
Phase II Monitoring of Generalized Linear

Profiles Using Weighted Likelihood Ratio

Charts

Dequan Qi a, Zhaojun Wang b, Xuemin Zi c, Zhonghua Li b,∗,
aDepartment of Mathematics, Jilin Medical University, Jilin 132013, P.R.China

bInstitute of Statistics and LPMC, Nankai University, Tianjin 300071, P.R.China
cSchool of Science, Tianjin University of Technology and Education, Tianjin

300222, P.R.China

Abstract

In recent years, effective profile monitoring for discrete response variables, such as
binary, multinomial, ordinal or Poisson variables, has increasingly attracted interest
of researchers in the area of statistical process control. Such quality characteristics
are often modeled as special cases of generalized linear models. The objective of
this paper is to try to provide a unified framework for Phase II monitoring of
generalized linear profiles of which the explanatory variables can be fixed design or
random arbitrary design. To this end, a new control chart is developed based on the
weighted likelihood ratio test, and it can be readily extended to other generalized
profiles or profiles with random predictors if the likelihood function can be obtained.
Numerical results and illustrative example show that the proposed control chart has
satisfactory in-control run length distribution and stands out at early detection.
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1 Introduction

Statistical profile monitoring has increasingly attracted researchers’ attention
in the area of statistical process control. Early reviews of work in profile mon-
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itoring include Woodall et al. (2004) and Woodall (2007), and a recent com-
prehensive review Woodall and Montgomery (2014) recommend Noorossana
et al. (2011) for a more up-to-date overview as the chapters in this book were
written by some of the leading researchers in profile monitoring. For profile
monitoring, one group of monitoring methods are interested in the case that
the response variables are continuous (e.g., Li and Wang (2010); Zou et al.
(2012); Huwang et al. (2014)). At the meantime, it is also quite common
to deal with profile monitoring with discrete response variables. As far as we
know, the pioneering work is Yeh et al. (2009). Some recent work, such as
Amiri et al. (2011), Noorossana et al. (2013a), Noorossana et al. (2013b)
and Soleymanian et al. (2013), focused on profile monitoring whose response
variables are Poisson, ordinal, multinomial and binary variables, respectively.

In the case of discrete response variables, the quality characteristics are often
modeled as special cases of generalized linear models (GLM). Amiri et al.
(2015) and Shadman et al. (2015) provided a unified framework for Phase I
control of generalized linear profiles. Besides the GLM, other types of models
have also been used to represent profiles, such as simple linear regression (e.g.,
Zhang et al. (2009); Noorossana et al. (2010); Aly et al. (2015)), nonlinear
regression (e.g., Chang and Yadama (2010); Paynabar et al. (2013)), multiple
regression (e.g., Eyvazian et al. (2011); Mahmoud et al. (2015)), nonparametric
regression (e.g., Qiu et al. (2010); Chuang et al. (2013)), mixed models (e.g.,
Jensen and Birch (2009); Koosha and Amiri (2013)), and wavelet models (e.g.,
Chicken et al. (2009); Lee et al. (2012)). All of the afore-mentioned research,
however, only consider the case in which the explanatory variables are fixed
from profile to profile. Shang et al. (2011) provided an aluminium electrolytic
capacitor example to illustrate the case in which different profiles often have
random explanatory variables and these variables require careful monitoring as
well. The major objective of this paper is to try to provide a unified framework
for Phase II monitoring of generalized linear profiles of which the explanatory
variables can be fixed design or random arbitrary design from profile to profile
(the monitoring of the explanatory variables is not concerned). In Phase II,
we are interested in detecting shifts in the model parameters as quickly as
possible, while in Phase I, the purpose is to check the quality of historical
data and to obtain accurate estimates of the model parameters.

In this paper, we developed a new control chart for generalized linear profile
monitoring, which is based on the weighted likelihood ratio test (WLRT).
Our proposed approach can be readily extended to other general profiles or
profiles with random predictors if the likelihood function can be obtained.
Other likelihood ratio test (LRT) based approaches can be found in Shang et
al. (2011), Noorossana et al. (2013b) and Soleymanian et al. (2013). The
exponentially weighted moving average (EWMA)-GLM control chart proposed
by Shang et al. (2011) made use of all available profile samples up to the
current time for estimating parameters, and different profiles are weighted as in
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an EWMA chart. Nevertheless, we found that the EWMA-GLM control chart
has very large short-run false alarms, which renders this chart less useful and
unacceptable in practice. Shewhart-type control charts (LRT) were proposed
by Noorossana et al. (2013b) and Soleymanian et al. (2013). Another EWMA-
type control chart (LRT-EWMA) was proposed by Soleymanian et al. (2013).
It is shown that the Shewhart-type LRT control charts perform better at
detecting large shifts, while the LRT-EWMA control charts perform better at
detecting small to medium shifts. However, compared with our WLRT chart,
the LRT-EWMA control chart was not as efficient due to the reason that it
only used the current profile samples for estimating parameters, and thus the
estimators would have considerably large bias and variance. Numerical results
show that our proposed WLRT control chart has satisfactory in-control (IC)
run length (RL) distribution and stands out at early detection, where RL is
the number of points that must be plotted before a point indicates an out-of-
control (OC) condition (Montgomery (2013)).

Now we summarize some abbreviated expressions used in this paper for easy
reference.

IC in-control

OC out-of-control

RL run length

ARL average run length

SDRL standard deviation of the run length

RMI relative mean index

CED conditional expected delay

EWMA exponentially weighted moving average

MEWMA multivariate exponentially weighted moving average

GLM generalized linear models

LRT likelihood ratio test

WLRT weighted likelihood ratio test

The remainder of this paper is organized as follows. Our proposed method-
ology is described in detail in Section 2, including the statistical model and
WLRT control chart. Section 3 is devoted to comparing the performance of
five methods: WLRT, EWMA-GLM (Shang et al. (2011)), LRT (Noorossana
et al. (2013b); Soleymanian et al. (2013)), LRT-EWMA (Soleymanian et al.
(2013)) and multivariate EWMA (MEWMA) (Soleymanian et al. (2013))
charts. An illustrative example is given in Section 4. Section 5 concludes this
paper and gives further discussion. The algorithm for obtaining the maximum
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weighted likelihood estimator is summarized in the Appendix.

