corresponding optimal parameters

Note that the same value of 𝜆 is used for comparison in Tables 4-9. However,
the same 𝜆 value may not be optimal for these three EWMA-type charts for
detecting a particular increase in the process standard deviation. For this rea-
son, Table 10 further compares the optimal ARL performance among the three
EWMA-type charts for detecting a 20% increase and a 40% increase in the
process standard deviation in terms of zero-state and steady-state ARL, re-
spectively. Moreover, besides the three EWMA-type charts, another technique
compared is the CPC chart based on Equation (11). In this case, 𝜎1 = 1.2
and 1.4 are considered, and the corresponding control limits are 18.5 and
13.3, respectively. According to Table 2 in Shu and Jiang (2008), the corre-
sponding optimal parameters for the SJ chart are (𝜆, 𝐿+

𝑊 ) = (0.03, 1.27) and
(0.2, 2.27), and for the CH chart, the corresponding optimal parameters are
(𝜆, 𝐿+

𝑄)=(0.05, 1.06) and (0.32, 1.61). From Table 2, the corresponding optimal
parameters for the ELR chart are (𝜆, ℎ+)=(0.08, 1.0445) and (0.21, 1.1545),
respectively.
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It can be concluded from Table 10 that in terms of zero-state ARL, the SJ
chart performs better than the other charts at the specified magnitude of
increase in the process standard deviation when 𝜎𝑜𝑝𝑡 = 1.2. However, when
the shift in the variance differs from 𝜎𝑜𝑝𝑡, for instance, 𝜎 > 𝜎𝑜𝑝𝑡, the CPC chart
has the best performance, but the difference between the ELR chart and the
CPC chart is small. When 𝜎𝑜𝑝𝑡 is 1.4, the CPC chart and the ELR chart almost
have the same performance and they consistently outperform the other two
charts. On the other hand, in terms of the steady-state ARL, the OC ARLs
of the ELR charts are uniformly smaller than those of the other three charts
but the differen between the ELR chart and the CPC chart is negligible.

Similarly, Table 11 further compares the optimal ARL performance among the
four charts for detecting a 20% decrease and a 40% decrease in the process
standard deviation, respectively. The corresponding optimal parameters for
the SJ chart are (𝜆, 𝐿−

𝑊 ) = (0.04, 2.01) for these two cases. As for the CH
chart, the corresponding optimal parameters are (𝜆, 𝐿−

𝑄)=(0.1, 3.72) and (0.2,
3.67). From Table 2, the corresponding optimal parameters for the ELR chart
are (𝜆, ℎ−)=(0.1, 1.0559) and (0.36, 1.2687), respectively. It can be concluded
that in terms of zero-state ARL, the CPC chart performs better than the
other charts at the specified magnitude of decrease in the process standard
deviation, while, in terms of steady-state ARL, the ELR chart performs better
than the other charts.

6.4 Comparison of two-sided charts

Next, we consider the performance of these charts for monitoring decrease
and increase in process variability simultaneously. It should be noted that for
the ELR chart based on Equation (18), only one control limit is needed in
the design procedure in this situation. While, for each of the other three two-
sided control charts, an upper control limit and a lower control limit should
be specified. We use 200,000 Monte Carlo simulations to find the individual
control limit value for each of the two one-sided charts with equal individual
zero-state IC ARL (nearly 400) so that the overall zero-state IC ARL of the
two-sided chart is approximately equal to 200. The three EWMA-type charts
are designed with 𝜆=0.05, 0.1, 0.2, 0.3 and the two-sided CPC chart with
(a, b) (denoted as CPC(𝑎,𝑏) ) stands for the chart which is prespecified to
respond quickly to the change of 𝜎1 = 𝑎 in Equation (12) (for detecting a
decrease) and 𝜎1 = 𝑏 in Equation (11) (for detecting an increase) in the
process dispersion, respectively. The CPC charts with (𝑎, 𝑏)=(0.9, 1.1), (0.8,
1.2), ( 0.7, 1.3) and (0.6, 1.4) (denoted as CPC1, CPC2, CPC3, and CPC4,
respectively) are compared with EWMA-type charts with 𝜆 = 0.05, 0.1, 0.2
and 0.3, respectively. The steady-state OC ARL simulation results based on
𝑛 = 5 are summarized in Table 12.
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According to the results in Table 12 and Figure 6, it can be seen that the
ELR chart always performs best among the three EWMA-type charts. Com-
pared with the CPC chart, concerning the increasing case, the ELR chart
performs better than the CPC chart, while concerning the decreasing case,
the CPC chart slightly outperforms the ELR chart. When the process vari-
ance decreases, the CH chart does better than the SJ chart and the SJ chart
turned out to be ARL-biased when 𝜎 = 0.95, i.e., the OC ARL is larger than
the IC ARL. When the variance increase, the SJ chart does better than the
CH chart.

The overall conclusion that can be obtained from Tables 4-12 is that the
ELR chart generally has the satisfactory detection performance for various
changes in the process variance. This shows that the ELR chart is quite a
useful alternative tool for practitioners by taking into account its performance
of detecting various variance shifts.

It should be noted that the numerical method used above can only find the
approximate optimal values because the true optimal 𝜆 may occur at the value
different from the prespecified interval (0.01, 1). For a fixed IC ARL, smaller 𝜆
gives smaller OC ARL, but, when too small a 𝜆 is used, the standard deviation
of the run-length (denoted as SDRL) is usually very large for a control chart.
For example, for the SJ chart, when 𝜆 = 0.01, the SDRL associated with
IC ARL=200 equals 250.2, which is much larger than the counterpart of the
value 202.8 when 𝜆 = 0.04. Large variability of run-length distribution at small
value of 𝜆 usually prevents the practitioner from choosing it as the smoothing
constant to use in practice. This is why we choose 𝜆 = 0.04 as the optimal
parameter for the SJ chart in the comparison for detecting a decrease in the
dispersion.

