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Abstract

This paper proposes a new distribution-free control chart by integrating the powerful
nonparametric two-sample Cramér-von Mises test and the exponentially weighted
moving average control scheme to on-line monitoring. The proposed control chart
can be used to monitor the location and the scale parameters of a univariate con-
tinuous distribution, simultaneously. The control limits based on Monte-Carlo sim-
ulation are provided in a table. The sensitivity analysis of effect of the number
of reference samples on the control chart is studied in detail. Comparison results
based on Monte-Carlo simulation show that the proposed chart is quite robust to
non-normally distributed data, and moreover, it shows satisfactory performance in
detecting various process shifts in terms of the average run length and standard
deviation of run length. The application of our proposed chart is illustrated by a
real data example for automobile engine piston rings.

Key words: Exponentially weighted moving average; Empirical cumulative
distribution function; Cramér-von Mises test; Nonparametric; Statistical process
control.

1 Introduction

Statistical process control (SPC) charts are one of the widely used tools for
keeping the quality of products in a stable level and preventing lots of products
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with low quality by monitoring and analyzing the production process, control-
ling the variability of the process and detecting abnormal causes in time. As
the rapid development of economy world widely, SPC charts have got great
advancement and been widely applied in many areas (Megahed et al., 2011;
Woodall, 2006). The study of SPC charts originates from Shewhart (1925),
who proposes the Shewhart-�̄� control chart based on 3𝜎-rule. It is known in
the literature that Shewhart control charts are more effective for monitoring
large shifts, as they only make use of the current observations and totally ig-
nore the historical samples. To monitor small to moderate shifts efficiently, the
cumulative sum (CUSUM) charts (Page, 1954) and the exponentially weighted
moving average (EWMA) charts (Roberts, 1959) are proposed. The study of
SPC charts and their applications is quite plentiful now, such as text books of
Montgomery (2013) and Qiu (2014). One widely accepted criterion for evaluat-
ing the performance of control charts is the average run length (ARL), which
is the average number of observations needed for the procedure to signal a
change in the measurement distribution (Montgomery, 2013). The ARL value
of control charts when the process is in-control (IC), denoted as 𝐴𝑅𝐿0, is of-
ten controlled at some specific level. Then, the control charts perform better
if the out-of-control (OC) ARL, denoted as 𝐴𝑅𝐿1, is shorter, when detecting
a given distributional change.

When using control charts, practitioners have to distinguish between Phase I
and Phase II techniques and applications (Chakraborti et al., 2008). In Phase
I, practitioners use historical samples to evaluate the process stability and to
monitor and estimate the IC model parameters. Samples that show any devi-
ations from the IC model should be determined and removed if corresponding
assignable causes can be identified, and then, the IC model parameters can
be estimated. The causes of the deviation for these samples should be inves-
tigated to be avoided in the future. In Phase II, on-line data and samples are
used to quickly determine any sustained or non-sustained shifts from the IC
model estimated in Phase I. Practitioners use different types of control charts
and measures of performance for the two phases. In this paper, we propose a
new chart for Phase II monitoring.

Many conventional control charts are based on the assumption that the obser-
vations of a process follow a specific probability distribution. In practice, the
process observations may, however, not follow the specified distributions. The
performance of these control charts based on the specified assumption is often
not robust to other distributions and would be highly deteriorated. Moreover,
some parameters, such as the mean and variance of the process, need to be
estimated before monitoring. Generally, conventional control charts need rela-
tively more reference samples to estimate the IC distribution or the unknown
parameters of the distribution. Jensen et al. (2006) give a detailed overview
on the effect of parameter estimation on control chart properties. Marave-
lakis and Castagliola (2009) show that the chart with estimated parameters
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needs more reference data on average in order to detect an OC situation than
the one with known parameters. The number of reference samples, in many
cases, is too small or even none such that it is improbable to obtain accurate
estimation of the IC distribution or the unknown parameters. It is urgently
necessary to develop appropriate control procedures that do not require the
specified distribution assumption in cases when the process distribution is any
kind of continuous distribution. To this end, a number of distribution-free or
nonparametric SPC (NSPC) charts have been developed.

NSPC charts do not assume a specific distribution of the process, or only as-
sume some general conditions, such as continuous distribution or symmetric
distribution. As the distribution is not specified, NSPC charts could main-
tain the 𝐴𝑅𝐿0 at the nominal level, whatever the IC distribution is. Due to
this advantage, NSPC charts show satisfactory robust performances and gain
broad applications. For different purposes, there were developed correspond-
ing NSPC charts, such as those for location (Chakraborti and Eryilmaz, 2007;
Chakraborti and van de Wiel, 2008; Chakraborti et al., 2009; Hawkins and
Deng, 2010; Li et al., 2010; Qiu and Li, 2011a,b; Graham et al., 2011a,b,
2012), those for scale (Jones and Champ, 2010), and those for distribution
(Ross and Adams, 2012). For some recent developments, to name a few, Zhou
et al. (2014), Ambartsoumian and Jeske (2015), Lu (2015), Liu et al. (2015), Li
et al. (2016), Mukherjee (2016), Zhou et al. (2016), Li et al. (2017) and Abid
et al. (2017a,b). Chakraborti et al. (2001), Chakraborti and Graham (2007)
and Chakraborti et al. (2011) give thorough overviews on existing research in
the area of univariate NSPC. Woodall and Montgomery (2014), Chakraborti
et al. (2015) and Capizzi (2015) also encourage research of nonparametric
methods.

It is worth pointing out that most of the control charts above are designed to
detect a single shift in the location or scale of the process only. However, the
process location and scale may change simultaneously during the monitoring
period. Therefore, it is desirable to construct a control chart that can detect
both the changes in the process location and in the process variability, simul-
taneously. Though it is direct to monitor the shifts of location and variability
simultaneously by two separate control charts, it would be quite complicated if
shifts of one parameter would affect those of the other parameter. Cheng and
Thaga (2006), McCracken and Chakraborti (2013) and Celano et al. (2016)
give overviews of the control charts to use only one chart to simultaneously
monitor both process location and scale. There exist some attempts for single
charts in the literature. Among them, the rank based method for jointly moni-
toring location and scale parameters proposed by Lepage (1971) is well applied,
which integrates the Wilcoxon rank sum test for location and Ansari-Bradley
test for scale (Gibbons and Chakraborti, 2011). Mukherjee and Chakraborti
(2012) propose a single distribution-free Shewhart Lepage-type chart (denoted
as SL). Chowdhury et al. (2014) propose a distribution-free Shewhart Cucconi-
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type chart (denoted as SC). Recently, Chong et al. (2017) extend Lepage-type
charts to premier charts, and Mukherjee and Marozzi (2017) extend Lepage-
type charts to circular-grid charts, respectively. The research, however, is still
lacking for nonparametric single charts.

The objective of this paper is to propose a single NSPC chart that can monitor
the location and the scale parameters of a univariate continuous distribution,
simultaneously. Motivated by the powerful performance of nonparametric two-
sample Cramér-von Mises (CvM) test, we propose a single NSPC procedure
by integrating EWMA and CvM test (denoted as ECvM). The proposed pro-
cedure is compared with some competing methods in the literature, includ-
ing the SL chart of Mukherjee and Chakraborti (2012) and the SC chart of
Chowdhury et al. (2014).

The rest of the paper is organized as follows. Our proposed ECvM control chart
is described in Section 2. Then some implementation issues are described in
detail in Section 3, including the search algorithm for finding control limits and
sensitivity analysis of the effect of number of reference samples on the perfor-
mance. Studies based on Monte-Carlo simulation to evaluate the performance
in comparison with some competing procedures are presented in Section 4. An
application on forged automobile engine piston rings is illustrated in Section
5 to demonstrate the application of the ECvM chart. Some remarks conclude
this paper in Section 6. The derivation of the formula for ARL is deferred to
the Appendix.

2 Proposed NSPC ECvM Chart

Motivated by the discussions above, a new NSPC chart is described here. We
first give brief review of the CvM test in Section 2.1, and then present the
methodology for constructing our NSPC ECvM chart in Section 2.2.