2 The proposed WLRT scheme

In this section, we closely follow the notation and formulation used in Dobson
(2002) to briefly discuss the generalized linear profiles. We assume that the
observations are independent within and between profiles.

2.1 The statistical model

At any time point 𝑡, for the 𝑖th profile, our statistical model has three com-
ponents:

1. Response variables 𝑌𝑖 = (𝑌𝑖1, . . . , 𝑌𝑖𝑁)
𝑇 share the same distribution from

the exponential family with a canonical form,

𝑓(𝑦𝑖𝑗; 𝜃𝑖𝑗) = exp[𝑦𝑖𝑗𝑏(𝜃𝑖𝑗) + 𝑐(𝜃𝑖𝑗) + 𝑑(𝑦𝑖𝑗)], 𝑖 = 1, . . . , 𝑡, 𝑗 = 1, . . . , 𝑁,

where 𝑏(⋅), 𝑐(⋅) and 𝑑(⋅) are known functions and 𝜃𝑖𝑗’s are the parameters
of the exponential family of distributions.

2. Explanatory variables

𝑋𝑖 =

⎛⎜⎜⎜⎜⎜⎝
𝑋𝑇

𝑖1

...

𝑋𝑇
𝑖𝑁

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
𝑥𝑖11 . . . 𝑥𝑖1𝑝

...
...

𝑥𝑖𝑁1 . . . 𝑥𝑖𝑁𝑝

⎞⎟⎟⎟⎟⎟⎠ ,

where 𝑋𝑇
𝑖𝑗 = (𝑥𝑖𝑗1, . . . , 𝑥𝑖𝑗𝑝), 𝑖 = 1, . . . , 𝑡, 𝑗 = 1, . . . , 𝑁, can be combined

linearly with a coefficient vector 𝛽 = (𝛽1, . . . , 𝛽𝑝)
𝑇 (where 𝑝 < 𝑁) to form

the linear predictor 𝜂𝑖𝑗 = 𝑋𝑇
𝑖𝑗𝛽.

3. A monotone link function 𝑔(⋅) such that

𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗 = 𝑋𝑇
𝑖𝑗𝛽, 𝑖 = 1, . . . , 𝑡, 𝑗 = 1, . . . , 𝑁,

where 𝜇𝑖𝑗 = 𝐸(𝑌𝑖𝑗).

Here, the explanatory variables 𝑋𝑖 can be fixed design or random design from
profile to profile. We suppose 𝛽 changes from 𝛽𝐼𝐶 to another unknown value
𝛽𝑂𝐶 immediately after an unknown time point 𝜏 , which suffices to test the
following hypotheses ⎧⎨⎩𝐻0 : 𝛽 = 𝛽𝐼𝐶 ,

𝐻1 : 𝛽 ∕= 𝛽𝐼𝐶 ,
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at each time point. Note that 𝛽𝐼𝐶 can be assumed known for Phase II moni-
toring.

2.2 Some existing work

From Dobson (2002), we know that, for the 𝑖th profile, the log-likelihood
function is

𝑙𝑖(𝛽) =
𝑁∑
𝑗=1

[𝑦𝑖𝑗𝑏(𝜃𝑖𝑗) + 𝑐(𝜃𝑖𝑗) + 𝑑(𝑦𝑖𝑗)].

To obtain the maximum likelihood estimator of 𝛽, we can use the following
estimating equation

b
(𝑚)
𝑖 = b

(𝑚−1)
𝑖 + [𝔍

(𝑚−1)
𝑖 ]−1𝑈

(𝑚−1)
𝑖 ,

where b
(𝑚)
𝑖 is the vector of estimates of 𝛽 at the 𝑚th iteration, [𝔍

(𝑚−1)
𝑖 ]−1 is

the inverse of the information matrix, 𝑈
(𝑚−1)
𝑖 is the vector of score. When the

difference between successive approximations b
(𝑚−1)
𝑖 and b

(𝑚)
𝑖 is sufficiently

small, b
(𝑚)
𝑖 is taken as 𝛽 (maximum likelihood estimator of 𝛽).

Now we briefly review the LRT, LRT-EWMA and MEWMA control charts,
which were proposed by Soleymanian et al. (2013) to monitor binary response
profiles in Phase II. In fact, the LRT monitoring statistic can be expressed as

𝐿𝑅𝑇𝑖 = 2[𝑙𝑖(𝛽𝑖)− 𝑙𝑖(𝛽𝐼𝐶)], 𝑖 = 1, 2, . . . .

Soleymanian et al. (2013) first normalized the values of 𝐿𝑅𝑇𝑖 (here, termed
𝑁𝐿𝑖), and then calculated the statistic of LRT-EWMA control chart by

𝐿𝐸𝑖 = 𝜆𝑁𝐿𝑖 + (1− 𝜆)𝐿𝐸𝑖−1, 𝑖 = 1, 2, . . . .

where 𝜆 represents the smoothing parameter and 𝐿𝐸0 = 0.

The MEWMA monitoring statistic can be calculated using three steps. We
first calculate the following variable

𝑍𝑖 = (𝑋𝑇
𝑖 𝑊𝑋𝑖)

1/2(𝛽𝑖 − 𝛽𝐼𝐶),

where𝑊 is an 𝑛×𝑛 diagonal matrix (see details in Soleymanian et al. (2013)).
Then, we calculate the following statistic

𝐸𝑖 = 𝜆𝑍𝑖 + (1− 𝜆)𝐸𝑖−1, 𝑖 = 1, 2, . . . .

Finally, the MEWMA monitoring statistic can be calculated by

𝑀𝑖 = 𝐸𝑇
𝑖 𝐸𝑖.
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We will leave the brief review of EWMA-GLM (Shang et al. (2011)) control
chart in the next subsection to emphasize the differences of it and our proposed
control chart.