7 A real data example

In this section, we demonstrate our proposed methodology by a real data
example which contains a data set consisting of measurements of the inside
diameter of the cylinder bores in an engine block. Chen et al. (2001) and Zhang
et al. (2011) also used this data set to show the implementation of their charts
for monitoring the process. The original data set can be found in Chen et al.
(2001). A Phase I dataset of 𝑚 = 35 samples, each having sample size 𝑛 = 5,
have been collected. First, we use the grand average of the preliminary data
to estimate the process mean 𝜇 and use 𝑆

𝑐4
to estimate the process variance 𝜎,

where 𝑆 = 1
𝑚
(𝑆1+ ⋅ ⋅ ⋅+𝑆𝑚) is the average of the sample standard deviations,

and 𝑆2
𝑖 = 1

𝑛−1

∑𝑛
𝑗=1(𝑥𝑖𝑗 − �̄�𝑖)

2 is the 𝑖-th sample variance.

The process mean and variance are estimated from the data set and we have
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Fig. 6. The two-sided steady-state OC ARL for the ELR, CH, SJ and CPC charts
when the process variance increases or decreases.

�̂� = 200.251 and �̂� = 3.306. In this example, the in-control ARL is chosen
to be 200 and the corresponding control limit is 1.0445. The chart is shown
as a plot in Figure 7. We can see that the curve has a suddenly increase
from sample 6 and this point exceeds the control limit, which is related to
the process variance. When this point is removed, we obtain �̂� = 200.22 and
�̂� = 3.1, and our second ELR chart is given as a plot in Figure 8. The OC signal
is triggered at the original sample 16 and this sample is also related to the
process variance. When these two samples are removed, we obtain �̂� = 200.23
and �̂� = 2.93, and our third ELR chart is given as a plot in Figure 9. It shows
that there is no point falling outside the control limit.

8 Conclusions

In this paper, we propose a new method for monitoring the process variance
including the increase and decrease by using a single chart. The proposed
scheme integrates the EWMA procedure with the GLR statistics. The main
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Fig. 7. The ELR chart for the cylinder data with the dashed horizontal line indi-
cating its control limit.
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Fig. 8. The ELR chart for the cylinder data with the dashed horizontal line indi-
cating its control limit after removing sample 6.

advantages of this control chart are: (1) it can be easily designed and con-
structed; (2) it can effectively detect the decrease in variability; (3) it is able
to handle the case that the sample size is one, which is also very important in
many practical applications. Since the ELR chart for process dispersion per-
forms better than most of the other procedure for detecting both increases and
decreases in process dispersion, we recommend its use. We have provided opti-
mal parameters that can be used as a design aid in selecting specific parameter
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Fig. 9. The ELR chart for the cylinder data with the dashed horizontal line indi-
cating its control limit after removing samples 6 and 16.

values for this process dispersion control chart.

It is worth noting that the ELR chart is based on independent observations,
so, the chart is expected to be affected by autocorrelation. In addition, the new
chart is based on the normality assumption, and thus its robustness deserves
further investigation.
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Table 1
Optimal parameters of one-sided ELR charts based on sample size of n=1

In-Control ARL
𝜎 100 200 300 400 500

increasing
1.1

(𝜆, ℎ) (0.03, 1.0343) (0.02, 1.029) (0.01, 1.0135) (0.01, 1.016) (0.01, 1.0183)
ARL𝑚𝑖𝑛 44.34 69.59 88.87 103.78 117.19

1.2
(𝜆, ℎ) (0.06, 1.0977) (0.03, 1.0547) (0.02, 1.0382) (0.02, 1.0784) (0.03, 1.0860)

ARL𝑚𝑖𝑛 25.66 36.49 44.21 49.72 55.03
1.3

(𝜆, ℎ) (0.07, 1.1231) (0.06, 1.1445) (0.04, 1.1015) (0.04, 1.1150) (0.04, 1.1260)
ARL𝑚𝑖𝑛 17.29 23.29 27.36 30.27 32.63

1.4
(𝜆, ℎ) (0.09, 1.1758) (0.06, 1.1445) (0.05, 1.1375) (0.05, 1.1546) (0.05, 1.1685)

ARL𝑚𝑖𝑛 12.75 16.57 19.22 21.02 22.39
1.5

(𝜆, ℎ) (0.13, 1.2891) (0.10, 1.2852) (0.09, 1.2954) (0.08,1.2829) (0.06, 1.2129)
ARL𝑚𝑖𝑛 10.01 12.64 14.35 15.57 16.61

1.6
(𝜆, ℎ) (0.16, 1.3828) (0.14, 1.4433) (0.09, 1.2954) (0.10,1.3759) (0.08, 1.3061)

ARL𝑚𝑖𝑛 8.18 10.20 11.41 12.22 12.97
1.7

(𝜆, ℎ) (0.18, 1.4453) (0.17, 1.5633) (0.12,1.4257) (0.14, 1.5697) (0.11, 1.4555)
ARL𝑚𝑖𝑛 6.89 8.42 9.34 10.08 10.57

2.0
(𝜆, ℎ) (0.23, 1.6143) (0.18, 1.6062) (0.22,1.9009) (0.21, 1.9358) (0.16, 1.7199)