2.1 Brief review of CvM test

Assume that {𝑋1, 𝑋2, . . . , 𝑋𝑛} and {𝑌1, 𝑌2, . . . , 𝑌𝑚} are independent samples
from continuous cumulative distribution functions (CDF) 𝐹 (𝑥) and 𝐺(𝑥) =
𝐹 (𝑥−𝜃

𝛿
)(𝜃 ∈ Θ, 𝛿 > 0), respectively, where 𝐹 (𝑥) is unknown, 𝜃 and 𝛿 are un-

known location parameter and scale parameter, respectively, and Θ is the pa-
rameter space. In terms of hypothesis testing, the null hypothesis is that both
of the two samples are from 𝐹 (𝑥), and the alternative hypothesis is that the
samples {𝑋1, 𝑋2, . . . , 𝑋𝑛} are from 𝐹 (𝑥), while the samples {𝑌1, 𝑌2, . . . , 𝑌𝑚}
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are from 𝐺(𝑥), i.e., for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . ,𝑚

H0 : 𝑋𝑖, 𝑌𝑗 ∼ 𝐹 ↔ H1 : 𝑋𝑖 ∼ 𝐹, 𝑌𝑗 ∼ 𝐺. (1)

To make use of CvM test, the empirical CDF (ECDF) are defined as

𝐹1(𝑡) =
1

𝑛

𝑛∑
𝑗=1

𝐼(𝑥𝑗 ≤ 𝑡), 𝐹2(𝑡) =
1

𝑚

𝑚∑
𝑗=1

𝐼(𝑦𝑗 ≤ 𝑡),

where 𝐼(𝐴) is the indicator function being 1 if A is true and 0 otherwise.

The two-sample CvM test statistic in Anderson (1962) is defined as the average
square of difference of two ECDF based on the two samples, that is

𝑊𝑚,𝑛 =
𝑚𝑛

𝑚+ 𝑛

∫ ∞

−∞
∣𝐹1(𝑥)− 𝐹2(𝑥)∣2𝑑𝐹𝑚,𝑛(𝑥), (2)

where 𝐹𝑚,𝑛(𝑥) is the ECDF of the joint samples. The CvM test statistic can
be computed as

𝑊𝑚,𝑛 =
𝑚𝑛

(𝑚+ 𝑛)2

( 𝑛∑
𝑖=1

∣𝐹1(𝑥𝑖)− 𝐹2(𝑥𝑖)∣2 +
𝑚∑
𝑗=1

∣𝐹1(𝑦𝑗)− 𝐹2(𝑦𝑗)∣2
)
. (3)

From the definition (2) or computation (3), larger 𝑊𝑚,𝑛 leads to rejecting the
null hypothesis 𝐻0 in (1).

It is shown by Anderson (1962) that the mean and variance of 𝑊𝑚,𝑛 are
respectively

𝜇𝑊𝑚,𝑛 =
𝑚+ 𝑛+ 1

6(𝑚+ 𝑛)
,

and

𝜎2
𝑊𝑚,𝑛

=
(𝑚+ 𝑛+ 1)[(1− 3

4𝑛
)(𝑚+ 𝑛)2 + (1− 𝑛)(𝑚+ 𝑛)− 𝑛]

45(𝑚+ 𝑛)2𝑚
.

2.2 Construction of ECvM control chart

To construct a control chart based on CvM test, assume that {𝑋1, 𝑋2, . . . , 𝑋𝑛}
are a sequence of independent observations obtained when the process is IC
and 𝑌𝑖 = {𝑌𝑖1, 𝑌𝑖2, . . . , 𝑌𝑖𝑚} are the 𝑖th sample with sample size 𝑚, which are a
sequence of independent observations obtained during process monitoring. At
time 𝑖, we construct our ECvM control chart by the CvM statistic 𝑊𝑚,𝑛 in (3).
It is well known that the EWMA chart (Roberts, 1959) is more effective than
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the traditional Shewhart chart for small changes of a process (Graham et al.,
2011a, 2012; Li et al., 2010; Zou and Tsung, 2010). We suggest integrating
EWMA procedure with CvM statistic at time point 𝑖 to construct our ECvM
control chart.

The procedure steps are summarized as follows.

(1) Collect sample 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} with sample size 𝑛 when the pro-
cess is IC (Phase I).

(2) At time 𝑖, obtain the 𝑖th sample 𝑌𝑖 = {𝑌𝑖1, 𝑌𝑖2 . . . 𝑌𝑖𝑚} with sample size
𝑚.

(3) Compute the CvM test statistic 𝑊𝑚,𝑛,𝑖 based on 𝑋 and 𝑌𝑖. Standardize
𝑊𝑚,𝑛,𝑖 by

𝑈𝑖 =
𝑊𝑚,𝑛,𝑖 − 𝜇𝑊𝑚,𝑛

𝜎𝑊𝑚,𝑛

. (4)

(4) Construct EWMA statistic

𝐸𝑖 = 𝜆𝑈𝑖 + (1− 𝜆)𝐸𝑖−1, (5)

where 𝐸0 = 0 and the smoothing constant 𝜆 ∈ (0, 1].
(5) ECvM control chart issues an OC signal if 𝐸𝑖 > ℎ, where ℎ is the control

limit for a prespecified 𝐴𝑅𝐿0.

Lucas and Saccucci (1990) provide guidelines for selecting 𝜆 and it is shown
that smaller values of 𝜆 should be used to detect smaller shifts and larger
values should be used to detect larger shifts. In general, values of 𝜆 in the
interval 0.05 ≤ 𝜆 ≤ 0.25 work well in practice.

Note that as some existing NSPC procedures (Ross and Adams, 2012; Li
et al., 2010), we assume the IC CDF 𝐹 (⋅) is unknown. As a matter of fact,
we assume that an IC dataset of size 𝑛 has been collected when the process
is IC, and it can be used for estimating certain IC parameters or the IC
distribution 𝐹 (⋅). The set of IC sample {𝑋1, 𝑋2, . . . , 𝑋𝑛} is used to represent
the IC process distribution 𝐹 (⋅). Note that it might be a significant issue to do
Phase I analysis efficiently in cases when 𝐹 (⋅) is nonparametric and unknown,
although in such cases it is not the focus of this paper. Jones et al. (2009)
propose a distribution-free method for identifying an IC reference sample and
defining the IC state. And it will also be shown in Section 3.2 that the size 𝑛
of IC sample has great effect on the IC performance on our proposed ECvM
chart.
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3 Implementation Issues

We describe some implementation issues of our proposed ECvM procedure. In
Section 3.1, we use a bisection search algorithm to obtain the control limit ℎ
based on Monte-Carlo simulation. Then, in Section 3.2, we study sensitivity
analysis of the effect of IC sample size 𝑛 on the IC performance.

3.1 Finding control limit ℎ

To find the control limit, we derive the formula for ARL (see the Appendix).
It is direct to obtain ℎ by solving (A.3), it is, however, quite complicated and
inconvenient for practical usage, as it involves solving nonlinear integration
equation. Li et al. (2014) give an overview of methods for computing ARL
and show that Monte-Carlo method is widely accepted. Next we obtain the
control limit ℎ by Monte-Carlo simulation.

The IC sample 𝑋 with sample size 𝑛 can be generated from standard normal
distribution 𝑁(0, 1), as well as the sample 𝑌𝑖 with sample size 𝑚. Note that
our ECvM control chart is based on the CvM statistic, which distribution
independence is proved by Anderson (1962) and Ross and Adams (2012).
We also assume the independence of samples {𝑋1, 𝑋2, . . . , 𝑋𝑛} and 𝑌𝑖 =
{𝑌𝑖1, 𝑌𝑖2, . . . , 𝑌𝑖𝑚}. These ensure that our ECvM control chart is distribution-
free, though the EWMA procedure in (5) makes the decisions whether to
signal or not dependent. Hence the ARL values are nearly the same for other
non-normal continuous distributions. In addition, we have also verified this by
simulation results. Numerical computations based on 50,000 runs are used to
determine ℎ. The results are displayed in Table 1. As shown in Graham et al.
(2014), the run-length distribution is highly right skewed, which is consistent
with our findings in Section 4.1. Important information about the perfor-
mance of a control chart may be overlooked if only ARL is considered. Some
researchers have suggested that the chart should be designed so that a nom-
inal median run-length (MRL) is attained. So, in this paper, we also present
the control limits of some target MRL in Table 1. We have chosen 𝜆 = 0.1,
𝑛 = 30, 50, 100, 150 and 𝑚 = 5, 10, 15, 25. The ℎ values in Table 1 are for
𝐴𝑅𝐿0 = 200, 370 and 500 and 𝑀𝑅𝐿0 = 200, 370 and 500, respectively.

