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Abstract

In practice, the presence of influential observations may lead to misleading results in
variable screening problems. We, therefore, propose a robust variable screening procedure
for high dimensional data analysis in this paper. Our method consists of two steps. The
first step is to define a new high dimensional influence measure and propose a novel in-
fluence diagnostic procedure to remove those unusual observations. The second step is to
utilize the sure independence screening procedure based on distance correlation to select
important variables in high dimensional regression analysis. The new influence measure
and diagnostic procedure that we developed are model free. To confirm the effectiveness
of the proposed method, we conduct simulation studies and a real-life data analysis to
illustrate the merits of the proposed approach over some competing methods. Both the
simulation results and the real-life data analysis demonstrate that the proposed method
can greatly control the adverse effect after detecting and removing those unusual observa-
tions, and performs better than the competing methods.
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1 Introduction

Nowadays, modern scientific research encounters data set with tens of thousands of variables,
and variable screening has received a lot of attention in high dimensional data analysis. Ever
since Fan and Lv [5] proposed sure independence screening (SIS) methodology for linear regres-
sion which screens variables by ranking their marginal correlations with the response variable,
various variable screening procedures for high dimensional data have been proposed and studied
for different models in recent years. Fan et al. [7] and Fan and Song [8] further extended the SIS
methodology to generalized linear models. Hall and Miller [9] studied the problem of nonlinear
variable screening by generalized correlation ranking. Fan et al. [4] proposed a nonparamet-
ric marginal screening procedure for additive models based on 𝐵-spline expansion. Fan et al.
[6] extended the nonparametric 𝐵-spline method to varying coefficient models and proposed a
marginal sure screening procedure. Liu et al. [13] proposed a local kernel-based marginal sure
screening procedure for varying coefficient models and established its sure screening property.

The aforementioned model-based screening procedures would perform well when the under-
lying models are correctly specified, but their performance may be quite poor in the presence
of model mis-specification. Thus, in high dimensional data analysis, model-free sure screening
procedures are appealing and have been developed in recent literatures. Zhu et al. [21] proposed
a sure independent ranking and screening (SIRS) procedure which avoids the specification of
a particular model structure. Motivated by this work, He et al. [10] proposed a framework
called quantile-adaptive model-free screening. Li et al. [12] developed the sure independence
screening procedure based on distance correlation (DC-SIS) procedure, which will be applied
later in this paper. Mai and Zou [14] applied the fused Kolmogorov filter to deal with variable
screening problems. Cui et al. [2] proposed a marginal variable screening procedure based on
empirical conditional distribution function.

Let y = (𝑌1, . . . , 𝑌𝑛)
⊤ be an 𝑛-vector of responses, and X = (x⊤1 , . . . , x

⊤
𝑛 )

⊤ = (𝑋1, . . . , 𝑋𝑝)
be the associated covariate vectors with sample size 𝑛 and number of covariates 𝑝. The vectors
(x1, 𝑌1), . . . , (x𝑛, 𝑌𝑛) are assumed to be independent and identically distributed (i.i.d.) realiza-
tions from a population. The 𝑖-th observation (x𝑖, 𝑌𝑖) is flagged as influential if some important
features are substantially altered after removing this observation. It is important to consider
these influential observations in data analysis. When the dimension in regression is relatively
low, many diagnostic procedures have been developed upon different models, Zhu et al. [20]
gave an excellent review on the latest development in the field of influence diagnosis. Cook
[1] considered the detection of influential observations in linear regression, utilizing the leave-
one-out idea and ordinary least square (OLS) estimate of regression coefficients, and proposed
a discrepancy measure denoted by Cook’s distance. Cook’s distance measures the effect of
deleting a given observation on OLS parameter estimates. Those points with a large Cook’s
distance may be considered to be influential in the influence analysis.

For high dimensional data where the dimension increases with the sample size, the detection
of influential observations is more important than for the classical regression model. Zhao et al.
[19] proposed a high dimensional influence measure (HIM) that captures the influence on the
marginal correlations for high dimensional linear model and demonstrated that it is particularly
useful in downstream analysis including coefficient estimation, variable selection and screening.
However, Zhao et al. [19]’s work only focused on high dimensional linear model or generalized
linear model, and their approach may not perform so well for other general models, such as
those with nonlinear relationships which are probably ignored by marginal correlation.

Székely et al. [18] and Székely and Rizzo [17] systematically studied the distance correlation
(dCor) of two random vectors, and showed that the distance correlation equals to 0 if and only
if these two random vectors are statistically independent. In this paper, we aim to detect and
remove the influential observations by an effective influence diagnostic procedure, and then filter
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out many noise variables and identify all important variables by DC-SIS screening procedure.
We develop the diagnostic procedure by utilizing the leave-one-out idea and defining a new high
dimensional influence diagnostic measure 𝛿𝑘, 𝑘 = 1, . . . , 𝑛 based on dCor between the response
and the predictor variables. The 𝑘-th observation (x𝑘, 𝑌𝑘) is more likely to be marked influential
if its corresponding influence measure 𝛿𝑘 is large to some extent. As the exact distribution of
the proposed diagnostic measure is complicated, we use bootstrap technique (Efron [3]) to
approximate the upper 𝛼-th sample quantile of the cumulative distribution function (CDF) of
𝛿𝑘. By removing those flagged influential observations, we obtain a reduced data set. Next,
we utilize the screening procedure proposed by Li et al. [12] on the reduced data set. We
conduct Monte Carlo simulation studies to numerically compare the screening results with and
without those flagged influential observations. Our simulation results indicate that influential
observations have strong effect on the results of variable screening. Meanwhile, our proposed
diagnostic procedure could greatly help control the adverse effect after detecting and removing
those influential observations in terms of variable screening results. The proposed procedure
can be directly applied for a real data analysis. We use the Cardiomyopathy microarray data
set to identify the most relevant genes for over expression of a G protein-coupled receptor (Ro1)
in mice.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries about
classical Cook’s distance, high dimensional influential measure and distance correlation. In
Section 3, we define a novel influence measure, propose a new influence diagnostic procedure,
and apply the DC-SIS variable screening procedure for high dimensional regression. In Section
4, we assess the performance of the proposed procedure by Monte Carlo simulation studies. We
further illustrate the proposed procedure by analyzing a real-life data set in Section 5. Section
6 contains conclusions and further discussions.