2.3 The WLRT control chart

Similar to Qi et al. (2015), up to time point 𝑡, the weighted-log-likelihood
function can be derived as

𝑤𝑙𝑡(𝛽) =
𝑡∑

𝑖=0

𝑤𝑖𝑙𝑖(𝛽) =
𝑡∑

𝑖=0

𝑤𝑖{
𝑁∑
𝑗=1

[𝑦𝑖𝑗𝑏(𝜃𝑖𝑗) + 𝑐(𝜃𝑖𝑗) + 𝑑(𝑦𝑖𝑗)]}, (1)

where the weights 𝑤0 = (1 − 𝜆)𝑡, 𝑤𝑖 = 𝜆(1 − 𝜆)𝑡−𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ 𝑡, and 𝜆 ∈ (0, 1)
is a smoothing parameter. Here, the observations of (𝑋0, 𝑌0) can be viewed as
pseudo “sample”, which are chosen from the IC dataset. We can obtain the
(𝑋0, 𝑌0) from Phase I study or by simulation such that the difference between
𝛽0 (maximum likelihood estimator of 𝛽) and 𝛽𝐼𝐶 is small. In Section 3 and
Section 4, we obtain the (𝑋0, 𝑌0) by simulation, and the random seeds are
chosen as 8417 and 123, respectively. Then, we can calculate 𝑙0(𝛽) based on
(𝑋0, 𝑌0).

Including the weight 𝑤0 and the observations of 𝑌0 in Equation (1) has its
own merit:

∙ It ensures that all of the weights sum to one.
∙ It confirms that the IC run length distribution of our chart proposed below
is satisfactory.

Obviously, 𝑤𝑙𝑡(𝛽) makes full use of all available samples up to the current time
point 𝑡, and the more recent samples receive more weight. An analogous idea,
which does not include 𝑤0 and the pseudo “sample”, has been used by Shang
et al. (2011) for binary profile monitoring. Shang et al. (2011) expanded the
WLRT statistics to asymptotically equivalent Wald-type charting statistics
using standard Taylor’s expansion.

Given the value of 𝜆, we can express the WLRT statistic as

𝑊𝑡 = 2[𝑤𝑙𝑡(𝛽𝑡)− 𝑤𝑙𝑡(𝛽𝐼𝐶)], (2)

where 𝛽𝑡 = argmax𝛽 𝑤𝑙𝑡(𝛽) is the maximum weighted likelihood estimator of
𝛽, which can be obtained using the algorithm shown in the Appendix. When
the WLRT statistic in Equation (2) is larger than a prespecified upper control
limit, we can declare the model parameter 𝛽 has deviated from the nominal
value, which means the process is OC.
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Now we summarize the implementation of our proposed WLRT scheme for
profile monitoring as follows:

1. Obtain the upper control limit for the WLRT control chart by the bisection
searching algorithms to achieve the desired IC average run length (ARL).
The ARL is the average number of points that must be plotted before a
point indicates an OC condition (Montgomery (2013)).

2. Begin monitoring the profiles in Phase II. After obtaining the new obser-
vations, we calculate the monitoring statistics 𝑊𝑡 using Equation (2), and
then plot them on the control chart until𝑊𝑡 is larger than the upper control
limit.

3. After detecting the shift, we identify and remove the root causes, and then
monitor the profiles continuously.

It is worth more detailed explanations that, the proposed WLRT control chart
used all the profile data upper to the time 𝑡 (including the IC and OC profile
data), but different from the LRT-EWMA control chart, the WLRT chart
only estimated one 𝛽𝑡 rather than estimating 𝛽1, . . . , 𝛽𝑡 for different profiles.
The LRT-EWMA control chart uses the current profile samples for estimating
parameters, while the WLRT control chart gives more weight to more recent
samples, which ensures that there is no over-reliance on the most recent data.
Let 𝑘 be a sufficiently large integer such that 𝜆(1 − 𝜆)𝑘 close to zero. As
𝑡 increase, the weights 𝑤1, 𝑤2, . . . will be close to zero sequentially. In fact,
when 𝑡 is sufficiently large, we only use the most recent 𝑘 sets of OC profile
data to estimate 𝛽𝑡, which ensures that 𝛽𝑡 is close to 𝛽𝑂𝐶 .

To alleviate the computation burden, when 𝑡 ≤ 𝑘, we make use of all avail-
able samples up to the current time point 𝑡 to estimate 𝛽𝑡 and calculate
𝑊𝑡. Otherwise, we only use the most recent 𝑘 sets of sample profile obser-
vations, say the observations of (𝑋𝑖, 𝑌𝑖), 𝑖 = 𝑡 − 𝑘 + 1, . . . , 𝑡, to estimate 𝛽𝑡

and calculate 𝑊𝑡. It is worth pointing out that, if 𝑋𝑡−𝑘+1 = . . . = 𝑋𝑡, then∑𝑡
𝑖=𝑡−𝑘+1 𝑤𝑖𝔍𝑖 = [1 − (1 − 𝜆)𝑘]𝔍𝑡. Some 𝑘 values such that 𝜆(1 − 𝜆)𝑘 < 𝜀 for

given 𝜀 are given in Table 1. We will choose the small positive value 𝜀 as 10−7

for simplicity in the next section.

Insert Table 1 about here.

3 Performance comparisons

In this section, we compare the proposed WLRT control chart with four al-
ternative methods, EWMA-GLM (Shang et al. (2011)), LRT (Noorossana
et al. (2013b), Soleymanian et al. (2013)), LRT-EWMA (Soleymanian et
al. (2013)) and MEWMA (Soleymanian et al. (2013)), to demonstrate the
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effectiveness of our approach.

Following Amiri et al. (2015) and Shadman et al. (2015), we focus on the
Poisson profile in this Section. Similar to Shadman et al. (2015), we assume
that the Poisson profiles are as follows:

a. Response variables 𝑌𝑖𝑗’s are independent Poisson random variables, 𝑗 =
1, . . . , 10.

b. Explanatory variables 𝑋𝑖𝑗 such that
∙ when the design points are fixed

(
𝑋𝑖1, 𝑋𝑖2, ⋅ ⋅ ⋅ , 𝑋𝑖10

)
=

⎛⎜⎝𝑥𝑖11 𝑥𝑖21 ⋅ ⋅ ⋅ 𝑥𝑖10,1

𝑥𝑖12 𝑥𝑖22 ⋅ ⋅ ⋅ 𝑥𝑖10,2

⎞⎟⎠ =

⎛⎜⎝ 1 1 ⋅ ⋅ ⋅ 1

0.1 0.2 ⋅ ⋅ ⋅ 1.0

⎞⎟⎠ .