From Table 1, for a combination of (𝑛,𝑚), a control limit ℎ can be found such
that the 𝐴𝑅𝐿0 or 𝑀𝑅𝐿0 equals to the prespecified one. For example, when
30 reference observations and 10 monitoring observations are available and an
𝐴𝑅𝐿0 of 500 is desired, the ℎ for the ECvM chart is given by 0.415. From
Table 1, we see that for any fixed combination of (𝑛,𝑚) values, the higher the
nominal 𝐴𝑅𝐿0 or 𝑀𝑅𝐿0 values, the higher the values of ℎ. Further, for fixed
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Table 1. The control limits h for various combinations of n, m, ARL0 and MRL0.
𝑛 𝑚 ARL0=200 ARL0=370 ARL0=500 MRL0=200 MRL0=370 MRL0=500
30 5 0.391 0.468 0.504 0.576 0.669 0.705
30 10 0.310 0.378 0.415 0.522 0.615 0.645
30 15 0.225 0.287 0.318 0.462 0.543 0.579
30 25 0.080 0.128 0.157 0.373 0.438 0.471
50 5 0.460 0.547 0.587 0.601 0.695 0.746
50 10 0.415 0.499 0.534 0.571 0.672 0.719
50 15 0.352 0.432 0.472 0.542 0.631 0.668
50 25 0.243 0.310 0.343 0.461 0.541 0.597
100 5 0.516 0.613 0.658 0.622 0.727 0.768
100 10 0.510 0.598 0.643 0.615 0.716 0.756
100 15 0.475 0.562 0.607 0.598 0.699 0.737
100 25 0.411 0.496 0.536 0.577 0.652 0.719
150 5 0.538 0.635 0.679 0.643 0.738 0.781
150 10 0.533 0.628 0.675 0.628 0.732 0.772
150 15 0.514 0.610 0.658 0.619 0.721 0.768
150 25 0.475 0.568 0.610 0.596 0.691 0.742
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𝑛, the ℎ decreases with the increase in 𝑚, and for fixed 𝑚, the ℎ increases
with the increase in 𝑛. Our simulation results (not shown here) show that for
given combination of (𝑛,𝑚,𝐴𝑅𝐿0) or (𝑛,𝑚,𝑀𝑅𝐿0), nearly the same ℎ values
can be obtained if the normal distribution is replaced by other continuous
distributions. For example, when 𝑛 = 30,𝑚 = 5 and 𝜆 = 0.1, the 𝐴𝑅𝐿0 is
500 with control limit ℎ = 0.504 when the distribution is normal. When the
distribution is highly non-normal, i.e., 𝜒2(1) distribution, the simulated ARL
value is 502.3 based on 50,000 Monte Carlo simulations.

For given 𝑛, we also study 𝐴𝑅𝐿0 values for different 𝑚 and ℎ. The results for
𝑛 = 30, 50 and𝑚 = 5, 10, 15, 25 are shown in Figure 1. From Figure 1, it is easy
to find the ℎ values for prespecified 𝐴𝑅𝐿0, such as for 𝐴𝑅𝐿0 = 250, 370, 500.
It is as expected that 𝐴𝑅𝐿0 values increase as ℎ increases, but the rate of
increasing shows different patterns. For large ℎ, 𝐴𝑅𝐿0 values increase as 𝑚
increases, and the increasing rate is larger if 𝑚 is larger, especially when
𝑛 = 30,𝑚 = 25. For small ℎ, the 𝐴𝑅𝐿0 values will be nearly stable if 𝑚 is
small.
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Fig. 1. 𝐴𝑅𝐿0 values for different 𝑚 and ℎ for given 𝑛.

3.2 Sensitivity analysis

As an on-line monitoring NSPC procedure, it is assumed for our proposed
ECvM chart that the IC process is represented by an IC reference sample
𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} of size 𝑛. The size 𝑛 would inevitably affect how well
the IC process is estimated and how well the ECvM chart performs during
monitoring. In practice, we may adjust the control limits such that the 𝐴𝑅𝐿0

fits our target, such as 500. It should be pointed out that when 𝑛 is not large,
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there would be considerable uncertainty in the estimation of the process, which
in turn would distort the IC run length distribution of the ECvM control chart.

We study the effect of 𝑛 by finding the ARL and standard deviation of run
length (SDRL) values for given IC reference sample 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑛}
of size 𝑛. Note the standard error of the ARL is another measure on the
stability of the estimation of ARL, and it equals to the SDRL divided by the
square root of simulation times. Now that the simulation times are fixed in
this paper, we only use SDRL instead of the standard error of the ARL. For
this purpose, 𝑛 is set to be 100 or 150, 𝑚 is set to be 5, 𝜆 is set to be 0.1
and 𝐴𝑅𝐿0 is set to be 500, respectively. For these settings, the control limit
ℎ can be found from Table 1. Then 𝑛 IC observations are generated from
standard normal distribution 𝑁(0, 1), the average 𝜇 and standard deviation 𝜎
are computed, and 𝐴𝑅𝐿0 values are simulated with 50,000 runs based on these
IC samples, rather than the IC distribution. Note that though the IC samples
are generated from the IC distribution, there would be deviation of the (𝜇, 𝜎)
values from the target values (0, 1), which makes the 𝐴𝑅𝐿0 values deviate from
the target 500. For clear description, we categorize different deviations of the
(𝜇, 𝜎) values into four different cases by direction: (1) 𝜇 larger and 𝜎 smaller
(denoted as 𝜇 ↑ 𝜎 ↓); (2) both 𝜇 and 𝜎 smaller (denoted as 𝜇 ↓ 𝜎 ↓); (3) both
𝜇 and 𝜎 larger (denoted as 𝜇 ↑ 𝜎 ↑); (4) 𝜇 smaller and 𝜎 larger (denoted as
𝜇 ↓ 𝜎 ↑). We also categorize different deviations of the (𝜇, 𝜎) values into three
different cases by magnitude: (1) small deviation (0% − 5%); (2) moderate
deviation (5%− 10%); (3) large deviation (≥ 10%) and another special case,
i.e., small deviation of 𝜇 (< 1%) and nearly none deviation of 𝜎 (< 0.01%).

The estimated 𝜇, 𝜎, ARL and SDRL values are shown in Table 2 for 𝑛 = 100
and in Table 3 for 𝑛 = 150, respectively. From Table 2, 21% of the ARL values
are smaller than 250, 13% are larger than 750, 28% are outside the range of
200-1000, 6% are outside the range of 100-2000, 5 cases are less than 100 and 2
cases are larger than 2000. When the deviations of both 𝜇 and 𝜎 are small, the
ARL values will be in the range of 220-750, which indicates that our proposed
ECvM chart can control well the error rate when the IC samples are close to
the IC distribution. When the deviation of 𝜇 is moderate and the deviation of
𝜎 is large, the ARL is larger than 1000 only in one case. When the deviation
of either is moderate and the other is large, there are 2 cases with ARL larger
than 2000 and 7 cases with ARL larger than 1000. The number of cases with
ARL smaller than 200 is 23, when the deviations of both 𝜇 and 𝜎 are larger
than 5%. From Table 3, 15% of the ARL values are smaller than 250, 1% are
larger than 750, 14% are outside the range of 200-1000, 3 cases are less than
100 and none are larger than 2000. In summary, the deviation effect of 𝜎 is
larger than 𝜇 and the effect is larger when 𝑛 is smaller.