2 Some Preliminaries

2.1 Cook’s Distance

Consider the observations {x𝑖, 𝑌𝑖}, 𝑖 = 1, . . . , 𝑛, from the linear regression model

y = X𝛽 + 𝜀, (1)

where y = (𝑌1, . . . , 𝑌𝑛)
⊤ denotes the 𝑛-vector of responses, X = (x⊤1 , . . . , x

⊤
𝑛 )

⊤ denotes the 𝑛×𝑝
design matrix with independent and identically distributed (i.i.d.) x1, . . . , x𝑛, and 𝑋𝑖𝑗 denotes
the 𝑖-th observation of the 𝑗-th variable, thus, x𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑝). 𝛽 = (𝛽1, . . . , 𝛽𝑝)

⊤ denotes
a 𝑝-vector of regression coefficients, and 𝜀 = (𝜀1, . . . , 𝜀𝑛)

⊤ is an 𝑛-vector of random errors with
zero mean.

Under the classical setup of 𝑝 < 𝑛, by minimizing the objective function
∑𝑛

𝑖=1(𝑌𝑖 − x𝑖𝛽)
2,

the OLS estimator of regression coefficient 𝛽 is 𝛽 = (X⊤X)−1X⊤y. To quantify the influence of
the 𝑘-th observation (x𝑘, 𝑌𝑘), 𝑘 = 1, . . . , 𝑛, on regression, Cook [1] defined an influence measure
by employing the leave-one-out idea and finding the OLS estimator of 𝛽 with and without the
𝑘-th observation, respectively. That is, let y(𝑘) denote an (𝑛− 1)× 1 response vector with the
𝑘-th response 𝑌𝑘 removed, and let X(𝑘) denote the (𝑛− 1)× 𝑝 design matrix with the 𝑘-th row
x𝑘 removed. Minimizing the modified objective function

∑𝑛
𝑖=1,𝑖∕=𝑘(𝑌𝑖 − x𝑖𝛽)

2, another OLS

estimator 𝛽(𝑘) = ((X(𝑘))⊤X(𝑘))−1(X(𝑘))⊤y(𝑘) is obtained, with the 𝑘-th observation (x𝑘, 𝑌𝑘)
removed.

Cook [1] asserted that the 𝑘-th observation is expected influential if the difference between
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𝛽 and 𝛽(𝑘) is large, and proposed Cook’s distance

𝐷𝑘 =
{𝛽(𝑘) − 𝛽}⊤X⊤X{𝛽(𝑘) − 𝛽}

(𝑝+ 1)𝑠2
, (2)

where 𝑠2 = (𝑛− 𝑝)−1
∑𝑛

𝑖=1(𝑌𝑖 − x𝑖𝛽)
2 is the mean squared error of the regression model based

on all 𝑛 observations.

2.2 High Dimensional Influence Measure

In high dimensional setting, where the dimension 𝑝 is larger than the sample size 𝑛, the design
matrix X is rectangular, having more columns than rows. The OLS estimator of 𝛽 is not
unique, and therefore the classical Cook’s distance can not be computed directly. Then it is
inappropriate to use the regression coefficient estimate to define influence measures.

To overcome this difficulty, Zhao et al. [19] defined a new high dimensional influence measure
by choosing marginal correlation between the variables and the response, instead of regression
coefficients. The marginal correlation between variables 𝑋 and 𝑌 is defined as

𝜌 = 𝐸{(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌 )}/(𝜎𝑋𝜎𝑌 ),

where 𝜇𝑋 = 𝐸(𝑋), 𝜇Y = 𝐸(𝑌 ), 𝜎2
𝑋=var(𝑋) and 𝜎2

𝑌 =var(𝑌 ).
Suppose {(𝑥𝑖, 𝑦𝑖) : 1 ≤ 𝑖 ≤ 𝑛} is an observed random sample of size 𝑛 from the joint

distribution of (𝑋,𝑌 ). Then the consistent estimator of 𝜌 is

𝜌 =
𝑛∑

𝑖=1

(𝑥𝑖 − 𝑋̄)(𝑦𝑖 − 𝑌 )/

√√√⎷ 𝑛∑
𝑖=1

(𝑥𝑖 − 𝑋̄)2
𝑛∑

𝑖=1

(𝑦𝑖 − 𝑌 )2,

where 𝑋̄ = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 and 𝑌 = 1

𝑛

∑𝑛
𝑖=1 𝑦𝑖 are, respectively, the sample estimates of 𝜇𝑋 and

𝜇𝑌 .
The HIM is defined as

𝒟𝑘 =
1

𝑝

𝑝∑
𝑗=1

(𝜌𝑗 − 𝜌
(𝑘)
𝑗 )2, (3)

where

𝜌𝑗 =
𝑛∑

𝑖=1

(𝑋𝑖𝑗 − 𝑋̄𝑗)(𝑌𝑖 − ȳ)/

√√√⎷ 𝑛∑
𝑖=1

(𝑋𝑖𝑗 − 𝑋̄𝑗)2
𝑛∑

𝑖=1

(𝑌𝑖 − ȳ)2

is the estimate of correlation between response y and predictor 𝑋𝑗 based on all observations,
𝑋̄𝑗 =