ARL𝑚𝑖𝑛 4.72 5.55 6.06 6.41 6.70

decreasing
0.9

(𝜆, ℎ) (0.01, 1.0055) (0.02, 1.0293) (0.01, 1.0132) (0.01, 1.0158) (0.01, 1.0179)
ARL𝑚𝑖𝑛 49.51 76.78 97.27 113.81 127.68

0.8
(𝜆, ℎ) (0.04, 1.0538) (0.04, 1.0787) (0.03, 1.0643) (0.03, 1.0726) (0.03, 1.0791)

ARL𝑚𝑖𝑛 29.22 40.87 48.30 53.94 58.54
0.7

(𝜆, ℎ) (0.07, 1.1186) (0.07, 1.1625) (0.06, 1.1562) (0.07,1.2065) (0.06, 1.1845)
ARL𝑚𝑖𝑛 19.17 25.04 28.98 31.74 33.96

0.6
(𝜆, ℎ) (0.14, 1.2961) (0.11, 1.2828) (0.12,1.3547) (0.10, 1.3113) (0.09, 1.2939)

ARL𝑚𝑖𝑛 13.50 16.93 19.12 20.67 21.91
0.5

(𝜆, ℎ) (0.25, 1.5969) (0.18, 1.5031) (0.18, 1.5604) (0.16, 1.5264) (0.16, 1.5547)
ARL𝑚𝑖𝑛 9.79 12.11 13.47 14.43 15.21
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Table 2
Optimal parameters of one-sided ELR charts based on sample size of n=5

In-Control ARL
𝜎 100 200 300 400 500

increasing
1.1

(𝜆, ℎ) (0.05, 1.0161 ) (0.04, 1.0172) (0.03, 1.0140) (0.03, 1.0159) (0.03, 1.0175)
ARL𝑚𝑖𝑛 23.53 33.09 39.43 44.41 48.20

1.2
(𝜆, ℎ) (0.10, 1.0437 ) (0.08, 1.0445) (0.08, 1.0522) (0.06, 1.0398) (0.06, 1.0430)

ARL𝑚𝑖𝑛 11.10 14.35 16.38 17.79 18.99
1.3

(𝜆, ℎ) (0.16, 1.0820) (0.15, 1.1008) (0.15, 1.1158) (0.09, 1.0668) (0.13, 1.1132)
ARL𝑚𝑖𝑛 6.79 8.38 9.40 10.11 10.63

1.4
(𝜆, ℎ) (0.29, 1.1805 ) (0.21, 1.1545) (0.21, 1.1758) (0.15, 1.1262) (0.18, 1.1685)

ARL𝑚𝑖𝑛 4.75 5.69 6.27 6.69 7.01
1.5

(𝜆, ℎ) (0.33, 1.2133 ) (0.27, 1.2125) (0.26, 1.2301) (0.19, 1.1691) (0.21, 1.2039)
ARL𝑚𝑖𝑛 3.60 4.23 4.62 4.90 5.10

1.6
(𝜆, ℎ) (0.42, 1.2925 ) (0.30, 1.2429) (0.32, 1.2976) (0.24, 1.2258) (0.31, 1.3285)

ARL𝑚𝑖𝑛 2.90 3.35 3.61 3.83 3.99
1.7

(𝜆, ℎ) (0.43, 1.3035 ) (0.34, 1.2844) (0.33, 1.3101) (0.34, 1.3484) (0.33, 1.3555)
ARL𝑚𝑖𝑛 2.43 2.78 2.98 3.12 3.23

2.0
(𝜆, ℎ) (0.53, 1.3992 ) (0.50, 1.4653) (0.45, 1.4578) (0.45, 1.4945) (0.40, 1.4515)

ARL𝑚𝑖𝑛 1.70 1.86 1.97 2.04 2.10

decreasing
0.9

(𝜆, ℎ) (0.04, 1.0115) (0.05, 1.0227) (0.03, 1.0136) (0.03, 1.0154) (0.03, 1.0168)
ARL𝑚𝑖𝑛 25.40 35.10 41.21 46.05 49.96

0.8
(𝜆, ℎ) (0.09, 1.0365) (0.10, 1.0559) (0.10, 1.0638) (0.10, 1.0696) (0.09, 1.0652)

ARL𝑚𝑖𝑛 11.78 14.61 16.50 17.87 18.9
0.7

(𝜆, ℎ) (0.24, 1.1316) (0.21, 1.1387) (0.20, 1.1465) (0.19, 1.1485) (0.18, 1.1465)
ARL𝑚𝑖𝑛 6.89 8.08 8.96 9.56 10.01

0.6
(𝜆, ℎ) (0.39, 1.2437) (0.36, 1.2687) (0.35, 1.2859) (0.34, 1.2949) (0.29, 1.2549)

ARL𝑚𝑖𝑛 4.32 5.13 5.61 5.97 6.22
0.5

(𝜆, ℎ) (0.60, 1.4412) (0.55, 1.4648) (0.55, 1.5063) (0.50, 1.4727) (0.43, 1.4086)
ARL𝑚𝑖𝑛 3.00 3.52 3.83 4.04 4.22
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Table 3
Optimal parameters of one-sided ELR charts based on sample size of n=10

In-Control ARL
𝜎 100 200 300 400 500

increasing
1.1

(𝜆, ℎ) (0.07, 1.0133) (0.07, 1.0186) (0.04, 1.0105) (0.04, 1.0117) (0.04, 1.0127)
ARL𝑚𝑖𝑛 16.69 22.24 25.94 28.50 30.66

1.2
(𝜆, ℎ) (0.13, 1.0313) (0.13, 1.0418) (0.12, 1.0435) (0.11, 1.0428) (0.11, 1.0457)