In some of our numerical examples, some deviations of 𝜇 and 𝜎 cause the
ARL value to increase, sometimes higher than 2000 when 𝐴𝑅𝐿0 is 500. In
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Table 2. Effect of IC sample size on ARL and SDRL (𝑛 = 100,𝑚 = 5, 𝐴𝑅𝐿0 = 500).
deviation 𝜇 ↑ 𝜎 ↓ 𝜇 ↓ 𝜎 ↓ 𝜇 ↑ 𝜎 ↑ 𝜇 ↓ 𝜎 ↑
𝜇 = 0
𝜎 = 1 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL)

𝜇(0%-5%) 0.001 0.999 764.93 -0.005 0.998 761.14
𝜎(<0.01%) (758.58) (761.80)
𝜇(0%-5%) 0.003 0.952 219.11
𝜎(0%-5%) (217.49)

0.024 0.966 558.72 -0.043 0.987 763.51 0.004 1.025 859.46 -0.048 1.030 895.52
(558.02) (773.69) (856.38) (913.35)

0.047 0.987 579.63 -0.016 0.951 558.32 0.029 1.019 621.28 -0.042 1.039 300.23
(579.20) (552.03) (626.92) (300.90)

0.021 0.977 473.80 -0.019 0.961 474.97 -0.046 1.029 366.19
(469.68) (476.71) (358.66)

0.047 0.952 196.53 -0.022 0.988 742.30 -0.390 1.013 256.47
(192.66) (740.14) (252.81)

-0.021 0.959 215.69
(210.21)

-0.021 0.975 240.66
(243.36)

-0.012 0.969 374.89
(376.61)

𝜇(0%-5%) 0.005 0.938 351.46 -0.014 0.916 453.80 0.007 1.052 680.25 -0.025 1.038 1406.75
𝜎(5%-10%) (352.39) (440.83) (678.24) (1396.54)

0.023 0.935 303.58 -0.027 0.912 194.84
(299.07) (193.49)

0.048 0.936 275.44 -0.006 0.901 192.82
(272.26) (186.31)

-0.030 0.947 369.98
(364.56)

𝜇(0%-5%) 0.024 0.888 156.30 -0.034 0.848 161.14 -0.026 1.107 2370.68
𝜎(≥10%) (152.45) (153.74) (2137.34)

0.042 0.898 104.98 -0.034 0.835 122.03
(101.65) (116.59)

𝜇(5%-10%) 0.095 0.990 435.23 -0.052 0.978 397.35 0.085 1.016 300.72 -0.066 1.018 516.66
𝜎(0%-5%) (426.65) (400.80) (290.30) (509.40)

0.052 0.993 526.57 -0.081 1.000 396.12 0.093 1.039 1052.17 -0.057 1.015 287.21
(519.24) (395.03) (1031.2) (282.45)

0.072 0.955 298.88 -0.081 0.992 582.08 0.080 1.001 600.83 -0.080 1.008 602.55
(294.06) (583.87) (597.14) (600.07)

0.073 0.964 658.21 -0.057 0.973 258.95 0.061 1.079 1863.67 -0.076 1.027 515.73
(658.56) (254.82) (1768.03) (506.097)

0.059 0.980 3887.63 -0.051 0.970 463.25 0.052 1.029 540.63
(390.13) (462.78) (540.75)

0.093 1.022 362.24
(357.49)

𝜇(5%-10%) 0.063 0.934 193.36 -0.058 0.913 216.72 0.065 1.096 761.38 -0.079 1.083 1298.40
𝜎(5%-10%) (190.24) (213.06) (753.81) (1309.88)

-0.100 0.938 193.09 -0.066 1.057 551.36
(189.60) (548.36)

-0.100 1.061 806.66
(799.72)

𝜇(5%-10%) 0.066 0.899 251.77 -0.078 0.882 146.17 -0.075 1.101 2302.83
𝜎(≥10%) (245.16) (143.17) (2089.93)
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Table 2. Continued.
deviation 𝜇 ↑ 𝜎 ↓ 𝜇 ↓ 𝜎 ↓ 𝜇 ↑ 𝜎 ↑ 𝜇 ↓ 𝜎 ↑
𝜇 = 0
𝜎 = 1 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL)

𝜇(≥10%) 0.138 0.973 282.81 -0.136 0.965 132.12 0.185 1.018 255.40 -0.101 1.017 429.89
𝜎(0%-5%) (279.14) (128.15) (250.69) (434.04)

0.267 0.958 57.24 -0.123 0.956 279.14 0.121 1.026 520.15 -0.137 1.010 706.26
(52.51) (279.59) (520.89) (702.53)

0.114 0.978 527.71 -0.135 0.987 383.82 0.108 1.022 497.17
(526.79) (381.93) (486.52)

0.140 0.978 397.58 -0.117 0.971 383.43
(394.62) (384.30)

0.139 0.976 373.17 -0.147 0.967 283.61
(376.12) (274.46)

0.242 0.996 102.47 -0.127 0.988 533.42
(95.36) (531.53)

0.139 0.984 271.27 -0.115 0.994 263.94
(269.58) (260.21)

0.105 0.991 647.53 -0.168 0.971 347.36
(657.03) (340.73)

-0.132 0.961 435.51
(430.08)

𝜇(≥10%) 0.150 0.903 101.70 -0.100 0.938 193.09 0.298 1.056 105.44 -0.105 1.067 1368.56
𝜎(5%-10%) (99.33) (189.60) (100.25) (1357.55)

0.111 0.941 74.13 -0.144 0.921 193.62 0.216 1.089 234.52 -0.105 1.062 720.75
(68.72) (187.49) (232.66) (719.233)

0.133 1.098 367.84
(368.25)

𝜇(≥10%) 0.110 0.893 81.21 -0.213 0.831 60.63
𝜎(≥10%) (77.94) (55.51)

0.126 0.846 117.77 -0.166 0.875 108.82
(114.35) (103.58)

-0.125 0.852 59.17
(55.27)
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Table 3. Effect of IC sample size on ARL and SDRL (𝑛 = 150,𝑚 = 5, 𝐴𝑅𝐿0 = 500).
deviation 𝜇 ↑ 𝜎 ↓ 𝜇 ↓ 𝜎 ↓ 𝜇 ↑ 𝜎 ↑ 𝜇 ↓ 𝜎 ↑
𝜇 = 0
𝜎 = 1 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL)

𝜇(0%-5%) 0.02 1.000 611.22 0.032 1.001 312.35
𝜎(<0.01%) (622.10) (313.29)
𝜇(0%-5%) 0.022 0.956 279.26 -0.015 0.979 773.73 0.050 1.036 758.78 -0.024 1.035 726.64
𝜎(0%-5%) (274.28) (774.12) (756.12) (734.15)

0.010 0.960 378.47 -0.011 0.973 479.36 0.004 1.006 741.12 -0.044 1.031 651.35
(376.47) (476.46) (736.43) (646.93)

0.026 0.989 268.75 -0.018 0.988 447.83 0.021 1.034 668.97 -0.017 1.032 518.70
(261.47) (443.63) (652.81) (515.51)

0.014 0.995 482.67 -0.048 0.990 377.04 0.050 1.025 414.75 -0.019 1.042 1214.35
(477.79) (371.61) (417.25) (1217.18)

-0.042 0.985 621.04 0.041 1.040 923.12 -0.044 1.025 875.05
(616.11) (915.70) (883.72)

-0.011 0.987 665.18 0.032 1.026 414.97 -0.002 1.035 1120.63
(665.52) (421.42) (1103.08)

-0.040 0.974 399.81 0.018 1.048 1472.82 -0.010 1.009 624.55
(392.69) (1431.63) (615.92)

-0.012 0.967 382.12 -0.010 1.033 560.15
(378.17) (563.70)

𝜇(0%-5%) -0.066 0.905 305.99 0.033 1.093 1050.35 -0.018 1.068 650.06
𝜎(5%-10%) (308.02) (1036.25) (642.56)

-0.027 0.923 234.34 0.025 1.052 1164.98
(228.37) (1163.06)

-0.038 0.948 542.41 0.007 1.086 1165.26
(544.48) (1161.0)

-0.017 0.948 252.08 0.021 1.051 609.50
(250.57) (06.23)

-0.003 0.936 537.72
(536.26)

𝜇(0%-5%) 0.041 0.895 337.86 -0.043 0.872 165.23 0.010 1.157 1685.02
𝜎(≥10%) (333.51) (161.89) (1617.81)
𝜇(5%-10%) 0.089 0.986 398.04 -0.095 0.958 317.96 0.087 1.013 459.87 -0.076 1.010 371.21
𝜎(0%-5%) (400.21) (315.37) (455.32) (370.92)