1
𝑛

∑𝑛
𝑖=1𝑋𝑖𝑗 , ȳ = 1

𝑛

∑𝑛
𝑖=1 𝑌𝑖 and

𝜌
(𝑘)
𝑗 =

𝑛∑
𝑖=1,𝑖∕=𝑘

(𝑋𝑖𝑗 − 𝑋̄
(𝑘)
𝑗 )(𝑌𝑖 − ȳ(𝑘))/

√√√⎷ 𝑛∑
𝑖=1,𝑖∕=𝑘

(𝑋𝑖𝑗 − 𝑋̄
(𝑘)
𝑗 )2

𝑛∑
𝑖=1,𝑖∕=𝑘

(𝑌𝑖 − ȳ(𝑘))2

is an estimate of the same correlation with 𝑘-th observation removed, 𝑋̄
(𝑘)
𝑗 = 1

𝑛−1

∑𝑛
𝑖=1,𝑖 ∕=𝑘𝑋𝑖𝑗

and ȳ(𝑘) = 1
𝑛−1

∑𝑛
𝑖=1,𝑖∕=𝑘 𝑌𝑖.
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2.3 Distance Correlation

Székely et al. [18] introduced dCor as a measurement of dependence between two random
vectors. Assume 𝑋 ∈ ℝ𝑞, 𝑌 ∈ ℝ𝑟, and 𝑞, 𝑟 are the dimensions of the random vectors 𝑋
and 𝑌 , respectively. Let 𝜑𝑋(𝑠), 𝜑𝑌 (𝑡) and 𝜑𝑋,𝑌 (𝑠, 𝑡) be the characteristic function of 𝑋, the
characteristic function of 𝑌 , and the joint characteristic function of (𝑋,𝑌 ), respectively. The
distance covariance (dCov) between 𝑋 and 𝑌 with finite first moments is defined by

dcov2(𝑋,𝑌 ) =

∫
ℝ𝑞+𝑟

∥𝜑𝑋,𝑌 (𝑠, 𝑡)− 𝜑𝑋(𝑠)𝜑𝑌 (𝑡)∥2𝑤(𝑠, 𝑡)𝑑𝑠𝑑𝑡,

where 𝑤(𝑠, 𝑡) is a positive weight function, ∥𝜑∥2 = 𝜑𝜑 for a complex-valued function 𝜑, and
𝜑 is the conjugate of 𝜑. Accordingly, the dCor between 𝑋 and 𝑌 with finite first moments is
defined by

dcor2(𝑋,𝑌 ) =
dcov2(𝑋,𝑌 )√

dcov2(𝑋,𝑋)dcov2(𝑌, 𝑌 )
,

if dcov2(𝑋,𝑋)dcov2(𝑌, 𝑌 ) > 0, and equals 0 otherwise.
With a properly chosen weight function 𝑤(𝑠, 𝑡), Székely et al. [18] stated that

dcov2(𝑋,𝑌 ) = 𝑆1 + 𝑆2 − 2𝑆3,

where
𝑆1 = 𝐸{∥𝑋 − 𝑋̃∥𝑞∥𝑌 − 𝑌 ∥𝑟},
𝑆2 = 𝐸{∥𝑋 − 𝑋̃∥𝑞}𝐸{∥𝑌 − 𝑌 ∥𝑟},
𝑆3 = 𝐸{𝐸(∥𝑋 − 𝑋̃∥𝑞∣𝑋)𝐸(∥𝑌 − 𝑌 ∥𝑟∣𝑌 )},

(𝑋̃, 𝑌 ) is an independent copy of (𝑋,𝑌 ), and ∥ ⋅ ∥ denotes the Euclidean norm. Suppose
{(𝑥𝑖, 𝑦𝑖) : 1 ≤ 𝑖 ≤ 𝑛} to be an observed random sample of size 𝑛 from the joint distribution of
(𝑋,𝑌 ), then the moment estimation of 𝑆1, 𝑆2, 𝑆3 can be written as

𝑆1 =
1

𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

∥𝑥𝑖 − 𝑥𝑗∥𝑞∥𝑦𝑖 − 𝑦𝑗∥𝑟,

𝑆2 =
1

𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

∥𝑥𝑖 − 𝑥𝑗∥𝑞 1

𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

∥𝑦𝑖 − 𝑦𝑗∥𝑟,

𝑆3 =
1

𝑛3

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑛∑
𝑙=1

∥𝑥𝑖 − 𝑥𝑗∥𝑞∥𝑦𝑖 − 𝑦𝑙∥𝑟.

Then, the sample version of dCov between 𝑋 and 𝑌 is given by

d̂cov2(𝑋,𝑌 ) = 𝑆1 + 𝑆2 − 2𝑆3,

and the sample dCor between 𝑋 and 𝑌 is defined by

d̂cor2(𝑋,𝑌 ) =
d̂cov2(𝑋,𝑌 )√

d̂cov2(𝑋,𝑋)d̂cov2(𝑌, 𝑌 )

.

Székely et al. [18] derived the following properties of dCor. If 𝐸(∣𝑋∣𝑞 + ∣𝑌 ∣𝑟) < ∞, then
almost surely, (i). 0 ≤ dcor(𝑋,𝑌 ) ≤ 1, and dcor(𝑋,𝑌 ) = 0 if and only if 𝑋 and 𝑌 are

independent; (ii). lim𝑛→∞ d̂cor2(𝑋,𝑌 ) = dcor2(𝑋,𝑌 ); (iii). 0 ≤ d̂cor2(𝑋,𝑌 ) ≤ 1.
We will propose a new influence diagnostic procedure in the next section by utilizing these

properties of dCor to define a new influence measure.
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3 Influence Diagnosis and Variable Screening

In this section, we consider variable screening under a general model,

y = 𝑓(X) + 𝜀, (4)

where 𝑓(⋅) denotes an unknown functional relationship, y is an 𝑛-vector of response variable
with support set 𝜓𝑦, X denotes an 𝑛×𝑝 design matrix with i.i.d. x1, . . . , x𝑛, and 𝜀 is an 𝑛-vector
of random errors with zero mean.