ARL𝑚𝑖𝑛 7.33 9.02 10.10 10.91 11.47
1.3

(𝜆, ℎ) (0.25, 1.0750) (0.23, 1.0869) (0.20, 1.0826) (0.19, 1.0841) (0.19, 1.0895)
ARL𝑚𝑖𝑛 4.33 5.18 5.67 6.06 6.33

1.4
(𝜆, ℎ) (0.33, 1.1078) (0.33, 1.1377) (0.26, 1.1148) (0.26, 1.1244) (0.25, 1.1254)

ARL𝑚𝑖𝑛 3.02 3.50 3.80 4.02 4.19
1.5

(𝜆, ℎ) (0.42, 1.1476) (0.41, 1.1816) (0.34, 1.1611) (0.37, 1.1933) (0.35, 1.1906)
ARL𝑚𝑖𝑛 2.29 2.61 2.80 2.95 3.05

1.6
(𝜆, ℎ) (0.62, 1.2484) (0.55, 1.2660) (0.51, 1.2701) (0.47, 1.2621) (0.39, 1.2185)

ARL𝑚𝑖𝑛 1.85 2.08 2.21 2.32 2.40
1.7

(𝜆, ℎ) (0.62, 1.2484) (0.61, 1.3046) (0.54, 1.2906) (0.47, 1.2621) (0.50, 1.3001)
ARL𝑚𝑖𝑛 1.58 1.74 1.84 1.92 1.97

2.0
(𝜆, ℎ) (0.69, 2883) (0.66, 1.3379) (0.63, 1.3563) (0.50, 1.2836) (0.61, 1.3884)

ARL𝑚𝑖𝑛 1.21 1.27 1.31 1.36 1.37

decreasing
0.9

(𝜆, ℎ) (0.08, 1.0156) (0.06, 1.0146) (0.06, 1.0172) (0.05, 1.0151) (0.06, 1.0204)
ARL𝑚𝑖𝑛 17.35 22.87 26.57 29.14 31.31

0.8
(𝜆, ℎ) (0.20, 1.0531) (0.20, 1.0676) (0.18, 1.0664) (0.16, 1.0624) (0.15, 1.0611)

ARL𝑚𝑖𝑛 7.25 8.89 9.89 10.62 11.14
0.7

(𝜆, ℎ) (0.34, 1.1055) (0.33, 1.1247) (0.32, 1.1331) (0.33,1.1477) (0.31, 1.1437)
ARL𝑚𝑖𝑛 4.07 4.79 5.24 5.56 5.80

0.6
(𝜆, ℎ) (0.59, 1.2227) (0.54, 1.2375) (0.52, 1.2606) (0.50, 1.2497) (0.50, 1.2619)

ARL𝑚𝑖𝑛 2.63 3.00 3.24 3.41 3.56
0.5

(𝜆, ℎ) (0.84, 1.4062) (0.82, 1.4625) (0.83, 1.5145) (0.61, 1.3278) (0.62, 1.3505)
ARL𝑚𝑖𝑛 1.68 2.05 2.26 2.37 2.43
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Table 4
zero-state ARL comparison for the upper-sided ELR, SJ and CH charts: increases
in process standard deviation (n=5, IC ARL=200)

𝜎 𝜆 = 0.05 0.1 0.2 0.3 0.5 0.7 0.9 1.0

ELR
ℎ+=1.0236 1.0595 1.1454 1.2429 1.4653 1.7187 1.9966 2.141

1.0 200.21 199.92 200.71 199.87 198.99 199.82 201.02 201.25
1.1 33.54 35.29 39.89 44.21 50.96 55.68 59.16 60.22
1.2 14.63 14.38 15.29 16.68 19.54 22.12 24.18 24.90
1.3 9.10 8.52 8.49 8.92 10.07 11.34 12.45 12.80
1.4 6.52 5.95 5.72 5.80 6.30 6.91 7.54 7.76
1.5 5.07 4.57 4.29 4.25 4.44 4.77 5.11 5.27
1.6 4.17 3.73 3.44 3.37 3.43 3.59 3.80 3.90
1.7 3.53 3.14 2.88 2.81 2.78 2.87 3.00 3.06
1.8 3.07 2.74 2.50 2.41 2.38 2.41 2.49 2.53
1.9 2.72 2.43 2.22 2.13 2.08 2.10 2.14 2.17
2.0 2.44 2.19 2.00 1.93 1.87 1.87 1.90 1.92

SJ
𝐿+
𝑊 = 1.568 1.943 2.27 2.433 2.584 2.650 2.685 2.693

1.1 32.26 35.22 39.77 43.48 49.42 55.04 61.52 65.07
1.2 14.45 14.97 16.03 17.22 19.58 22.31 26.03 28.28
1.3 9.17 9.09 9.22 9.56 10.45 11.73 13.72 15.05
1.4 6.72 6.53 6.37 6.41 6.72 7.34 8.45 9.25
1.5 5.36 5.13 4.89 4.81 4.87 5.17 5.82 6.32
1.6 4.50 4.27 4.00 3.87 3.81 3.95 4.35 4.67
1.7 3.92 3.69 3.41 3.26 3.14 3.20 3.45 3.66
1.8 3.49 3.29 3.00 2.83 2.69 2.71 2.85 3.01
1.9 3.17 2.97 2.68 2.53 2.38 2.35 2.45 2.56
2.0 2.92 2.72 2.45 2.29 2.14 2.10 2.17 2.24