∙ otherwise, for the 𝑖th profile, nine different design points randomly take
values in the above equation.

c. The log link function such that 𝑔(𝜇𝑖𝑗) = log(𝜇𝑖𝑗) = 𝑋𝑇
𝑖𝑗𝛽, where 𝜇𝑖𝑗 =

𝐸(𝑌𝑖𝑗).

Assume further that the IC parameters 𝛽𝐼𝐶 is (1, 1)𝑇 , while the OC profile
parameter at 𝑖th sample profile is equal to

𝛽𝑖 =

⎧⎨⎩𝛽𝐼𝐶 , 𝑖 = 1, . . . , 𝜏,

𝛽𝑂𝐶 = 𝛽𝐼𝐶 +△, 𝑖 = 𝜏 + 1, . . . ,

where △ = (𝛿1𝜎1, 𝛿2𝜎2)
𝑇 , 𝛿1 ∕= 0 or 𝛿2 ∕= 0, and 𝜎1 = 0.35181, 𝜎2 = 0.50947

are the standard deviation of the maximum likelihood estimator of the profile
parameters.

3.1 Comparisons when design points are fixed

For a relatively fair comparison, we adjust the control limits of different charts
to make their IC ARL (termed ARL0) as close as 370 by convention. In com-
parison of various candidate control charts, ARL is very important and also
popular used criterion (Li et al (2014)). When the process is IC, a chart with
a larger ARL0 indicates a lower false alarm rate than other charts. When the
process is OC, a chart with a smaller OC ARL (termed ARL1) indicates a
better detection ability of process shifts than other charts. Hereafter, we use
the notation ℎ to denote the control limit coefficients, and obtain all results
in this section based on 5000 replications. A Fortran program is also available
from the authors upon request.

We first study IC performance comparison. Zhou et al. (2012) pointed out
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that the IC run length distribution is considered to be satisfactory if it is close
to the geometric distribution (Hawkins and Olwell (1998)) or more generally
its variation is less than that of a geometric distribution. We use notation
𝑄(.10) and 𝑄(.90) to respectively denote the 10𝑡ℎ and 90𝑡ℎ percentile of the
marginal distribution of the run length. We also study the false-alarm rate
for the first 30 observations, 𝐹30 = 𝑃𝑟𝐼𝐶(𝑅𝐿 ≤ 30), where 𝑃𝑟𝐼𝐶(𝑅𝐿 ≤ 30)
denotes the probability of run length being less than or equal to 30 when the
process is IC. Note that when the run length distribution is geometric, the
standard deviation of the run length (SDRL) should be approximately equal
to ARL0, and 𝑄(.10), Median, 𝑄(.90) and 𝐹30 are about 38, 256, 850 and
0.080 respectively. The IC comparison results are shown in Table 2. Figure 1
presents the cumulative distribution function of IC run-length distributions of
the different charts considered when 𝑡 ≤ 100.

Insert Table 2 about here.

Insert Figure 1 about here.

Theoretically, the IC run length distribution of a Shewhart-type chart is the ge-
ometric distribution. The IC run length distribution of an EWMA-type chart
with larger smoothing parameter will be closer to the geometric distribution.
It is obvious from Table 2 and Figure 1 that the IC run length distribution of
the LRT chart is the most close to the geometric distribution. In addition, the
IC performances of the EWMA-GLM, LRT-EWMA, MEWMA and WLRT
charts depend on the smoothing parameter, i.e., charts with larger parame-
ters perform better. These findings are consistent with the literature. We can
also find that the EWMA-GLM control chart has very large short-run false
alarms. For example, 𝐹30 can be as large as 0.183 when 𝜆 = 0.2, and 0.355 when
𝜆 = 0.05. Consequently, the EWMA-GLM control chart is not acceptable in
terms of run length distribution because excessive false alarms at early runs
will make the detection results unreliable. Moreover, the probabilities of very
long runs would decrease, which will lead to the EWMA-GLM control chart
having quite small ARL1 compared to the LRT, LRT-EWMA, MEWMA and
WLRT charts. However, this “advantage” is mainly due to very large short-
run false alarms, which is consistent with Zhou et al. (2012). Following Zhou
et al. (2012), we will also consider the “true” detection capability as another
criterion for the OC performance comparison.

Then, we study the OC performance comparison. For the zero state (shift
occurs at 𝜏 = 0), we compare the ARL1, the “true” detection capability and
the relative mean index (RMI). The “true” detection capability of a chart is
reflected by the quantity 𝛾𝑡, where

𝛾𝑡 = 𝑃𝑟𝑂𝐶(𝑅𝐿 ≤ 𝑡)− 𝑃𝑟𝐼𝐶(𝑅𝐿 ≤ 𝑡).

Here, 𝛾𝑡 is a reasonable index for OC comparison given that the RL distribu-
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tions of some charts are far away from geometric, and a control chart with a
larger value of 𝛾𝑡 is considered better (Zhou et al. (2012)). In order to assess
the overall performance of different charts, we compare the RMI values. The
RMI index of a control chart, suggested by Han and Tsung (2006), is defined
as

𝑅𝑀𝐼 =
1

𝑀

𝑀∑
𝑙=1

𝐴𝑅𝐿Δ𝑙 −𝑀𝐴𝑅𝐿Δ𝑙

𝑀𝐴𝑅𝐿Δ𝑙

,

where 𝑀 is the total number of shifts considered, ARLΔ𝑙 is the ARL1 of the
given control chart when detecting a parameter shift of magnitude Δ𝑙, and
MARLΔ𝑙 is the smallest among all ARL1 values of the charts considered when
detecting the shift Δ𝑙. A control chart with a smaller RMI value is considered
better in its overall performance (Zhou et al. (2012)). As for the steady state,
we compare the conditional expected delay (CED) (Kenett and Zacks (1998);
Lee et al. (2012)) as the detection ability depends on the time point of the
change (Sonesson and Bock (2003)). The CED is defined by

𝐶𝐸𝐷 = 𝐸[𝑅𝐿− 𝜏 ∣𝑅𝐿 > 𝜏 ].