When the dimension 𝑝 is high, it is often assumed that only a small number of variables
among 𝑋1, . . . , 𝑋𝑝 contribute to the response y. Let 𝐹 (y∣X) be the conditional distribution of
y given X. Without specifying a regression model, we define an active variable subset as

𝒜 = {𝑗 : 𝐹 (y∣X) functionally depends on 𝑋𝑗 for some y ∈ 𝜓𝑦},

and the complementary set ℐ = {1, . . . , 𝑝} ∖ 𝒜 is an inactive variable subset. If 𝑗 ∈ 𝒜, 𝑋𝑗 is
referred to as an active variable, whereas if 𝑗 ∈ ℐ, 𝑋𝑗 is referred to as an inactive variable.

The main goal of variable screening procedure is to select a reduced model with a moderate
scale, which can still almost fully contain the active variable subset 𝒜. In consideration of
the arbitrary relationship between y and X, we utilized the distance correlation between the
predictor variables and the response to select the important variables, and constructed a sub-
space 𝒜 with important variables. Under the conditions (C1) and (C2) in Li et al. [12], the

sure screening property holds for DC-SIS, i.e. 𝑃 (𝒜 ⊂ 𝒜) → 1 as 𝑛 → ∞. It is obvious that

the constructed subspace 𝒜 has larger probability of including the true model 𝒜 under more
general conditions.

The observations {(x𝑖, 𝑌𝑖), 𝑖 = 1, . . . , 𝑛} from (4) may, however, contain a portion of in-
fluential observations, and the existence of these unusual observations would possibly lead to
unsatisfactory results for variable screening. So, it is necessary to detect and remove those
influential observations before variable screening procedure in high dimensional data analysis.
As Székely et al. [18] pointed out, as a measurement of dependence, the distance correlation
has an important property that dcor(𝑋𝑗 , 𝑌 ) = 0 if and only if 𝑋𝑗 and 𝑌 are independent.
Motivated by this property, we can detect influential observations by defining a dCor-based
influence measure, which is expected to be more effective than marginal correlation-based HIM
in the presence of nonlinear relationship between 𝑋𝑗 and 𝑌 .

Next, we propose a new influence diagnostic procedure for high dimensional influential
observations. In addition, we use the DC-SIS screening procedure on the cleaned data set to
select the important variables.

3.1 A New High Dimensional Influence Measure

Firstly, we define the dCor between the response y and the 𝑗-th predictor variable 𝑋𝑗 as

dcor(𝑋𝑗 , y) =
dcov(𝑋𝑗 , y)√

dcov(𝑋𝑗 , 𝑋𝑗)dcov(y, y)
.

We write 𝛾𝑗 = dcor(𝑋𝑗 , y) for simplification, and the sample estimate of 𝛾𝑗 can be written as

𝛾𝑗 = d̂cor(𝑋𝑗 , y) =
d̂cov(𝑋𝑗 , y)√

d̂cov(𝑋𝑗 , 𝑋𝑗)d̂cov(y, y)

.
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Next, utilizing the leave-one-out idea of the classical Cook’s distance, when the 𝑘-th ob-
servation (x𝑘, 𝑌𝑘) is removed, the sample estimate of the dCor between the variables and the
response can be written as

𝛾
(𝑘)
𝑗 = d̂cor(𝑋

(𝑘)
𝑗 , y(𝑘)) =

d̂cov(𝑋
(𝑘)
𝑗 , y(𝑘))√

d̂cov(𝑋
(𝑘)
𝑗 , 𝑋

(𝑘)
𝑗 )d̂cov(y(𝑘), y(𝑘))

.

Finally, we construct a novel influence measure based on dCor as

𝛿𝑘 =
1

𝑝

𝑝∑
𝑗=1

(𝛾𝑗 − 𝛾
(𝑘)
𝑗 )2. (5)

It is obvious that the 𝑘-th observation (x𝑘, 𝑌𝑘) is more likely to be marked influential, if it has
a large influence measure 𝛿𝑘. The new influence measure 𝛿𝑘 can be easily computed regardless
of the variable dimensionality, and it does not require the regression function between y and X
to be linear.

3.2 Influence Diagnostic Procedure

In this subsection, we propose a new influence diagnostic procedure for data from the high
dimensional regression model in Equation (4).

The distribution of the proposed high-dimensional influence diagnostic measure 𝛿𝑘 is not
known and so complicated that we consider using bootstrap to find the upper 𝛼-th quantile
𝐹1−𝛼 of the cumulative distribution function (CDF) as the critical value. For each data pair
(x𝑘, 𝑌𝑘), 𝑘 = 1, . . . , 𝑛, we compute the influence diagnostic measure 𝛿𝑘 and save them as Δ =
(𝛿1, . . . , 𝛿𝑛). Randomly sampling 𝑛 observations from Δ = (𝛿1, . . . , 𝛿𝑛) with replacement for 𝐵
times, we obtain the 𝐵 bootstrap versions of the sample estimate of the diagnostic measures

Δ[1], . . . ,Δ[𝐵]. For each of the 𝐵 bootstrap estimator Δ[𝑏] = (𝛿
[𝑏]
1 , . . . , 𝛿

[𝑏]
𝑛 ), 𝑏 = 1, . . . , 𝐵, we

compute the upper 𝛼-th sample quantile of the CDF, noted as 𝐹
[𝑏]
1−𝛼. Finally, we obtain the

average bootstrap upper 𝛼-th sample quantile

𝐹1−𝛼 =
1

𝐵

𝐵∑
𝑏=1

𝐹
[𝑏]
1−𝛼. (6)

For detecting and removing the influential data points in high dimensional data set {(x𝑖, 𝑌𝑖), 𝑖 =
1, . . . , 𝑛}, we formulate this problem as 𝑛 hypothesis testing problems among the 𝑛 observations,
that is, for 𝑘 = 1, . . . , 𝑛,

ℋ(𝑘)
0 : the 𝑘−th observation is not influential ⇔ ℋ(𝑘)

1 : the 𝑘−th observation is influential.

Our proposed novel influence diagnosis approach can be summarized by the following algorithm.