CH
𝐿+
𝑄 = 1.055 1.303 1.513 1.598 1.657 1.667 1.652 1.634

1.1 43.01 44.19 46.52 48.51 52.50 57.11 62.38 65.07
1.2 18.09 18.23 18.81 19.48 21.12 23.46 26.56 28.28
1.3 10.75 10.57 10.55 10.69 11.27 12.36 14.03 15.05
1.4 7.62 7.36 7.14 7.08 7.21 7.72 8.65 9.25
1.5 5.97 5.69 5.41 5.26 5.19 5.42 5.95 6.32
1.6 4.96 4.69 4.39 4.21 4.05 4.13 4.44 4.67
1.7 4.28 4.03 3.73 3.53 3.33 3.34 3.51 3.66
1.8 3.80 3.56 3.27 3.06 2.85 2.80 2.92 3.01
1.9 3.44 3.22 2.92 2.73 2.50 2.44 2.50 2.56
2.0 3.17 2.96 2.67 2.47 2.25 2.18 2.20 2.24
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Table 5
Steady-state ARL comparison for the upper-sided ELR, SJ and CH charts: increases
in process standard deviation (n=5, IC ARL=200)

𝜎 𝜆 = 0.05 0.1 0.2 0.3 0.5 0.7 0.9 1.0

ELR
ℎ+=1.0236 1.0595 1.1454 1.2429 1.4653 1.7187 1.9966 2.141

1.0 200.85 200.34 200.68 199.53 200.72 198.18 201.43 198.21
1.1 29.88 32.91 38.65 43.14 50.15 54.50 59.10 60.22
1.2 12.54 12.95 14.50 16.22 19.38 22.07 24.15 24.90
1.3 7.64 7.53 7.96 8.50 9.87 11.23 12.38 12.80
1.4 5.45 5.24 5.27 5.48 6.10 6.82 7.52 7.76
1.5 4.28 4.02 3.94 4.01 4.30 4.71 5.13 5.27
1.6 3.50 3.29 3.17 3.17 3.32 3.55 3.80 3.90
1.7 2.97 2.78 2.66 2.64 2.70 2.83 2.98 3.06
1.8 2.60 2.42 2.30 2.27 2.30 2.38 2.48 2.53
1.9 2.32 2.16 2.05 2.01 2.02 2.07 2.14 2.17
2.0 2.10 1.97 1.86 1.83 1.82 1.84 1.90 1.91

SJ
𝐿+
𝑊=1.568 1.943 2.272 2.433 2.584 2.650 2.685 2.693

1.1 33.79 35.58 39.37 43.17 49.74 54.74 61.63 65.07
1.2 15.64 15.35 15.97 17.10 19.46 22.17 26.09 28.28
1.3 10.05 9.43 9.23 9.52 10.39 11.67 13.70 15.05
1.4 7.42 6.83 6.42 6.42 6.67 7.36 8.40 9.25
1.5 5.97 5.39 4.94 4.81 4.84 5.18 5.84 6.32
1.6 5.01 4.51 4.06 3.89 3.82 3.96 4.35 4.67
1.7 4.39 3.89 3.46 3.29 3.16 3.21 3.45 3.66
1.8 3.92 3.46 3.04 2.87 2.73 2.71 2.85 3.01
1.9 3.52 3.13 2.75 2.56 2.38 2.37 2.46 2.56
2.0 3.25 2.88 2.51 2.33 2.17 2.12 2.17 2.24

CH
𝐿+
𝑄 = 1.055 1.303 1.513 1.598 1.657 1.667 1.652 1.634

1.1 40.89 42.51 45.17 47.31 51.94 57.14 62.37 65.07
1.2 16.65 17.14 18.01 18.78 20.54 23.23 26.48 28.28
1.3 9.71 9.67 9.88 10.23 10.88 12.18 14.07 15.05
1.4 6.82 6.66 6.58 6.62 6.91 7.55 8.63 9.25
1.5 5.29 5.10 4.96 4.87 4.97 5.32 5.85 6.32
1.6 4.39 4.20 3.99 3.88 3.84 4.00 4.41 4.67
1.7 3.78 3.60 3.38 3.24 3.15 3.24 3.47 3.66
1.8 3.34 3.18 2.95 2.81 2.68 2.72 2.89 3.01
1.9 3.02 2.87 2.63 2.50 2.36 2.37 2.47 2.56
2.0 2.80 2.62 2.40 2.27 2.13 2.12 2.18 2.24
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Table 6
SDRL performance comparisons for dispersion: increase in process standard devi-
ation (n=5, IC ARL=200)

𝜆 = 0.1 𝜆 = 0.3
𝜎 ELR SJ CH ELR SJ CH

Zero-state
1.0 194.42 197.00 193.21 198.52 197.44 196.48
1.1 30.65 30.80 39.78 41.74 40.85 46.78
1.2 10.39 11.05 14.66 14.84 15.06 17.32
1.3 5.44 5.93 7.50 7.28 7.58 8.67
1.4 3.53 3.89 4.58 4.33 4.67 5.25
1.5 2.56 2.82 3.23 2.99 3.26 3.55
1.6 2.03 2.19 2.44 2.21 2.44 2.63
1.7 1.68 1.78 1.96 1.75 1.95 2.08
1.8 1.42 1.50 1.63 1.44 1.62 1.71
1.9 1.25 1.30 1.40 1.22 1.40 1.46
2.0 1.11 1.17 1.22 1.08 1.22 1.27