A control chart with a smaller CED value is considered better than another
one. The comparisons of ARL1 and RMI values are reported in Table 3.

Insert Table 3 about here.

From Table 3, we can see that the EWMA-GLM (𝜆 = 0.05) chart outperforms
other competitors considering the overall performance. Additionally, the LRT
control chart performs better at detecting large shifts, while the LRT-EWMA,
MEWMA and WLRT control charts perform better at detecting small to
medium shifts. We can also find that the performance of the LRT-EWMA,
MEWMA and WLRT control charts depend on the smoothing parameter,
i.e., charts with smaller parameter 𝜆 perform better for detecting small shifts,
while those with larger parameter 𝜆 perform better for detecting larger shifts.
Figure 2 presents the “true” detection capability 𝛾𝑡 of the different charts
considered when 𝑡 ≤ 100. We can see that, when 𝑡 is small, the EWMA-GLM
chart outperforms the other four charts in the sense that its 𝛾𝑡 curve increases
much faster. But this advantage diminishes quickly as 𝑡 becomes large due
to its very large false alarms. In general, the WLRT chart performs better
than the MEWMA chart, and the MEWMA chart performs better than the
LRT-EWMA and LRT charts. We can also find that, the LRT chart performs
worst at detecting small and medium shifts.

Insert Figure 2 about here.

Recall that we recommend to use the most recent 𝑘 sets of profile observations
when 𝑡 > 𝑘. Table 4 shows that, when the integer 𝑘 is sufficiently large, it has
little effect on the performance of the WLRT chart. Table 5 provides the
comparison results of CEDs. We discard any series in which a signal occurs
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before the (𝜏 + 1)th observation. This action coincides with the proposals
presented by Zhou et al. (2012) and Hawkins and Olwell (1998). We only
present the CED’s results when 𝜏 = 50 for illustration purpose, and a similar
conclusion holds for other cases. It is clear that the performance of the WLRT
chart is satisfactory, especially when the shifts are small.

Insert Table 4 about here.

Insert Table 5 about here.

3.2 Comparisons when design points are not fixed

In this subsection, we consider the case in which the explanatory variables are
not fixed from profile to profile. Note we will, here, not focus on the monitoring
of the explanatory variables themselves. If it is concerned instead, we need
change the weighted-log-likelihood function in Equation (1) correspondingly.
To generate the values of the explanatory variables, we first generate an integer
𝑗 from a discrete uniform distribution over the integers from 1 to 10. Then,
we delete the corresponding 𝑗th design point 𝑋𝑖𝑗 from the ten design points
𝑋𝑖1, 𝑋𝑖2, ⋅ ⋅ ⋅ , 𝑋𝑖10. In this way, we get nine different design points. By similar
ways, we get other number of different design points. Here, we use the same
control limits as those in Table 2. We only present the OC comparison results
when 𝜏 = 0 and 𝜏 = 50 in Table 6 and Table 7 respectively for illustration
purpose. We find that the performance of the WLRT chart with parameter
𝜆 = 0.05 is still satisfactory, especially when the shifts are small.

Insert Table 6 about here.

Insert Table 7 about here.

Finally, we consider the effects of the number and values of design points on
our WLRT control chart. The ARL performances of WLRT chart depending
on different number of design points are given in Table 8. The first 50 design
points used in Table 8 based on 1 simulation run are shown in Figure 3. From
Table 8, the performance is better when the number of design points is larger.

Insert Table 8 about here.

Insert Figure 3 about here.
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4 Illustrative example

In this section, we adopt and extend the multinomial logistic regression model
discussed by Goeman and Cessie (2006) as an illustrative example. In the
production processes, no product is created quite the same as the others due
to the machine equipment, material, environment, operator, and some other
reasons (Chen et al. (2011)). Instead of simply classifying qualities into con-
forming and non-conforming, products can be classified into several classes of
quality. Details of the multinomial logistic regression are referred to Dobson
(2002) and Hosmer et al. (2013), and please refer Böhning (1992) and Hasan
et al. (2014) as for its algorithm.

Multinomial logistic regression is often used when the response variable is
categorical, with more than two categories. Two variants exist: one for nominal
and one for ordinal scale outcomes. Here, we consider only the nominal scale
version. For ease of exposition, we will suppress the index “𝑖” and “𝑗” which
were used in Section 2. Consider a response variable 𝑌 with four categories.
Let 𝜋1, . . . , 𝜋4 denote the respective probabilities, with 𝜋1 + . . .+ 𝜋4 = 1. We
consider a case with three covariates as follows

⎧⎨⎩
log(𝜋2

𝜋1
) = 2𝑥1 + 𝛿𝑥2

1,

log(𝜋3

𝜋1
) = 2𝑥2,

log(𝜋4

𝜋1
) = 2𝑥3,

where 𝑥1, 𝑥2 and 𝑥3 each takes values −1, 0 and 1. At each time point 𝑡, we
obtained a data set of 25 observations which were taken randomly from each
of the 33 = 27 possible combinations of the three covariate values.

Here, we extend the Newton-Raphson method in Hasan et al. (2014) to esti-
mate the model parameters, and adjust the control limits of different charts
to make their ARL0 as close as 370 based on 5000 replicates. The first 20
profiles are generated from the IC (𝛿 = 1) normal operational condition and
the remaining profiles are from the OC (𝛿 = 1.6) condition. The smoothing
parameter 𝜆 is chosen as 0.1 for the LRT-EWMA and WLRT control charts.
The LRT, LRT-EWMA and WLRT control charts are constructed in Figure
4. From Figure 4, we can see that the performance of the WLRT chart is
satisfactory.