Step 1. Compute the proposed high dimensional influence measure 𝛿𝑘 in Equation (5) for any
data point (x𝑘, 𝑌𝑘) in {(x𝑖, 𝑌𝑖), 𝑖 = 1, . . . , 𝑛}.

Step 2. Compare each 𝛿𝑘 with the corresponding 𝐹1−𝛼 to determine which null hypothesis should
be rejected.

Step 3. Those data (x𝑘, 𝑌𝑘), whose corresponding 𝛿𝑘 > 𝐹1−𝛼, are flagged as influential. Detect
and remove them, then obtain a reduced approximate clean data set 𝐻.
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3.3 Variable Screening Procedure

After obtaining the reduced approximate clean data set 𝐻, we apply the DC-SIS screening
procedure proposed in Li, et al. [12].

Step 4. Compute the sample distance correlation 𝛾𝑗 between the response y and the variables 𝑋𝑗

for 𝑗 = 1, . . . , 𝑝, based on the reduced data set 𝐻.

Step 5. Sort all the ∣𝛾𝑗 ∣ with a decreasing order, and filter out those having weak distance corre-
lations.

Toward that end, for a given size 𝑑𝑛 < 𝑛, we can define a submodel

𝒜 = {1 ≤ 𝑗 ≤ 𝑝 : ∣𝛾𝑗 ∣ is among the first [𝑑𝑛] largest of all}, (7)

where [𝑑𝑛] denotes the integer part of 𝑑𝑛, and 𝑑𝑛 is pre-specified cutoff value related to 𝑛, such
as 𝑑𝑛 = 𝑛/ log 𝑛, 𝑑𝑛 = 𝑛/3 and so on.

In the next section, we will evaluate the screening procedure by several criterion. We will
consider the minimum model size 𝒮, required to include all active predictors. Note that the
closer to the true number of active predictor the number 𝒮 is, the better the screening procedure.
In addition, we take into account the probability that each of the true active variables is selected
in a submodel 𝒜 of a pre-specified size.

4 Numerical Studies

In this section, by using the procedure proposed in Section 3, we assess the finite sample per-
formance and compare it with existing competitors via Monte Carlo simulations. All numerical
studies are conducted using R code.

4.1 Simulation Design

We consider the observations (x𝑖, 𝑌𝑖) from Equation (4), that is,

𝑌𝑖 = 𝑓(x𝑖) + 𝜀𝑖, for 𝑖 = 1, . . . , 𝑛, (8)

where 𝑌𝑖 is the 𝑖-th response variable, 𝑓(⋅) is a linear or nonlinear unknown link function,
x𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑝) is a 𝑝-dimensional vector of variables for the 𝑖-th observation, and 𝜀𝑖 is a
random error.

In practice, the initial model (9) may be influenced by some random perturbation. More
specifically, the error term 𝜀𝑖 is of the structure 𝜀𝑖 = 𝑒𝑖+𝜔𝑖, where 𝑒𝑖 follows the standard normal
distribution and 𝜔𝑖 is a random perturbation variable. Under this setting, the perturbation
model can be written as

𝑌𝑖 = 𝑓(x𝑖) + 𝑒𝑖 + 𝜔𝑖, 𝑖 = 1, . . . , 𝑛. (9)

This shows that the response 𝑌𝑖 is contaminated by a perturbation variable 𝜔𝑖. For example,
when 𝜔1 ∕= 0, and 𝜔2 = . . . = 𝜔𝑛 = 0, the first observation is deemed to be an influential
point especially if 𝜔1 is related to some other variables that appear in the data set used in the
screening procedure but not in the true model.

In the following Examples 4.1-4.3, we fix the sample size 𝑛 = 100 and the dimension of
variables 𝑝 = 1000. x𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑝) are generated i.i.d. from a multivariate normal distri-
bution 𝑁(0,Σ), where Σ = (𝜎𝑗𝑙)𝑝×𝑝, and 𝜎𝑗𝑙 = 0.8∣𝑗−𝑙∣ for 𝑗, 𝑙 = 1, . . . , 𝑝. The error term 𝑒𝑖 is
i.i.d. from standard normal distribution 𝑁(0, 1). The response of the influential observations
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are contaminated by a random perturbation term 𝜔𝑖 = 𝜔 x𝑖Γ, where 𝜔 is the parameter that
dictates the magnitude of the influential points, and Γ is a column vector of dimension 𝑝 that
only contains 0 and 1. For example, if x𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑝) and only 𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3 are true
important variables, then we can set Γ = (0, 0, 0, 1, 1, . . . , 1)⊤.

We assume 10% of the total observations as influential, so that 𝑛̃ = 10 observations are
generated from model (10) with 𝜔𝑖 ∕= 0 and the rest with 𝜔𝑖 = 0. We set 𝜔 = 1.2, which
dictates the magnitude of the influential observations. Each of the experiment is repeated
1000 times in our simulation studies. In all the simulation studies, we set the bootstrap time
𝐵 = 500, and upper quantile level 𝛼 = 0.05.

Example 4.1 High dimensional nonlinear models adapted from Li et al . [12].

(1.𝑎) 𝑌𝑖 = 3𝛽1𝑋𝑖1𝑋𝑖2 + 𝛽2𝑋𝑖15 + 2𝛽3𝑋𝑖30 + 𝑒𝑖, 𝑖 = 1, . . . , 𝑛,

(1.𝑏) 𝑌𝑖 = 3𝛽1𝑋𝑖1𝑋𝑖2 + 𝛽21(𝑋𝑖15 < 0) + 3𝛽3𝑋𝑖30 + 𝑒𝑖, 𝑖 = 1, . . . , 𝑛,

where 1(𝑋𝑖15 < 0) is the indicator function, which is nonlinear in 𝑋15, and 𝑒𝑖 follows the
standard normal distribution and is independent of 𝑋𝑖𝑗 . Following Fan and Lv [5], we choose
𝛽𝑗 = (−1)𝑈 (𝑎+ ∣𝑍∣) for 𝑗 = 1, 2, 3, where 𝑎 = 4 log𝑛/

√
𝑛, 𝑈 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.4) and 𝑍 ∼ 𝑁(0, 1).