0.058 0.974 269.79 -0.071 0.953 282.72 0.086 1.026 411.05 -0.072 1.038 820.79
(267.88) (279.88) (408.13) (801.60)

0.058 0.959 348.80 -0.098 0.997 458.88 0.068 1.023 178.33 -0.092 1.007 293.25
(340.96) (452.14) (174.92) (294.77)

-0.056 0.971 447.88 0.082 1.044 528.44 -0.058 1.031 684.14
(445.54) (519.31) (675.16)

-0.079 0.987 486.60 0.058 1.016 836.93 -0.070 1.021 712.17
(483.19) (828.03) (712.37

0.076 1.013 1061.91
(1052.95)

0.079 1.028 507.13
(499.56)

𝜇(5%-10%) 0.067 0.937 128.19 -0.079 0.922 226.60 0.088 1.051 350.96 -0.057 1.064 1117.65
𝜎(5%-10%) (126.26) (220.24) (346.66) (1096.14)

0.078 0.950 295.48 -0.072 0.911 214.18 -0.056 1.070 413.36
(295.64) (211.07) (408.00)

0.063 0.940 167.18
(163.30)

𝜇(5%-10%) -0.079 0.888 147.31
𝜎(≥10%) (141.62)
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Table 3. Continued.
deviation 𝜇 ↑ 𝜎 ↓ 𝜇 ↓ 𝜎 ↓ 𝜇 ↑ 𝜎 ↑ 𝜇 ↓ 𝜎 ↑
𝜇 = 0
𝜎 = 1 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL) 𝜇 𝜎

ARL
(SDRL)

𝜇(≥10%) 0.137 0.955 174.65 -0.132 0.981 468.46 0.116 1.022 350.78 -0.105 1.034 618.28
𝜎(0%-5%) (168.16) (470.99) (351.47) (624.73)

0.127 0.972 333.60 -0.110 0.995 531.81 0.183 1.002 93.53 -0.127 1.010 211.33
(333.76 (522.07) (87.894) (204.48)

0.111 0.960 234.19 -0.104 0.999 503.61 0.142 1.039 243.48 -0.114 1.050 479.40
(227.43) (511.23) (238.57) (476.80)

0.112 0.918 255.95 -0.181 0.953 139.50 0.121 1.040 435.68 -0.125 1.007 180.56
(253.13) (135.59) (439.61) (173.30)

0.110 0.982 138.35
(133.97)

0.115 0.990 237.37
(235.73)

𝜇(≥10%) 0.137 0.967 254.15 -0.168 0.943 112.30 0.120 1.087 1028.50 -0.127 1.073 755.25
𝜎(5%-10%) (250.29) (107.33) (1005.08) (749.22)

0.273 0.930 57.39 -0.127 0.928 291.79 0.177 1.066 212.45
(52.79) (215.89) (209.85)

-0.137 0.948 208.92
(208.44)

𝜇(≥10%) 0.237 0.897 59.56 -0.103 0.892 117.91 0.142 1.119 606.35
𝜎(≥10%) (54.40) (113.02) (603.29)
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such cases, it will take a long time to detect such shifts. Comparing Table 2
and Table 3, when 𝑛 changes from 100 to 150, the number of the cases with
𝐴𝑅𝐿 > 2000 reduced from 2 to 0, which implies that practitioners might need
collect at least 150 observations to avoid too long waiting.

When sufficiently large number of IC samples are unavailable, one alterna-
tive method is the bootstrap method, such as Chatterjee and Qiu (2009) and
Gandy and Kvaløy (2013), which is beyond the scope of this paper.

4 Comparison Studies

We present some simulation results in this section regarding the performance
of our proposed ECvM control chart and compare it with some competing
methods in the literature. In Section 4.1, we study the performance of our
ECvM chart when the process is IC. Then, in Section 4.2, we compare our
ECvM chart with some competing methods under different location and/or
scale shifts settings. Finally, in Section 4.3, we further compare our ECvM
chart with the competing methods under more general shifts settings.

4.1 Performance for IC process

We set 𝑛 = 30, 50, 100, 150, 𝑚 = 5, 10, 15, 25, 𝜆 = 0.1 and 𝐴𝑅𝐿0 = 500. The
control limits can be found from Table 1. Note our ECvM chart is distribution-
free, hence the run length distribution is nearly the same for other non-normal
continuous distributions due to simulation variation. Numerical computations
based on standard normal samples with 50,000 runs are used to determine the
ARL, SDRL and some percentiles of run length. The results are displayed in
Table 4.

From Table 4, it can be seen that for fixed 𝑚, SDRL and the 95% percentile
values decrease as 𝑛 increases, while, all the other percentiles increase as 𝑛
increases. On the contrary, for fixed 𝑛, the 95% percentiles increase as 𝑚
increases, while except the 75% percentiles, all other percentiles decrease as
𝑚 increases. For 𝑛 = 30, SDRL values increase as 𝑚 increases, while for other
values of 𝑛, SDRL values also increase as 𝑚 increases only when 𝑚 > 5.
As for the percentiles, for all combinations of (𝑛,𝑚), the medians of the run
lengths are all less than the prespecified target 𝐴𝑅𝐿0 = 500. For example,
when 𝑛 = 100 or 150, the median values are nearly half of the target, and
when both 𝑛 and 𝑚 are even smaller, the median values are farther from
target. For these listed percentiles, the 75% percentiles are the most close to
the target when 𝑛 ≥ 50. For example, the 75% percentile is 499 when 𝑛 = 50
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Table 4. Run length performance of ECvM chart with 𝐴𝑅𝐿0 = 500.
𝑛 𝑚 ℎ ARL SDRL 5𝑡ℎ 25𝑡ℎ 𝑀𝑒𝑑𝑖𝑎𝑛 75𝑡ℎ 95𝑡ℎ

30 5 0.504 499.41 1124.42 7 37 123 411 2294
30 10 0.415 504.92 1140.95 4 24 100 417 2515
30 15 0.318 500.71 1189.12 3 14 69 369 2540
30 25 0.157 498.71 1312.87 1 5 30 258 2940
50 5 0.587 500.47 973.37 11 58 175 494 2028
50 10 0.534 499.03 965.96 8 43 156 499 2146
50 15 0.472 503.31 1019.03 6 31 129 478 2332
50 25 0.343 502.49 1135.90 3 17 84 421 2571
100 5 0.658 506.26 783.22 18 92 247 595 1824
100 10 0.643 506.92 779.29 16 79 229 605 1932
100 15 0.607 500.88 820.89 11 65 205 578 1986
100 25 0.536 500.45 892.35 8 45 172 552 2131
150 5 0.679 501.45 693.54 20 107 271 616 1723
150 10 0.675 499.53 674.05 18 95 259 626 1798
150 15 0.658 498.40 721.95 17 90 247 604 1824
150 25 0.610 504.55 776.82 12 66 216 630 1987
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and 𝑚 = 10. The 95% percentiles are almost 3 to 5 times of the target. In
summary, the run length distribution is right skewed, which is consistent with
the literature, such as Teoh et al. (2014) and Graham et al. (2014), who show
that the run length distribution is highly right skewed, especially when the
shift is small.

4.2 Performance for location and/or scale shifts

The SL chart of Mukherjee and Chakraborti (2012) and the SC chart of
Chowdhury et al. (2014) are the existing two competing nonparametric con-
trol charts, which are designed for monitoring the location and scale, simul-
taneously. So, they are chosen as the benchmark charts in this paper. Now
the proposed ECvM control chart is compared with the SL chart of Mukher-
jee and Chakraborti (2012) and the SC chart of Chowdhury et al. (2014).
As the number and variety of OC settings are too large to allow a compre-
hensive comparison and our goal is to show the effectiveness and sensitivity
of the ECvM chart, we only choose certain representative models for illustra-
tion and consider the following four distributions: normal distribution 𝑁(𝜃, 𝛿),
chi-squared distribution 𝜒2(1) with degree-of-freedom 1, Laplace distribution
𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜃, 𝛿) and lognormal distribution LN(𝜃, 𝛿). The parameters are set as
𝑛 = 30, 𝑚 = 5, 𝜆 = 0.1 and 𝐴𝑅𝐿0=500. When the process is IC, the location
and scale parameters are set as 𝜃0 = 0 and 𝛿0 = 1. When the process is OC,
the location parameter is assumed to shift from 𝜃0 = 0 to 𝜃, and the scale
parameter is assumed to shift from 𝛿0 = 1 to 𝛿. We consider 24 combinations
of (𝜃,𝛿) when 𝜃=0.0, 0.25, 0.5, 1.0, 1.5, 2.0 and 𝛿=1.0, 1.25, 1.5, 1.75, 2.0.
The ARL and SDRL results are shown in Table 5 for normal distribution and
chi-squared distribution and in Table 6 for Laplace distribution and lognormal
distribution, respectively.