Insert Figure 4 about here.
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5 Conclusion remarks

In this paper, we proposed a unified framework for Phase II monitoring of
generalized linear profiles. In practical applications, it is not uncommon to
encounter quality characteristics that are either count data or categorical in
nature. Such quality characteristics are often modeled as special cases of gener-
alized linear models. Thus, statistical process control monitoring is important
and challenging for generalized linear profiles. The proposed control chart is
essentially based on calculating the weighted log-likelihood ratio test statistics,
which can be readily extended to other general profiles or profiles with ran-
dom predictors if the likelihood function can be obtained. Numerical results
show that the proposed control chart has satisfactory in-control run length
distribution and stands out at early detection.

Our proposed scheme assumes that the observations are independent within
and between profiles. The cases when observations are dependent, warrant
further investigation.
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Appendix

In this Appendix, we briefly introduce how to estimate 𝛽𝑡, which is the maxi-
mum weighted likelihood estimator of 𝛽. Let 𝔍 =

∑𝑡
𝑖=0 𝑤𝑖𝔍𝑖 and 𝑈 =

∑𝑡
𝑖=0 𝑤𝑖𝑈𝑖.

According to Dobson (2002), we can see, if 𝑋0 = . . . = 𝑋𝑡, then 𝔍0 = . . . = 𝔍𝑡,
and then 𝔍 = 𝔍1. The proposed Newton-Raphson approximation for obtaining
𝛽𝑡 proceeds as follows:

(1) Start with the initial values of 𝛽, denoted as 𝛽(0).
(2) Calculate 𝔍(𝑚) and 𝑈 (𝑚), by using 𝛽(𝑚) in the 𝑚th iteration.
(3) Update the estimation of 𝛽 as follows:

𝛽(𝑚+1) = 𝛽(𝑚) + [𝔍(𝑚)]−1𝑈 (𝑚).

13



(4) Repeat steps (2) and (3) until adequate convergence is achieved as follows:

∥ 𝛽(𝑚) − 𝛽(𝑚−1) ∥1 / ∥ 𝛽(𝑚−1) ∥1≤ 𝜖,

where 𝜖 is a given small positive value (e.g., 𝜖 = 10−4) and ∥ 𝛽 ∥1 denotes
𝐿1 norm, that is, the sum of the absolute values of all elements of 𝛽. As
such, 𝛽𝑡 = 𝛽(𝑚) is the desired estimator of 𝛽.
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Fig. 1. The in-control cumulative distribution function curves for the Poisson profiles
along with Geometric distribution (with expectation 370).

Table 1
𝑘 values such that 𝜆(1− 𝜆)𝑘 < 𝜀

𝜀

𝜆 10−4 10−5 10−6 10−7 10−8 10−9 10−10

0.05 122 167 211 256 301 346 391

0.1 66 88 110 132 153 175 197

0.2 35 45 55 66 76 86 96
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Fig. 2. The “true” detection capability for the Poisson profiles (𝜆 = 0.05). The
legend in the last plot is applicable for all the others.
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Fig. 3. The first 50 design points used in Table 8 based on 1 simulation run.
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Fig. 4. The LRT, LRT-EWMA and WLRT control charts for the multinomial pro-
files.
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Table 2
IC comparisons

ℎ ARL0 SDRL 𝑄(.10) Median 𝑄(.90) 𝐹30

EWMA-GLM0.05 9.90756 370 520 2 154 1040 0.355

EWMA-GLM0.2 11.60040 370 409 4 239 922 0.183

LRT 11.89143 370 369 38 258 850 0.083

LRT-EWMA0.05 0.68820 370 348 63 261 813 0.022

LRT-EWMA0.2 1.47790 370 370 43 256 850 0.069

MEWMA0.05 0.31650 370 338 57 268 826 0.030

MEWMA0.2 1.55000 370 353 43 265 839 0.068

WLRT0.05 0.22710 370 369 47 255 853 0.055

WLRT0.2 1.22170 370 371 40 257 845 0.075

Table 3
Comparisons of ARL1 for the Poisson profiles (𝜏 = 0)

LRT EWMA-GLM LRT-EWMA MEWMA WLRT

(𝛿1, 𝛿2) 𝜆 = 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

(0.2,0) 201(199) 18.9(19.8)67.2(71.3) 125(102) 153(151) 95.5(72.3) 365(366) 26.4(17.4)44.8(39.6)

(0,0.2) 202(209) 18.3(19.3)64.3(67.8) 124(100) 154(152) 79.2(55.7) 265(255) 26.1(17.3)45.1(39.5)

(0,0.25) 151(152) 11.8(11.5)35.0(35.8) 81.9(61.7) 102(99.7) 45.5(25.9) 130(123) 18.4(10.6)27.5(22.4)

(0.31,0) 106(107) 8.31(7.22)20.0(19.4) 52.4(35.2)62.9(58.5) 31.6(15.7)70.8(61.6) 13.5(6.82)17.5(13.2)

(0.2,0.2) 64.0(65.7) 5.55(4.28)10.5(9.21) 31.5(18.2)33.2(29.3) 20.1(7.71)28.7(21.2) 9.74(4.19)10.8(7.05)

(0.5,0) 33.9(33.8) 3.77(2.62)5.90(4.49) 18.4(8.87)16.3(12.5) 13.9(4.20)14.1(8.24) 7.10(2.63)6.89(3.65)

(0.32,0.32)16.1(15.4) 2.65(1.62)3.62(2.44) 11.3(4.87)8.47(5.55) 10.1(2.50)8.29(3.63) 5.34(1.73)4.76(2.15)

(0,0.7) 10.6(10.2) 2.20(1.27)2.90(1.77) 8.76(3.56)6.24(3.73) 8.67(1.89)6.58(2.49) 4.63(1.38)3.98(1.63)

(0.44,0.44)5.30(4.72) 1.69(0.86)2.06(1.11) 5.78(2.22)3.89(2.08) 6.84(1.30)4.77(1.45) 3.65(0.99) 3.02(1.07

(0.59,0.59)2.03(1.45) 1.21(0.44)1.35(0.57) 3.23(1.13)2.10(0.97) 4.96(0.76)3.21(0.74) 2.61(0.64)2.09(0.62)

(1.0,1.0) 1.01(0.08) 1.00(0.02)1.00(0.03) 1.22(0.41)1.02(0.15) 3.00(0.21)1.99(0.16) 1.49(0.50)1.07(0.26)