We first simulate 𝑛 = 100 i.i.d. observations from this model, and then reset the first 𝑛̃ = 10
observations from a perturbation model

𝑌𝑖 = 𝑌𝑖 + 𝜔𝑖, 𝑖 = 1, . . . , 𝑛̃,

where 𝜔𝑖 is the perturbation term, that is, the first 10 responses are contaminated by a random
perturbation 𝜔𝑖 = 𝜔 x𝑖Γ, the 𝑝 × 1 vector Γ with the 1st, 2nd, 15th, and 30th elements equal
to 0, and the rest elements equal to 1.

Example 4.2 Nonparametric additive model adapted from Fan et al . [4].

Let 𝑔1(𝑥) = 𝑥, 𝑔2(𝑥) = (2𝑥 − 1)2, 𝑔3(𝑥) = sin(2𝜋𝑥)/(2 − sin(2𝜋𝑥)), 𝑔4(𝑥) = 0.1 sin(2𝜋𝑥) +
0.2 cos(2𝜋𝑥) + 0.3 sin(2𝜋𝑥)2 + 0.4 cos(2𝜋𝑥)3 + 0.5 sin(2𝜋𝑥)3. The following model is considered

𝑌𝑖 = 2𝑔1(𝑋𝑖1) + 6𝑔2(𝑋𝑖2) + 4𝑔3(𝑋𝑖3) + 𝑔4(𝑋𝑖4) + 𝑒𝑖, 𝑖 = 1, . . . , 𝑛.

Similar to Example 4.1, we first simulate 𝑛 = 100 i.i.d. observations from this model, and then
reset the first 𝑛̃ = 10 observations from a perturbation model

𝑌𝑖 = 𝑌𝑖 + 𝜔x𝑖Γ, 𝑖 = 1, . . . , 𝑛̃,

where Γ = (0, 0, 0, 0, 1, . . . , 1)⊤ is a 𝑝× 1 vector.

Example 4.3 Heteroskedastic regression model.

𝑌𝑖 = 2𝑋𝑖1 + 1.6𝑋𝑖2 + 1.2𝑋𝑖3 + 0.8𝑋𝑖4 + exp(𝑋𝑖20 +𝑋𝑖21 +𝑋𝑖22) ⋅ 𝑒𝑖, 𝑖 = 1, . . . , 𝑛.

Similar to Example 4.1, we first simulate 𝑛 = 100 i.i.d. observations from this model, and then
reset the first 𝑛̃ = 10 observations from a perturbation model

𝑌𝑖 = 𝑌𝑖 + 𝜔x𝑖Γ, 𝑖 = 1, . . . , 𝑛̃,

where Γ is a 𝑝× 1 vector with the 1st, 2nd, 3rd, 4th, 20th, 21st, and 22nd elements equal to 0,
and the rest elements equal to 1.
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4.2 Performance Evaluation

We evaluate the performance through the following three criteria.

1. 𝒮: the minimum model size, that is, the smallest number of covariates that we need to
include to ensure that all the active variables are selected.

2. 𝒫𝑗 : the proportion that an individual active variable 𝑋𝑗 is selected for a given model size
𝑑𝑛 in the 1000 replications.

3. 𝒫𝑎: the proportion that all active variables are selected for a given model size 𝑑𝑛 in the
1000 replications.

Note that we find 𝒮 by increasing the model size by 1 at a time until all the active variables
used in the data generation process are included. A threshold need not to be specified for 𝒮,
as the closer to the minimum model size the 𝒮 is, the better the screening procedure is. We
report the 5%, 25%, 50%, 75% and 95% quantiles of 𝒮 out of the 1000 replications. When
the threshold 𝑑𝑛 is sufficiently large, the proportion 𝒫𝑗s and 𝒫𝑎 are all close to 1. We set the
estimated model size 𝑑𝑛 to be 𝑑 = [3𝑛/log𝑛] = 65 throughout our simulations. We compute
the proportion that an individual active variable or all active variables are selected in a given
model with size 𝑑 = 65 in the 1000 replications. So, we expect that the values of 𝒮 reasonably
small, and meanwhile, the values of 𝒫𝑗 and 𝒫𝑎 close to 1 in our simulation studies.

For comparison, we first apply the DC-SIS to the full data, and we can get the minimum
model size 𝒮, the proportion including a single active variable 𝒫𝑗 , and the proportion including
all active variables 𝒫𝑎. Next, we utilize the influence diagnostic procedure proposed in Section
3 to detect and remove those flagged influential data (x𝑘, 𝑌𝑘) with 𝛿𝑘 > 𝐹1−𝛼, and obtain a
reduced approximate clean data set 𝐻 by removing those flagged influential points. Finally, we
apply the DC-SIS again, but to the reduced data set 𝐻, and obtain 𝒮, 𝒫𝑗 and 𝒫𝑎, respectively.

Similarly as above, we apply the HIM diagnostic measure from subsection 2.2 to the full
data, and obtain a reduced data set by removing those flagged influential points. Then, we
apply the DC-SIS approach to the reduced data set and get the corresponding indicators 𝒮, 𝒫𝑗

and 𝒫𝑎.

4.3 Simulation Results

The simulation results are reported in Tables 1-4 based on 1000 replications. DCS denotes that
we apply the DC-SIS to the full data set; and HIM-DCS denotes that we remove influential
observations by HIM procedure and then apply the DCS to the reduced data set; R-DCS
denotes that we first remove influential observations by our proposed new influence diagnostic
procedure, and then apply the DC-SIS to the reduced data set.

Table 1: Simulation results for Examples 4.1a-4.1b, the 5% , 25% , 50% , 75% , 95% quantiles
of the minimum model size 𝒮 out of 1000 replicates. The number of true active variables is 4.