From Table 5 and Table 6, several conclusions can be drawn as follows.

(1) For the selected 𝑛,𝑚 and 𝐴𝑅𝐿0, the 𝐴𝑅𝐿1 values decrease as the location
parameter 𝜃 and/or the scale parameter 𝛿 increases, which indicates that
it is effective for our ECvM chart to jointly monitor location and scale.
As for the same magnitude, the ECvM chart detects scale shifts faster
than location shifts. For example, for normal distribution without shifts
in 𝛿, the 𝐴𝑅𝐿1 value is about 42% less when 𝜃0 increases by 25%, while
without shifts in 𝜃, the 𝐴𝑅𝐿1 value is about 77% less when 𝛿0 increases
by 25%. SDRL values show similar findings.

(2) For one thing, when there are only shifts in 𝜃, the 𝐴𝑅𝐿1 values of ECvM
chart are smaller than those of SL and SC charts, indicating better per-
formance of ECvM chart. Take the normal distribution as an example,
when 𝜃 = 0.5, 𝛿=1.00, the 𝐴𝑅𝐿1 value of ECvM chart is 60.49, which

17



Table 5. ARL(SDRL) values of ECvM, SL and SC charts for 𝑁(0, 1) and 𝜒2(1)
distributions when 𝑛 = 30, 𝑚 = 5 and 𝐴𝑅𝐿0 = 500.

𝑁(0, 1) 𝜒2(1)
𝜃 𝛿 ECvM SL SC ECvM SL SC

0.00 1.00 499.41 499.92 498.45 500.52 499.37 500.54
(1124.42) (946.58) (1201.4) (1131.61) (937.22) (1117.06)

0.25 1.00 282.20 347.93 338.74 190.99 308.90 1198.64
(861.97) (746.76) (932.54) (843.46) (881.83) (2185.52)

0.50 1.00 60.49 139.36 123.36 13.68 254.96 571.30
(323.14) (397.76) (457.16) (167.18) (868.49) (1518.79)

1.00 1.00 4.13 13.24 11.18 1.87 111.78 104.08
(4.10) (51.20) (38.32) (1.07) (592.68) (571.56)

1.50 1.00 1.92 2.74 2.37 1.29 17.97 17.74
(0.961) (4.81) (3.33) (0.47) (216.23) (191.23)

2.00 1.00 1.33 1.33 1.26 1.08 4.48 3.42
(0.51) (0.79) (0.66) (0.26) (97.96) (40.27)

0.00 1.25 108.47 115.98 71.02 11.67 10.06 6.21
(247.50) (216.29) (165.75) (9.61) (10.12) (6.08)

0.00 1.50 39.39 39.60 21.92 6.59 5.10 3.30
(67.37) (63.86) (33.61) (4.61) (4.76) (2.87)

0.00 1.75 21.74 19.38 10.44 5.11 3.63 2.44
(25.20) (25.24) (14.10) (3.29) (3.17) (1.97)

0.00 2.00 14.52 11.65 6.33 4.39 2.91 2.03
(13.95) (14.07) (7.23) (2.67) (2.43) (1.50)

0.25 1.25 71.73 91.96 55.10 377.10 479.87 649.42
(168.56) (177.14) (127.79) (1079.46) (1036.66) (1453.18)

0.50 1.25 26.03 46.85 30.63 34.65 126.92 333.02
(68.79) (102.94) (94.31) (279.47) (379.17) (990.57)

1.00 1.25 4.78 9.17 7.19 2.21 60.41 60.19
(5.22) (17.74) (11.33) (5.42) (307.96) (339.23)

1.50 1.25 2.28 2.92 2.51 1.39 12.92 10.46
(1.27) (3.38) (2.65) (0.53) (145.07) (101.40)

2.00 1.25 1.55 1.54 1.40 1.11 2.77 2.56
(0.68) (1.03) (0.86) (0.31) (43.74) (29.72)

0.25 1.50 30.68 33.84 19.05 23.63 20.39 10.48
(49.92) (54.83) (29.93) (24.46) (22.39) (11.62)

0.50 1.50 16.40 22.22 13.34 81.12 169.61 203.53
(22.66) (35.82) (20.23) (394.87) (441.53) (622.55)

1.00 1.50 5.16 7.42 5.35 2.71 39.88 43.72
(4.47) (10.08) (6.49) (2.81) (159.09) (200.59)

1.50 1.50 2.62 3.02 2.57 1.53 9.97 8.79
(1.57) (3.01) (2.46) (0.61) (53.91) (53.25)

2.00 1.50 1.77 1.73 1.56 1.16 2.52 2.33
(0.85) (1.33) (1.01) (0.37) (16.05) (16.39)

0.25 2.00 13.32 10.87 6.05 6.53 4.50 2.80
(13.15) (12.5) (6.74) (4.42) (4.17) (2.43)

1.00 2.00 5.43 5.25 3.63 7.00 35.24 32.27
(4.17) (5.54) (3.59) (24.82) (86.01) (92.57)

1.50 2.00 5.43 3.04 2.38 1.95 10.54 9.05
(4.17) (2.76) (2.00) (0.95) (27.62) (44.04)

2.00 2.00 2.23 1.99 1.69 1.32 2.96 2.73
(1.21) (1.52) (1.15) (0.49) (9.38) (10.49)
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Table 6. ARL(SDRL) values of ECvM, SL and SC charts for 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 and LN(0,1)
distributions when 𝑛 = 30, 𝑚 = 5 and 𝐴𝑅𝐿0 = 500.

𝐿𝑎𝑝𝑙𝑎𝑐𝑒 LN(0,1)
𝜃 𝛿 ECvM SL SC ECvM SL SC

0.00 1.00 499.84 503.01 501.10 496.36 498.56 498.56
(1127.27) (996.73) (1124.78) (1129.80) (964.78) (1126.42)

0.25 1.00 229.25 393.73 377.21 203.99 405.75 1057.49
(755.45) (865.84) (969.75) (949.90) (981.59) (2078.40)

0.50 1.00 30.02 200.27 182.11 5.36 258.29 438.22
(212.58) (644.24) (663.26) (71.66) (865.90) (1346.31)

1.00 1.00 2.76 21.62 20.33 1.49 63.00 67.92
(2.32) (162.59) (188.87) (0.60) (461.63) (498.68)

1.50 1.00 1.59 2.76 2.79 1.11 10.28 12.98
(0.73) (23.69) (14.51) (0.31) (175.21) (213.80)

2.00 1.00 1.24 1.24 1.19 1.02 3.39 3.26
(0.45) (6.72) (2.01) (0.14) (94.45) (74.63)

0.00 1.25 153.54 177.51 123.22 24.40 22.26 13.36
(381.92) (364.80) (326.84) (28.30) (26.19) (15.51)

0.00 1.50 64.79 76.64 44.13 9.37 7.62 4.98
(124.17) (152.09) (95.03) (7.61) (7.74) (4.90)

0.00 1.75 35.32 40.02 21.99 6.28 4.67 3.13
(53.36) (68.65) (36.69) (4.46) (4.40) (2.76)

0.00 2.00 24.28 23.44 13.21 5.12 3.48 2.44
(30.76) (34.36) (19.42) (3.30) (3.03) (2.00)

0.25 1.25 84.96 140.74 102.76 321.44 418.97 557.54
(279.08) (329.52) (303.75) (1000.75) (954.24) (1355.11)