Steady-state
1.0 192.38 199.08 195.26 198.46 198.68 197.95
1.1 30.20 30.96 40.09 42.01 41.15 45.78
1.2 10.44 11.39 14.79 14.70 15.16 17.20
1.3 5.33 6.25 7.58 7.22 7.73 8.70
1.4 3.49 4.18 4.65 4.33 4.69 5.31
1.5 2.56 3.10 3.26 2.95 3.33 3.62
1.6 1.97 2.44 2.50 2.17 2.46 2.61
1.7 1.62 2.03 1.99 1.75 1.99 2.10
1.8 1.38 1.75 1.69 1.44 1.66 1.73
1.9 1.19 1.53 1.42 1.20 1.43 1.46
2.0 1.05 1.37 1.26 1.05 1.26 1.26
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Table 7
Zero-state ARL comparison for the lower-sided ELR, SJ and CH charts: decreases
in process standard deviation (n=5, IC ARL=200)

𝜎 𝜆 = 0.05 0.1 0.2 0.3 0.5 0.7 0.9 1.0

ELR
ℎ−=1.0227 1.0558 1.1316 1.2153 1.4082 1.6599 2.075 2.575

1.00 199.24 198.67 201.89 201.40 198.86 198.40 201.10 198.05
0.95 71.75 78.60 90.77 100.13 113.67 126.13 142.31 155.89
0.90 35.01 37.36 44.74 51.93 65.52 79.41 99.66 120.90
0.85 21.73 21.68 24.66 28.79 38.20 50.01 68.94 92.67
0.80 15.62 14.63 15.40 17.37 23.07 31.62 47.40 70.52
0.75 12.26 10.99 10.74 11.49 14.67 20.38 32.39 52.67
0.70 10.18 8.85 8.15 8.28 9.85 13.36 22.07 38.70
0.65 8.79 7.47 6.57 6.38 7.03 9.06 15.06 27.93
0.60 7.80 6.53 5.56 5.20 5.32 6.41 10.37 19.83
0.55 7.07 5.85 4.86 4.43 4.25 4.75 7.23 13.86
0.50 6.51 5.35 4.38 3.88 3.54 3.67 5.17 9.48

SJ
𝐿−
𝑊 =2.21 2.84 3.521 3.95 4.525 4.855 5.038 5.05

0.95 96.45 108.98 124.64 134.86 150.09 156.58 163.03 163.10
0.90 51.60 61.36 77.63 89.45 109.58 122.41 131.00 132.45
0.85 30.78 36.68 48.45 59.28 78.84 92.90 104.23 106.92
0.80 20.01 23.37 30.76 38.92 55.65 69.50 81.28 84.62
0.75 14.02 15.65 20.05 25.60 38.83 51.20 62.06 66.24
0.70 10.25 11.06 13.51 16.99 26.57 37.00 47.57 51.42
0.65 7.82 8.18 9.47 11.59 18.16 26.43 35.41 38.80
0.60 6.16 6.29 6.96 8.16 12.38 18.48 25.88 29.19
0.55 4.96 4.96 5.27 5.93 8.58 12.80 18.54 21.24
0.50 4.09 4.03 4.12 4.49 6.02 8.79 13.05 15.30

CH
𝐿−
𝑄 =3.89 3.72 3.67 3.685 3.74 3.77 3.731 3.69

0.95 87.19 93.49 111.73 126.24 144.73 156.35 161.42 163.10
0.90 48.67 50.53 64.45 78.78 102.38 120.58 129.64 132.45
0.85 32.07 31.03 38.63 49.20 71.07 90.66 102.23 106.92
0.80 23.53 21.07 24.64 31.55 49.14 66.77 79.89 84.62
0.75 18.19 15.50 16.69 20.95 33.57 48.71 60.98 66.24
0.70 14.68 12.01 12.04 14.28 22.91 34.75 46.41 51.42
0.65 12.19 9.64 9.08 10.25 15.84 24.79 34.36 38.80
0.60 10.33 7.99 7.12 7.61 11.05 17.35 25.21 29.19
0.55 8.85 6.73 5.80 5.88 7.89 12.10 18.08 21.24
0.50 7.68 5.77 4.80 4.71 5.73 8.45 12.72 15.30
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Table 8
Steady-state ARL comparison for the lower-sided ELR, SJ and CH charts: decreases
in process standard deviation (n=5, IC ARL=200)

𝜎 𝜆 = 0.05 0.1 0.2 0.3 0.5 0.7 0.9 1.0

ELR
ℎ−=1.0227 1.0558 1.1316 1.2153 1.4081 1.6599 2.075 2.575

1.00 199.28 198.85 201.30 201.29 199.15 198.66 201.40 198.20
0.95 63.17 72.23 87.13 97.19 111.83 125.04 142.32 155.54
0.90 29.30 33.14 41.75 49.66 63.69 78.44 98.93 120.79
0.85 17.27 18.41 22.29 26.98 36.92 49.19 68.10 93.00
0.80 12.08 12.04 13.54 15.89 21.98 30.89 46.92 70.36
0.75 9.29 8.82 9.16 10.25 13.76 19.75 31.94 52.48
0.70 7.64 6.98 6.82 7.23 9.11 12.81 21.60 38.58
0.65 6.55 5.82 5.42 5.47 6.36 8.59 14.77 27.96
0.60 5.78 5.05 4.52 4.38 4.75 5.99 10.07 19.87
0.55 5.22 4.50 3.92 3.69 3.72 4.37 6.94 13.87
0.50 4.81 4.11 3.50 3.22 3.06 3.35 4.89 9.48