𝒮 Example 4.1a Example 4.1b

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

DCS 12 49 120 302 690 169 397 603 797 951
HIM-DCS 9 28 86 263 710 30 158 413 684 937
R-DCS 7 16 40 144 629 31 110 348 686 899
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Table 2: Simulation results for Examples 4.2-4.3, the 5%, 25%, 50%, 75%, 95% quantiles of
the minimum model size 𝒮 out of 1000 replicates. The number of true active variables is 4 in
Example 4.2 and 7 in Example 4.3.

𝒮 Example 4.2 Example 4.3

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

DCS 4 9 31 108 457 156 390 580 768 939
HIM-DCS 4 5 15 93 373 19 61 154 338 632
R-DCS 4 4 11 71 304 10 26 70 221 579

Table 3: Simulation results for Examples 4.1a-4.1b. 𝒫𝑗 denotes the proportion of replicates
when an individual active variable 𝑋𝑗 was included and 𝒫𝑎 denotes the proportion of iterations
when all active variables were included in the submodel.

𝒫𝑗 , 𝒫𝑎 Example 4.1a Example 4.1b

Method 𝒫1 𝒫2 𝒫15 𝒫30 𝒫𝑎 𝒫1 𝒫2 𝒫15 𝒫30 𝒫𝑎

DCS 0.85 0.85 0.42 0.96 0.33 0.70 0.68 0.11 0.07 0.00
HIM-DCS 0.94 0.95 0.49 0.97 0.43 0.86 0.87 0.13 0.99 0.11
R-DCS 0.99 0.98 0.62 1.00 0.61 0.93 0.92 0.15 1.00 0.13

Table 4: Simulation results for Examples 4.2-4.3. 𝒫𝑗 denotes the proportion of replicates when
an individual active variable 𝑋𝑗 was included and 𝒫𝑎 denotes the proportion of iterations when
all active variables were included in the submodel.

𝒫𝑗 , 𝒫𝑎 Example 4.2 Example 4.3

Method 𝒫1 𝒫2 𝒫3 𝒫4 𝒫𝑎 𝒫1 𝒫2 𝒫3 𝒫4 𝒫20 𝒫21 𝒫22 𝒫𝑎

DCS 0.93 1.00 0.94 0.67 0.65 0.37 0.30 0.22 0.21 0.99 0.99 0.98 0.00
HIM-DCS 0.95 1.00 0.96 0.76 0.74 0.59 0.64 0.59 0.47 0.88 0.93 0.88 0.26
R-DCS 0.99 1.00 0.99 0.80 0.79 0.99 1.00 0.99 0.97 0.66 0.71 0.66 0.48
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1. In Tables 1-2, the 5%, 25%, 50%, 75% and 95% percentiles of the minimum model size 𝒮
are summarized for various models. Note that the data set are contaminated with 10%
influential points. The results of the HIM-DCS and R-DCS are smaller than those ob-
tained by DCS approach, which implies that the HIM-DCS and R-DCS approach perform
better than the DCS procedure in the presence of influential points. Note also that the
relationship between the response and the covariate is nonlinear, the performance of the
R-DCS outperforms HIM-DCS significantly in all the related models.

2. Tables 3-4 summarizes 𝒫𝑗 and 𝒫𝑎 for a given model with size 𝑑𝑛 = 65 in the 1000
replications. From the results of 𝒫𝑗s and 𝒫𝑎 in various models, we can see that the R-
DCS approach outperforms DCS and HIM-DCS approach significantly in most cases, as
the corresponding 𝒫𝑗s and 𝒫𝑎 are greater than the results from the other two approaches.

3. Tables 1-4 illustrate that the accuracy of variable screening can be affected by influential
points. The R-DCS approach performs better, as the values of 𝒮 reasonably small, and
meanwhile, the values of 𝒫𝑗 and 𝒫𝑎 close to 1. This suggests that the proposed method
improves DCS by removing the influential observations. Similarly, the HIM-DCS can
perform well to reduce the effect of influential points. However, it is still outperformed
by our proposed R-DCS, for most of the examples referred in this paper.

To summarize, all the simulation results indicate that the presence of influential observations
will seriously affect the accuracy of variable screening. The proposed method R-DCS is able to
minimize the effect of influential observations. Comparing R-DCS with HIM-DCS, the results
show that the proposed method R-DCS is superior to HIM-DCS for variable screening in various
models. This clearly confirm that the proposed novel influence diagnostic procedure can help
control the adverse effect after detecting and removing those influential observations.

5 A Real Data Analysis

As an application illustration, we apply the proposed influence diagnosis and variable screening
method to the analysis of Cardiomyopathy microarray data.

Example 5.1 Cardiomyopathy microarray data.

The cardiomyopathy microarray data are from a transgenic mouse model of dilated car-
diomyopathy (Redfern et al. [15]). This data set has attracted considerable attention and been
systematically investigated by many researchers. Examples include Segal et al. [16], Hall and
Miller[9], Li et al. [12] and Li et al. [11].

This data set consists of an outcome measure y = (𝑌1, . . . , 𝑌𝑛)
⊤, and an 𝑛 × 𝑝 matrix of

gene expression values X = (𝑋𝑖𝑗)𝑛×𝑝, for 𝑖 = 1, . . . , 𝑛(= 30), 𝑗 = 1, . . . , 𝑝(= 6319), where 𝑌𝑖
is the Ro1 expression level, measured for 𝑛 = 30 specimens, and 𝑋𝑖𝑗 denotes the expression
level of the 𝑗-th gene for the 𝑖-th mouse. Note that 𝑝 ≫ 𝑛, so this is a high dimensional data
analysis problem. Our aim is to determine the most relevant genes for overexpression of a G
protein-coupled receptor (Ro1) in mice.