0.50 1.25 21.32 74.05 56.67 19.51 155.48 288.25
(81.25) (230.66) (190.61) (219.63) (481.70) (979.85)

1.00 1.25 3.23 11.30 9.43 1.68 48.65 41.62
(2.68) (73.32) (47.23) (0.69) (372.54) (323.78)

1.50 1.25 1.83 2.44 2.21 1.15 7.52 6.82
(0.93) (6.05) (10.41) (0.36) (141.15) (97.28)

2.00 1.25 1.38 1.33 1.26 1.03 3.16 2.60
(0.56) (1.12) (0.99) (0.16) (100.50) (68.72)

0.25 1.50 43.29 61.35 37.13 66.27 69.49 39.14
(111.69) (129.35) (90.57) (135.16) (106.91) (61.62)

0.50 1.50 15.77 36.54 23.98 48.27 157.38 198.25
(36.51) (88.67) (65.96) (339.73) (486.25) (696.83)

1.00 1.50 3.61 8.03 6.45 2.00 32.46 32.92
(2.91) (25.36) (27.58) (2.29) (192.87) (214.48)

1.50 1.50 2.03 2.44 2.20 1.23 6.47 6.06
(1.09) (4.77) (11.78) (0.43) (104.99) (72.72)

2.00 1.50 1.52 1.41 1.33 1.04 1.80 1.89
(0.68) (1.02) (0.85) (0.20) (25.31) (19.42)

0.25 2.00 18.97 20.89 12.11 10.06 7.27 4.43
(26.08) (33.04) (17.71) (7.97) (7.36) (4.38)

1.00 2.00 4.13 5.74 4.14 3.68 28.11 26.02
(3.16) (9.41) (7.52) (7.62) (117.32) (148.17)

1.50 2.00 2.43 2.51 2.12 1.49 6.32 5.84
(1.41) (2.88) (2.39) (0.59) (43.39) (60.16)

2.00 2.00 1.80 1.57 1.42 1.10 1.67 1.85
(0.88) (1.16) (0.96) (0.30) (11.48) (10.13)
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is about 56.5% less than 139.36 of SL chart, and about 51% less than
123.36 of SC chart. When 𝜃 is larger, the performance of the three charts
are similar. For another thing, when there are only shifts in 𝛿, the 𝐴𝑅𝐿1

values of SC chart are smaller than those of ECvM and SL charts. More-
over, if both 𝜃 and 𝛿 shift, ECvM chart has better performance for most
cases, and nearly comparable for the rest cases. Results for chi-squared
distribution, Laplace distribution and lognormal distribution show simi-
lar findings, except it is worth pointing out that the 𝐴𝑅𝐿1 values of SC
chart are biased, that is, 𝐴𝑅𝐿1 is even larger than 𝐴𝑅𝐿0, such as for
chi-squared distribution and lognormal distribution when 𝜃 = 0.25 and
𝛿 = 1.00.

(3) Our ECvM chart is distribution-free in the sense that the 𝐴𝑅𝐿0 values
are close to 500 for all these four continuous distributions. It is interest-
ing to study the performance of our ECvM chart when the process is OC
under different distributions. Note that normal distribution and Laplace
distribution represent light tailed and heavy tailed distributions, respec-
tively, and chi-squared distribution and lognormal distribution represent
right skewed distributions. When there are only location shifts, the 𝐴𝑅𝐿1

values for normal distribution are the largest; when there are only scale
shifts, the 𝐴𝑅𝐿1 values for Laplace distribution are the largest; when
both location and scale shift, in most cases, the 𝐴𝑅𝐿1 performances are
comparable, and the 𝐴𝑅𝐿1 values for normal distribution are the small-
est when both shifts are small, such as when (𝜃, 𝛿) = (0.25, 1.25). SDRL
values show similar findings.

To see more clearly the performance comparison, Figures 2-4 show, respec-
tively, the ARL values of ECvM, SL and SC charts when only the location
parameter shifts, when only the scale parameter shifts and when the loca-
tion parameter shifts with scale parameter shifting to 1.2. From Figure 2,
when only the location parameter shifts, for normal distribution 𝑁(𝜃, 𝛿), the
𝐴𝑅𝐿1 values of ECvM, SL and SC charts are all smaller than 𝐴𝑅𝐿0=500,
and directly at the beginning and for 𝜃 ≥ 1, the values are nearly the same,
while for other 𝜃, ECvM performs better than the other two charts. For chi-
squared distribution 𝜒2(1), the 𝐴𝑅𝐿1 values of ECvM, SL and SC charts are
all larger than 𝐴𝑅𝐿0=500 when 𝜃 is small, and the deviation is the largest
for SC chart. When 0.1 < 𝜃 < 1.5, ECvM performs better than the other two
charts and when 𝜃 > 1.5, three charts are similar. For Laplace distribution,
ECvM performs better than the other two charts and three charts have sim-
ilar performances when 𝜃 > 1. For lognormal distribution, the 𝐴𝑅𝐿1 values
of the three charts are all larger than 𝐴𝑅𝐿0=500 when 𝜃 < 0.2, but for small
magnitude shifts, ECvM performs better than the other two charts. From
Figure 3, when only the scale parameter shifts, the three charts have similar
performances. From Figure 4, when the location parameter shifts with scale
parameter shifting to 1.2, for normal distribution and Laplace distribution,
SC chart is better when 𝜃 is small, while ECvM is better when 𝜃 is moderate
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to large. For chi-squared distribution and lognormal distribution, SL and SC
charts are still biased when 𝜃 is small. When 𝜃 gets larger, ECvM performs
better than the other two charts.
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Fig. 2. ARL values of ECvM, SL and SC charts when only the location parameter
shifts (𝑛 = 30, 𝑚 = 5 and 𝐴𝑅𝐿0 = 500).

4.3 Performance for general shifts

From the CvM test statistic defined in (2) or (3), which involves ECDF based
on the two samples, our proposed ECvM chart is not restricted to detect-
ing location and/or scale shifts, and it is expected to be able to detect more
general patterns of changes. We investigate this and consider changes in the
parameters of several distributions. The choice of which distributions to con-
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Fig. 3. ARL values of ECvM, SL and SC charts when only the scale parameter shifts
(𝑛 = 30, 𝑚 = 5 and 𝐴𝑅𝐿0 = 500).
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Fig. 4. ARL values of ECvM, SL and SC charts when the location parameter shifts
with scale parameter shifting to 1.2 (𝑛 = 30, 𝑚 = 5 and 𝐴𝑅𝐿0 = 500).
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sider is somewhat arbitrary because there is an infinite number of potential
change patterns. We consider changes in the following four commonly used
distributions.

(1) A change in the rate parameter of an exponential distribution, i.e., change
from 𝐸𝑥𝑝(1) to 𝐸𝑥𝑝(3), and the reversed case.

(2) A change in the shape parameter of a gamma distribution, i.e., change
from 𝐺𝑎𝑚𝑚𝑎(2, 2) to 𝐺𝑎𝑚𝑚𝑎(3, 2), and the reversed case.

(3) A change in the shape parameter of a Weibull distribution, i.e., change
from 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(1, 1) to 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(3, 1), and the reversed case.

(4) A change in the degree-of-freedom parameter of a chi-squared distribu-
tion, i.e., change from 𝜒2(1) to 𝜒2(3), and the reversed case.

We set 𝑛 = 50, 𝑚 = 5, 10 and 𝐴𝑅𝐿0 = 500. ARL values of ECvM, SL and
SC charts based on 50,000 runs are listed in Table 7. From Table 7, when
𝑚 = 5, for exponential distribution, if the rate parameter changes from 1 to
3, which indicates the location and scale parameters both have down-sided
shifts, the ECvM, SL and SC chart have comparable performance; while for
the reversed case, i.e., the rate parameter changes from 3 to 1, ECvM chart
is much better than SL and SC charts. For gamma distribution, whatever
up-sided or down-sided shifts, ECvM chart is better than SL and SC charts.
For Weibull distribution, if shape parameter changes from 1 to 3, all the three
charts are biased, but the 𝐴𝑅𝐿1 values of the ECvM chart are still smaller
than the other two charts, while for the reversed case, SC chart is the best.
For chi-squared distribution, ECvM chart is better than SL and SC charts.
When 𝑚 = 10, the results show similar findings, except that all these charts
are not biased any more for Weibull distribution.