SJ
𝐿−
𝑊 =2.21 2.84 3.521 3.95 4.525 4.855 5.038 5.05

0.95 98.41 108.81 124.47 135.33 149.38 157.39 162.62 163.84
0.90 53.96 61.89 78.14 89.43 109.70 121.46 131.65 132.68
0.85 32.66 37.06 48.49 59.16 78.78 92.38 103.86 107.35
0.80 21.46 23.53 30.64 38.76 55.74 69.26 81.93 84.92
0.75 15.15 15.93 20.00 25.45 38.64 51.32 62.47 66.71
0.70 11.21 11.37 13.63 17.01 26.63 37.21 47.27 51.39
0.65 8.58 8.44 9.54 11.66 18.15 26.54 35.34 39.13
0.60 6.81 6.49 6.97 8.15 12.37 18.43 25.82 28.95
0.55 5.53 5.16 5.31 5.95 8.53 12.79 18.48 21.33
0.50 4.56 4.22 4.18 4.49 6.01 8.83 13.05 15.26

CH
𝐿−
𝑄 =3.89 3.72 3.67 3.685 3.74 3.77 3.731 3.69

0.95 69.60 84.90 108.52 123.04 142.91 157.47 161.61 163.84
0.90 36.07 43.93 61.18 76.51 101.77 119.65 129.75 132.68
0.85 22.29 25.73 36.23 48.01 70.30 90.41 102.77 107.35
0.80 15.59 16.85 22.43 30.18 48.33 66.60 79.32 84.92
0.75 11.72 11.94 14.78 19.51 33.14 48.36 61.27 66.71
0.70 9.18 9.04 10.46 13.17 22.28 34.59 46.52 51.39
0.65 7.48 7.13 7.73 9.29 15.30 24.37 34.25 39.13
0.60 6.26 5.81 5.97 6.83 10.60 17.24 25.00 28.95
0.55 5.35 4.86 4.75 5.19 7.41 11.84 18.15 21.33
0.50 4.61 4.12 3.92 4.08 5.41 8.23 12.65 15.26
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Table 9
SDRL performance comparisons for dispersion: decrease in process standard devi-
ation (n=5, IC ARL=200)

𝜆 = 0.1 𝜆 = 0.3
𝜎 ELR SJ CH ELR SJ CH

Zero-state
1.00 190.13 198.79 186.23 195.78 198.52 196.64
0.95 68.56 105.64 81.99 96.08 132.00 123.29
0.90 28.21 57.55 39.28 46.83 89.17 74.25
0.85 13.19 32.45 20.45 24.11 57.08 45.09
0.80 7.04 18.84 11.71 12.92 36.32 27.78
0.75 4.16 11.37 7.37 7.30 23.04 17.00
0.70 2.65 7.19 4.92 4.36 14.53 10.61
0.65 1.81 4.77 3.46 2.71 9.12 6.80
0.60 1.26 3.26 2.55 1.77 5.92 4.45
0.55 0.91 2.30 1.94 1.21 3.78 2.94
0.50 0.67 1.68 1.51 0.85 2.53 2.05

Steady-state
1.00 189.46 197.79 186.42 195.64 198.01 194.58
0.95 69.48 104.88 81.54 96.80 133.51 121.99
0.90 28.27 57.60 38.62 47.60 87.83 75.52
0.85 13.40 32.77 20.50 23.97 55.73 45.57
0.80 7.20 18.76 11.74 12.98 35.95 27.74
0.75 4.46 11.53 7.40 7.43 23.03 17.04
0.70 3.04 7.48 5.01 4.43 14.73 10.47
0.65 2.25 4.98 3.64 2.82 9.42 6.84
0.60 1.77 3.51 2.72 1.94 5.98 4.45
0.55 1.47 2.58 2.12 1.40 3.85 3.03
0.50 1.27 1.93 1.68 1.08 2.60 2.10
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Table 10
Optimal OC ARL performance comparisons for dispersion: increase in process stan-
dard deviation (n=5, IC ARL=200)

Zero-state
𝜎𝑜𝑝𝑡 = 1.2 𝜎𝑜𝑝𝑡 = 1.4

𝜎 ELR SJ CH CPC ELR SJ CH CPC

1.0 199.97 199.01 200.31 200.24 199.55 198.37 201.44 198.53
1.1 34.55 29.92 42.92 34.72 40.27 39.79 49.29 40.11
1.2 14.32 13.96 18.12 14.19 15.44 16.02 19.66 15.18
1.3 8.65 9.04 10.76 8.44 8.52 9.21 10.78 8.31
1.4 6.12 6.71 7.62 5.95 5.70 6.37 7.08 5.56
1.5 4.73 5.40 5.97 4.59 4.26 4.88 5.25 4.15
1.6 3.85 4.56 4.95 3.74 3.42 4.01 4.18 3.34
1.7 3.26 3.98 4.28 3.16 2.87 3.40 3.51 2.80
1.8 2.84 3.55 3.81 2.75 2.48 2.99 3.04 2.42
1.9 2.52 3.23 3.44 2.44 2.20 2.69 2.70 2.15
2.0 2.27 2.98 3.17 2.20 1.99 2.45 2.44 1.95

Steady-state
𝜎𝑜𝑝𝑡 = 1.2 𝜎𝑜𝑝𝑡 = 1.4

𝜎 ELR SJ CH CPC ELR SJ CH CPC

1.1 31.84 34.42 40.82 32.56 39.09 39.07 48.12 39.12
1.2 12.76 16.61 16.71 12.99 14.67 15.87 19.01 14.71
1.3 7.56 10.87 9.74 7.61 7.97 9.21 10.22 7.98
1.4 5.30 8.17 6.82 5.35 5.30 6.41 6.68 5.30
1.5 4.10 6.59 5.30 4.13 3.94 4.95 4.90 3.95
1.6 3.34 5.58 4.39 3.38 3.14 4.06 3.89 3.18
1.7 2.83 4.86 3.79 2.86 2.65 3.48 3.23 2.67
1.8 2.48 4.33 3.36 2.49 2.29 3.06 2.78 2.32
1.9 2.21 3.94 3.06 2.23 2.04 2.74 2.48 2.06
2.0 2.00 3.62 2.81 2.02 1.86 2.53 2.25 1.87
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Table 11
Optimal OC ARL performance comparisons for dispersion: decrease in process stan-
dard deviation (n=5, IC ARL=200)