Hall and Miller [9] showed that both genes Msa.2877.0 and Msa.1166.0 are particularly
important using the generalized correlation. They found Msa.2877.0 has an essentially linear
relationship, and Msa.1166.0 has strong correlation of −0.75 with Msa.2877.0. Li et al. [12]
used the DC-SIS procedure that ranks two genes, Msa.2134.0 and Msa.2877.0, at the top. They
showed that their DC-SIS procedure achieves better performance in contrast to the generalized
correlation ranking method of Hall and Miller [9]. Li et al. [11] showed that Msa.1166.0 and
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Msa.7019.0 are particularly important using the robust rank correlation based screening (RRCS)
procedure. Figure 1 indicates the scatter plots and corresponding cubic-spline fit curves of the
relationship between the important genes (Msa.2877.0, Msa.1166.0, Msa.2134.0, Msa.7019.0)
and the outcome (Ro1).

A natural question arises before we analyze this data: whether the data come from a clean
set? In other words, whether the 𝑛 = 30 specimens are contaminated with a proportion of
influential data. Further, we believe, based on our previous simulation studies, that the presence
of influential data may significantly affect the accuracy of variable screening. Then, we apply
the proposed influential diagnosis and variable screening approach to display the important
genes related to outcome (Ro1) measure 𝑌𝑖.

Firstly, for each data pair (x𝑖, 𝑌𝑖), 𝑖 = 1, . . . , 30, we obtain the influence diagnostic measure
𝛿𝑖 defined in Equation (6). We calculate the bootstrap upper 0.05 quantile of the C.D.F.,
denoted as 𝐹0.95, detect and remove three flagged influential specimens named eight3054f,
eight3067f, eight3081f, which 𝛿𝑖 > 𝐹0.95 from the 30 specimens, and get a reduced data set with
the remaining 27 specimens. Finally, we apply the DC-SIS procedure, which ranks two genes
labeled Msa.2134.0 and Msa.28021.0 at the top. We find that besides Msa.2134.0, Msa.28021.0
also seems to be an important gene related to Ro1, possibly due to the detection and removing
the three influential observations.

Figure 2 indicates the scatter plots and corresponding cubic-spline fit curves for the rela-
tionship between the important genes (Msa.2134.0, Msa.28021.0) and the outcome (Ro1) based
on 𝑛 = 30 specimens (solid lines) and 𝑛 = 27 specimens (dotted lines), respectively. The three
solid circles represent the flagged influential specimens eight3054f, eight3067f and eight3081f.
From Figure 2, based on 𝑛 = 30 specimens, it can be seen that the fit curve between Msa.2134.0
and Ro1 shows an ‘S’ type, while the fit curve between Msa.28021.0 and Ro1 shows an ‘M’ type.
Even if these two curves are approximated by polynomial regression, the degree will be larger
than two. Therefore, these two curves exhibit clear nonlinear behaviors. Note that the distance
correlation has the advantage that it can detect nonlinear relationships which are ignored by
marginal correlation. Our proposed R-DCS procedure shows the advantage that it detected two
important genes having nonlinear relationships with Ro1, which might be ignored by some other
methods due to influential observations in the sample. Figure 2 also indicates the cubic-spline
fit curves after removing the three flagged influential specimens (represented by solid circles).
It can be seen that after the three flagged influential specimens are removed, the curves will be
pulled downwards significantly. Therefore, the three flagged influential specimens caused higher
variability in the response variable, which would explain the substantial gain of our proposed
R-DCS procedure.

To assess the performance of the proposed procedure, we further fit the following additive
model:

𝑌 = 𝑔1(𝑋𝑗) + 𝑔2(𝑋𝑘) + 𝑒,

where 𝑋𝑗 and 𝑋𝑘 are respectively the top two genes, Msa.2134.0 and Msa.28021.0, 𝑔1(⋅) and
𝑔2(⋅) are two unknown link functions, 𝑒 is an error term. We fit 𝑔1 and 𝑔2 by using the ‘gam’
function in the R ‘mgcv’ package, where ‘gam’ can be used to fit a generalized additive model
(GAM) to data. We also measure the performance of goodness of fit by the adjusted 𝑅2

values and the explained deviance, where deviance implies the proportion of the null deviance
explained by the proposed model, with a larger value indicating better performance.

Whether removing the three influential observations eight3054f, eight3067f, eight3081f or
not may affect the results of 𝑅2 values and the deviance. The DCS method has a performance
with the 𝑅2 value of 0.736 and the deviance of 80.4% based on 30 observations. However, when
we remove the three influential observations, the R-DCS method has a better performance with
the 𝑅2 value of 0.78 and the deviance of 81.4%. So, we can see that, the R-DCS procedure
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Figure 1: The scatter plots and corresponding cubic-spline fit curves of the relationship between
the important genes (Msa.2877.0, Msa.1166.0, Msa.2134.0, Msa.7019.0) and the outcome (Ro1)
based on 𝑛 = 30 specimens.
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clearly achieves a better performance.

6 Conclusion

In this paper, we considered the problem of influence diagnosis and variable screening in high di-
mensional regression. We defined a new high dimensional influence measure, and then proposed
an influence diagnostic procedure. The dCor based influence measure can be more effective than
the marginal correlation based influence measure in the presence of nonlinear relationship. We
further utilize the DC-SIS procedure to verify the effectiveness of the proposed procedure.

The proposed procedure has several appealing properties. First, the new influence measure is
easy to compute. It is motivated by the leave-one-out idea, but it is based on the dCor between
the response and all predictor variables. Second, the new influence diagnosis and variable
screening procedure based on dCor are more effective in the presence of nonlinear relationship
between the response and all predictor variables. It is robust as its implementation does not
require specification of the regression model. In addition, both the Monte Carlo simulation
examples and a real-life data show that the proposed method can greatly reduce the adverse
effect after detecting and removing those influential data points, and can improve the filtering
accuracy in variable screening problem.
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Figure 2: The scatter plots and corresponding cubic-spline fit curves for the relationship between
the important genes (Msa.2134.0, Msa.28021.0 ) and the outcome (Ro1) based on 𝑛 = 30
specimens (solid lines) and 𝑛 = 27 specimens (dotted lines), respectively. The three solid
circles represent the flagged influential specimens.
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