Considering the significant ARL reduction for location and/or scale shifts and
general patterns shifts, our proposed ECvM chart should be a good alternative
to those used in the comparison.

5 Real Application Example

We illustrate the application of the proposed ECvM control chart using a well-
known dataset for forged automobile engine piston rings, which can be found
in Table 6.3 and Table 6E.8 of Montgomery (2013). The dataset contains the
inside diameter measurements of the forged automobile engine piston rings.
The goal of this study is to establish statistical control of the inside diame-
ter of the piston rings in a forging process. Table 6.3 of Montgomery (2013)
contains 25 samples, and each sample consists of 5 piston rings. Pointed out
by Montgomery (2013), the traditional Shewhart 𝑋 and 𝑅 charts provide no
indication of an OC signals, so these 125 samples are considered to be from IC
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Table 7. ARL values of ECvM, SL and SC charts with 𝑛 = 50 and 𝐴𝑅𝐿0 = 500.
𝑚 change pattern ECvM SL SC

m=5 Exp(1)→Exp(3) 3.95 4.87 4.27
Exp(3)→Exp(1) 4.92 42.37 47.47
Gamma(2,2)→Gamma(3,2) 12.34 49.02 54.09
Gamma(3,2)→Gamma(2,2) 9.50 24.41 21.24
Weibull(1,1)→Weibull(3,1) 1528.05 2599.84 9947.73
Weibull(3,1)→Weibull(1,1) 7.32 4.68 2.92
𝜒2(1)→𝜒2(3) 2.56 5.69 5.73
𝜒2(3)→𝜒2(1) 2.49 2.80 2.55

m=10 Exp(1)→Exp(3) 2.23 2.41 2.04
Exp(3)→Exp(1) 2.37 12.54 10.65
Gamma(2,2)→Gamma(3,2) 4.47 26.63 21.99
Gamma(3,2)→Gamma(2,2) 5.43 12.39 9.86
Weibull(1,1)→Weibull(3,1) 14.91 89.83 186.93
Weibull(3,1)→Weibull(1,1) 4.43 2.23 1.53
𝜒2(1)→𝜒2(3) 1.44 2.06 1.91
𝜒2(3)→𝜒2(1) 1.48 1.47 1.35
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process, and hence the IC sample size is 𝑛 = 125. Table 6E.8 of Montgomery
(2013) contains another 15 samples, and each sample consists of 5 piston rings.
Hence the monitoring sample size is 𝑚 = 5.

To establish statistical control of the inside diameter of the piston rings, we
first checked the normality assumption of the IC data. The Shapiro-Wilk test
for checking the normality of the IC data gives 𝑝-value less than 10−4, which
implies that the IC data are significantly non-normal. In this case, control
charts constructed on the normal assumption are no longer applicable, as
there would be many false alarms even when the process is IC. Our objective
is to monitor the process and detect whether the process is IC by our ECvM
chart, which does not rely on the normality assumption. This dataset are also
studied by many researchers, such as Chakraborti et al. (2004), Chakraborti
and Eryilmaz (2007), Chakraborti and van de Wiel (2008), Chakraborti et al.
(2009), Mukherjee et al. (2013), and etc.

For our ECvM control chart, the parameters are 𝑛 = 125, 𝑚 = 5 and 𝐴𝑅𝐿0 =
500. The control limit is searched by simulation and found to be ℎ = 0.668.
The charting statistics are shown in Figure 5. From Figure 5, our ECvM chart
gives OC signal at the 14th observation, which is consistent with the result of
the precedence chart of Chakraborti et al. (2004), that also signals at the 14th
observation. However, with runs-type signaling rules based on two consecutive
points, Chakraborti et al. (2009) show that precedence charts signal at the 10th
observation, which implies that the runs-type signaling rules would greatly
enhance the performance of precedence charts. It will be interesting to note
that the signed-rank-based chart with runs-type signaling rules of Chakraborti
and Eryilmaz (2007) signals at the 13rd observation, the Mann-Whitney-based
chart of Chakraborti and van de Wiel (2008) signals at the 12th observation,
and the exceedance CUSUM chart of Mukherjee et al. (2013) signals at the
13rd observation, respectively. However, their 𝐴𝑅𝐿0 values are 271, 400 and
370, respectively, which are all far from our nominal 500. This implies that
although one or two observations earlier of these three control charts give OC
signals, the false alarm rate of these three charts are also higher when the
process is IC.

6 Concluding Remarks

We developed a new distribution-free control chart, called ECvM, for jointly
monitoring location and/or scale shifts and some general patterns of shifts
of univariate continuous process in cases where the IC process distribution
or the IC process parameters cannot be specified or estimated accurately
enough. It combines the nonparametric two-sample CvM test and the EWMA
model. Compared to some existing control procedures, including the SL and
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SC charts, the proposed ECvM chart is robust to non-normally distributed
data due to the IC distribution independence, and efficient in detecting various
process shifts, including location and/or scale shifts, as well as general patterns
of changes. A real data example for forged automobile engine piston rings is
used to illustrate the application of our ECvM chart. Due to the satisfactory
performance in the simulation comparisons and real example application, we
recommend to use the ECvM chart in practice.

In SPC, it is important to detect abnormal changes as quickly as possible, and
it is also important to diagnose the factors that lead to the changes, especially
for a single control chart. Take the application of forged automobile engine
piston rings as an example, it would be helpful, and sometimes, necessary, to
determine which factors cause the change of the quality. Therefore, it warrants
further research to isolate the causes of our proposed ECvM chart after it
triggers an OC signal.
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Appendix

A Formula for ARL

Let 𝑅 denote the run length of ECvM control chart. Note that the statistics
𝑈𝑖, 𝑖 = 1, 2, . . . in (4), are dependent, they are, however, independent given the
IC sample 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑛}. Therefore, the conditional distribution of
the run length is a geometric distribution with probability of success 𝑃𝑟𝑜𝑏[𝑈𝑖 >
ℎ∣𝑋], i.e., the probability of ECvM control chart issuing an OC signal. Let
𝑃 (𝑋∣ℎ) = 𝑃𝑟𝑜𝑏[𝑈𝑖 < ℎ∣𝑋], 𝑖 = 1, 2, . . .. Thus, conditional ARL (CARL)
is 1

1−𝑃 (𝑋∣ℎ) and unconditional ARL (UARL) can be obtained by averaging

the information of 𝑋 as 𝐸[ 1
1−𝑃 (𝑋∣ℎ) ]. Both CARL and UARL would provide

valuable information for evaluating the performance of our ECvM control
chart.

Note the probability of unconditional run length (URL) is

𝑃𝑟𝑜𝑏(𝑅𝐿 = 𝑟)=𝐸{[𝑃 (𝑋∣ℎ)]𝑟−1[1− 𝑃 (𝑋∣ℎ)]}
=𝐸[𝑃 (𝑋∣ℎ)]𝑟−1 − 𝐸[𝑃 (𝑋∣ℎ)]𝑟, 𝑟 = 1, 2, . . . .

Then the formula for ARL can be derived as

𝐴𝑅𝐿 = 𝐸
( 1

1− 𝑃 (𝑋∣ℎ)
)
=

∫
𝑋

1

1− 𝑃 (𝑋∣ℎ)𝑑𝐹 (𝑋). (A.1)

From (A.1), the formula for 𝐴𝑅𝐿0 when 𝐹 = 𝐺 can be derived as

𝐴𝑅𝐿0 = 𝐸𝐼𝐶

( 1

1− 𝑃 (𝑋∣ℎ)
)
=

∫
𝑋

1

1− 𝑃𝐹=𝐺(𝑋∣ℎ)𝑑𝐹 (𝑋). (A.2)

From (A.2), for a prespecified 𝐴𝑅𝐿∗
0, the control limit ℎ can be obtained by

solving the equation

𝐴𝑅𝐿∗
0 =

∫
𝑋

1

1− 𝑃𝐹=𝐺(𝑋∣ℎ)𝑑𝐹 (𝑋). (A.3)
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