RMI 6.679 0.00 0.993 3.795 3.920 2.932 5.882 0.779 0.930

1 NOTE: Standard deviations are in parentheses.
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Table 4
The ARL of WLRT chart with different 𝑘 (𝜏 = 0)

𝜆 = 0.05 𝜆 = 0.2

(𝛿1, 𝛿2) 𝑘 = 122 256 391 35 66 96

(0,0) 368.68(366.19) 369.86(368.53) 369.86(368.53) 369.05(370.83) 369.82(371.28) 369.82(371.28)

(0.2,0) 26.354(17.418) 26.354(17.418) 26.354(17.421) 44.795(39.551) 44.795(39.551) 44.788(39.546)

(0,0.2) 26.060(17.260) 26.060(17.260) 26.060(17.260) 45.047(39.441) 45.064(39.475) 45.064(39.475)

(0,0.25) 18.362(10.631) 18.362(10.631) 18.362(10.631) 27.450(22.351) 27.455(22.368) 27.455(22.368)

(0.31,0) 13.481(6.815) 13.481(6.815) 13.481(6.814) 17.489(13.197) 17.489(13.197) 17.489(13.197)

(0.2,0.2) 9.735(4.192) 9.735(4.192) 9.735(4.191) 10.842(7.047) 10.842(7.047) 10.842(7.047)

(0.5,0) 7.098(2.630) 7.098(2.630) 7.098(2.630) 6.887(3.648) 6.887(3.648) 6.889(3.648)

(0.32,0.32) 5.339(1.725) 5.339(1.725) 5.339(1.725) 4.761(2.148) 4.761(2.148) 4.761(2.148)

(0,0.7) 4.632(1.381) 4.632(1.381) 4.632(1.381) 3.982(1.628) 3.982(1.628) 3.981(1.628)

(0.44,0.44) 3.647(0.993) 3.647(0.993) 3.647(0.993) 3.020(1.069) 3.020(1.069) 3.020(1.069)

(0.59,0.59) 2.614(0.642) 2.614(0.642) 2.614(0.642) 2.091(0.620) 2.091(0.620) 2.091(0.620)

(1.0,1.0) 1.489(0.500) 1.489(0.500) 1.489(0.500) 1.071(0.257) 1.071(0.257) 1.071(0.257)

1 NOTE: ℎ is same as Table 2, standard deviations are in parentheses.
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Table 5
Comparisons of CEDs for the Poisson profiles (𝜏 = 50)

LRT EWMA-GLM LRT-EWMA MEWMA WLRT

(𝛿1, 𝛿2) 𝜆 = 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

(0.2,0) 201(200) 35.4(23.3) 77.4(72.1) 107(100) 151(151) 98.7(72.9) 364(367) 29.7(19.4) 44.8(40.4)

(0,0.2) 201(208) 35.0(23.3) 74.3(67.5) 107(98.9) 151(151) 80.1(57.8) 261(253) 29.3(19.1) 44.3(40.5)

(0,0.25) 152(152) 24.3(14.0) 42.1(37.2) 68.8(61.4) 98.6(99.3) 47.7(27.6) 127(120) 21.0(11.7) 27.7(22.8)

(0.31,0) 106(108) 17.7(8.92) 25.2(20.2) 43.0(36.4) 60.4(57.8) 33.9(16.4) 69.6(61.8) 15.9(8.14) 17.9(13.7)

(0.2,0.2) 64.2(65.1) 12.7(5.69) 14.3(9.78) 24.2(17.8) 31.5(29.1) 21.9(8.48) 28.4(21.5) 11.5(5.37) 11.2(7.46)

(0.5,0) 34.1(34.5) 9.25(3.87) 8.72(4.82) 13.5(8.79) 15.1(12.5) 15.5(4.98) 14.4(8.59) 8.50(3.65) 7.23(3.94)

(0.32,0.32) 16.5(16.2) 6.93(2.68) 5.71(2.66) 8.07(4.71) 7.86(5.76) 11.2(3.34) 8.58(3.81) 6.47(2.57) 4.99(2.32)

(0,0.7) 10.8(10.5) 5.94(2.23) 4.71(2.02) 6.20(3.53) 5.67(3.85) 9.49(2.69) 6.76(2.69) 5.55(2.16) 4.15(1.85)

(0.44,0.44) 5.28(4.68) 4.71(1.66) 3.53(1.37) 4.07(2.12) 3.42(2.03) 7.66(1.99) 4.97(1.65) 4.42(1.64) 3.13(1.24)

(0.59,0.59) 2.03(1.45) 3.36(1.13) 2.39(0.79) 2.30(1.06) 1.89(0.92) 5.55(1.34) 3.33(0.91) 3.15(1.10) 2.18(0.75)

(1.0,1.0) 1.01(0.08) 1.86(0.57) 1.28(0.45) 1.06(0.24) 1.01(0.12) 3.31(0.75) 1.94(0.45) 1.76(0.57) 1.19(0.39)

RMI 3.332 0.365 0.559 1.176 1.697 1.523 3.067 0.242 0.163

1 NOTE: Standard deviations are in parentheses.

23



Table 6
Comparisons of ARL1 when the design points are not fixed (𝜏 = 0)

LRT EWMA-GLM LRT-EWMA MEWMA WLRT

(𝛿1, 𝛿2) 𝜆 = 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

(0,0) 368(371) 364(520) 367(415) 363(333) 368(370) 335(301) 319(308) 377(368) 369(371)

(0.2,0) 213(216) 21.0(22.4)78.2(84.4) 134(110) 164(159) 116(91.5) 460(458) 29.5(19.7)51.0(45.2)

(0,0.2) 208(212) 20.3(22.1)74.7(79.3) 133(110) 162(157) 95.1(72.5) 312(305) 29.2(19.3)49.8(44.5)

(0,0.25) 157(158) 13.2(13.1)40.9(42.6) 90.0(69.1) 111(106) 53.0(32.3) 161(157) 20.6(11.9)31.2(25.8)

(0.31,0) 114(113) 9.11(8.16)23.0(22.3) 58.4(40.6)70.8(66.3) 35.8(18.7)91.0(83.1) 15.0(7.67)19.9(15.3)