Zero-state
𝜎𝑜𝑝𝑡 = 0.8 𝜎𝑜𝑝𝑡 = 0.6

𝜎 ELR SJ CH CPC ELR SJ CH CPC

1.0 199.27 200.68 198.99 199.49 200.12 200.68 199.96 199.44
0.9 37.47 49.24 50.64 38.37 55.80 49.24 64.45 59.59
0.8 14.66 19.36 21.06 14.17 18.79 19.36 24.64 19.57
0.7 8.86 10.07 12.00 8.25 8.56 10.07 12.04 8.30
0.6 6.53 6.11 7.99 5.97 5.14 6.11 7.14 4.73
0.5 5.36 4.09 5.77 4.82 3.73 4.09 4.80 3.35
0.4 4.69 2.94 4.36 4.16 3.12 2.94 3.47 2.67
0.3 4.08 2.22 3.37 4.00 2.91 2.22 2.63 2.17
0.2 4.00 1.76 2.62 3.98 2.41 1.76 2.02 2.00

Steady-state
𝜎𝑜𝑝𝑡 = 0.8 𝜎𝑜𝑝𝑡 = 0.6

𝜎 ELR SJ CH CPC ELR SJ CH CPC

1.0 199.81 200.14 199.57 199.72 200.32 200.71 199.94 200.18
0.9 33.28 52.38 50.51 35.05 53.58 52.38 64.69 58.11
0.8 12.02 21.35 21.06 12.26 17.49 21.35 24.69 18.73
0.7 7.02 11.42 11.95 7.01 7.62 11.42 12.03 7.78
0.6 5.06 7.00 7.99 5.01 4.32 7.00 7.13 4.36
0.5 4.11 4.71 5.77 4.06 3.13 4.71 4.80 3.06
0.4 3.59 3.39 4.36 3.52 2.55 3.39 3.47 2.46
0.3 3.24 2.55 3.37 3.29 2.26 2.55 2.62 2.04
0.2 3.09 1.95 2.62 3.16 1.99 1.95 2.02 1.90
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Table 12
Two-sided zero-state OC ARL comparison(n=5, IC ARL=200)

𝜆 = 0.05 𝜆 = 0.1
𝜎 ELR SJ CH CPC1 ELR SJ CH CPC2

0.5 6.59 5.36 5.34 6.50 5.45 4.95 4.78 4.85
0.6 7.91 8.13 7.41 7.77 6.68 7.89 6.94 5.99
0.7 10.35 13.90 11.15 10.14 9.14 14.59 11.24 8.38
0.8 16.03 28.61 19.88 15.71 15.69 33.72 22.77 15.04
0.9 39.17 84.47 52.98 38.04 46.36 103.40 69.98 48.49
1.0 200.92 200.46 200.02 201.89 200.54 199.43 201.59 199.36
1.1 38.21 45.05 59.73 38.33 41.24 48.89 63.35 43.86
1.2 15.72 19.33 21.74 15.87 15.44 19.03 22.68 15.94
1.3 9.56 11.95 11.95 9.78 8.96 11.19 12.04 9.12
1.4 6.83 8.73 8.14 6.99 6.24 7.90 7.95 6.33
1.5 5.29 6.92 6.24 5.43 4.76 6.12 6.00 4.84
1.6 4.30 5.75 5.09 4.42 3.85 5.07 4.87 3.91
1.7 3.65 4.98 4.37 3.74 3.26 4.35 4.13 3.30
1.8 3.17 4.44 3.86 3.25 2.81 3.84 3.61 2.85
1.9 2.80 4.01 3.47 2.87 2.50 3.47 3.24 2.54
2.0 2.52 3.68 3.18 2.59 2.26 3.18 2.96 2.28

𝜆 = 0.2 𝜆 = 0.3
𝜎 ELR SJ CH CPC3 ELR SJ CH CPC4

0.5 4.52 5.05 4.64 3.99 4.13 5.66 5.06 3.52
0.6 5.83 8.94 7.45 5.21 5.68 11.14 9.10 5.04
0.7 8.85 19.19 14.16 8.12 9.71 25.90 19.70 9.28
0.8 18.31 49.25 34.79 17.94 23.49 65.93 50.66 25.00
0.9 66.62 137.99 107.46 68.42 90.12 164.41 138.61 92.69
1.0 199.79 200.12 199.65 200.01 200.81 201.47 199.88 200.18
1.1 47.24 56.94 67.24 50.28 52.61 64.58 70.86 56.02
1.2 16.71 21.13 24.26 16.99 18.38 23.48 25.79 18.59
1.3 8.97 11.40 12.48 9.14 9.44 12.06 12.98 9.53
1.4 5.95 7.58 7.97 6.14 6.05 7.78 8.12 6.17
1.5 4.44 5.74 5.79 4.60 4.41 5.68 5.79 4.56
1.6 3.53 4.61 4.58 3.69 3.46 4.47 4.48 3.62
1.7 2.96 3.90 3.85 3.10 2.86 3.74 3.69 3.01
1.8 2.56 3.41 3.33 2.68 2.46 3.24 3.19 2.59
1.9 2.27 3.07 2.96 2.37 2.17 2.87 2.80 2.29
2.0 2.04 2.78 2.68 2.13 1.96 2.60 2.50 2.07

35