(0.2,0.2) 71.0(70.9) 6.11(4.78)12.0(10.8) 34.7(20.3)38.2(33.7) 22.2(8.81)34.8(27.0) 10.8(4.69)12.1(8.06)

(0.5,0) 38.6(38.4) 4.13(2.95)6.67(5.19) 20.5(10.4)18.8(14.7) 15.1(4.82)16.4(10.3) 7.87(2.98)7.77(4.20)

(0.32,0.32)18.7(18.2) 2.86(1.80)4.06(2.82) 12.4(5.56)9.75(6.65) 10.9(2.85)9.24(4.39) 5.88(1.93)5.32(2.45)

(0,0.7) 12.2(12.0) 2.39(1.41)3.21(2.05) 9.62(3.99)7.06(4.44) 9.32(2.13)7.27(2.90) 5.13(1.58)4.43(1.88)

(0.44,0.44)6.09(5.42) 1.82(0.95)2.26(1.25) 6.40(2.51)4.34(2.42) 7.30(1.43)5.21(1.67) 4.02(1.12)3.32(1.20)

(0.59,0.59)2.31(1.73) 1.27(0.51)1.45(0.64) 3.52(1.27)2.31(1.10) 5.26(0.83)3.45(0.84) 2.87(0.71)2.28(0.69)

(1.0,1.0) 1.01(0.12) 1.00(0.04)1.00(0.05) 1.31(0.47)1.04(0.20) 3.09(0.30)2.02(0.16) 1.66(0.48)1.16(0.37)

RMI 6.598 0.00 1.068 3.797 3.944 3.036 6.545 0.823 0.980

1 NOTE: ℎ is same as Table 2, standard deviations are in parentheses.
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Table 7
Comparisons of CEDs when the design points are not fixed (𝜏 = 50)

LRT EWMA-GLM LRT-EWMA MEWMA WLRT

(𝛿1, 𝛿2) 𝜆 = 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

(0.2,0) 212(213) 38.5(25.8)88.9(85.1) 115(108) 162(158) 120(93.1) 459(461) 32.3(21.2)50.8(45.8)

(0,0.2) 209(208) 38.4(25.6)84.7(79.6) 115(109) 158(155) 94.6(71.2) 305(301) 31.9(20.9)49.8(45.7)

(0,0.25) 159(161) 26.5(15.8)48.8(43.6) 75.1(67.6) 108(106) 55.2(34.1) 161(158) 23.0(13.4)31.2(26.0)

(0.31,0) 113(113) 19.2(9.96)28.9(23.2) 48.1(40.6)67.8(65.5) 39.1(19.8)89.1(82.6) 17.0(8.97)19.8(15.5)

(0.2,0.2) 70.2(70.0) 13.7(6.29)16.2(11.6) 26.8(19.9)36.2(33.2) 24.4(10.0)35.0(27.7) 12.3(5.90)12.3(8.38)

(0.5,0) 38.3(39.3) 9.90(4.14)9.58(5.68) 15.2(10.3)17.5(15.0) 17.0(5.79)17.1(10.6) 9.00(3.90)7.79(4.53)

(0.32,0.32)18.9(18.6) 7.39(2.89)6.26(3.08) 8.89(5.27)8.93(6.67) 12.2(3.72)9.55(4.61) 6.90(2.78)5.34(2.60)

(0,0.7) 12.3(12.4) 6.35(2.39)5.14(2.33) 6.83(3.91)6.40(4.51) 10.2(2.95)7.49(3.17) 5.88(2.32)4.47(2.02)

(0.44,0.44)6.03(5.42) 4.99(1.79)3.80(1.51) 4.47(2.34)3.89(2.42) 8.23(2.15)5.34(1.87) 4.70(1.73)3.32(1.34)

(0.59,0.59)2.30(1.74) 3.56(1.17)2.53(0.88) 2.49(1.18)2.06(1.03) 5.93(1.43)3.59(1.00) 3.31(1.16)2.29(0.84)

(1.0,1.0) 1.02(0.12) 1.93(0.61)1.36(0.49) 1.11(0.31)1.03(0.17) 3.49(0.79)2.04(0.47) 1.85(0.59)1.27(0.44)

RMI 3.320 0.363 0.619 1.202 1.739 1.627 3.534 0.236 0.183

1 NOTE: ℎ is same as Table 2, standard deviations are in parentheses.
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Table 8
The ARL of WLRT chart with different number of design points

the number of design points

(𝛿1, 𝛿2) 10 9 8 7 6

(0,0) 370(369) 377(368) 373(358) 367(351) 383(348)

(0.2,0) 26.4(17.4) 29.5(19.7) 33.1(22.5) 38.6(25.9) 45.6(30.4)

(0,0.2) 26.1(17.3) 29.2(19.3) 33.2(22.5) 38.7(26.4) 46.0(30.8)

(0,0.25) 18.4(10.6) 20.6(11.9) 23.4(14.1) 27.3(16.1) 32.4(19.7)

(0.31,0) 13.5(6.82) 15.0(7.67) 17.0(8.90) 19.6(10.0) 23.3(12.4)

(0.2,0.2) 9.74(4.19) 10.8(4.69) 12.2(5.44) 14.0(6.26) 16.5(7.59)

(0.5,0) 7.10(2.03) 7.87(2.98) 8.84(3.39) 10.0(3.83) 11.8(4.67)

(0.32,0.32) 5.34(1.73) 5.88(1.93) 6.60(2.24) 7.52(2.54) 8.76(3.06)

(0,0.7) 4.63(1.38) 5.13(1.58) 5.70(1.82) 6.49(2.11) 7.57(2.53)

(0.44,0.44) 3.65(0.99) 4.02(1.12) 4.47(1.27) 5.05(1.46) 5.86(1.70)

(0.59,0.59) 2.61(0.64) 2.87(0.71) 3.17(0.80) 3.55(0.90) 4.11(1.04)

(1.0,1.0) 1.49(0.50) 1.66(0.48) 1.82(0.43) 1.98(0.43) 2.20(0.51)

1 NOTE: 𝜆 = 0.05, 𝜏 = 0, ℎ is same as Table 2, standard deviations are in
parentheses.
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