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In recent years, effective monitoring of data quality has increasingly attracted attention of re-
searchers in the area of statistical process control (SPC). Among the relevant research on this
topic, none used multivariate methods to control the multidimensional data quality process,
but instead relied on multiple univariate control charts. Based on a novel one-sided multi-
variate exponentially weighted moving average (MEWMA) chart, we propose a conditional
false discovery rate-adjusted scheme to on-line monitor the data quality of high-dimensional
data streams. With thousands of input data streams, the average run length (ARL) loses its
usefulness because one will likely have out-of-control (OC) signals at each time period. Hence,
we first control the percentage of signals that are false alarms. Then, we compare the power
of the proposed MEWMA scheme with that of two alternative methods. Compared with two
competitors, numerical results show that the proposed MEWMA scheme has higher average
power.
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1. Introduction

It has been noted that in today’s information age, poor data quality has far-reaching
effects and consequences. These impacts include customer dissatisfaction, increased
operational cost, less effective decision-making, and a reduced ability to make and
execute strategy [1]. The management of data quality and the quality of associated
data management processes have been identified as a critical issue for organizations
[2, 3]. Therefore, extensive research in the literature has been done, which produced
a large body of data quality knowledge, and which played a critical role in our data-
intensive, knowledge-based economy. Madnick et al. [4] introduced a framework to
characterize the research along two dimensions: topics and methods. Data quality
research topics include data quality impact, database-related technical solutions
for data quality, data quality in the context of computer science and information
technology, and data quality in curation. Data quality research methods include
fourteen categories such as action research, artificial intelligence, case study, data
mining, design science, mathematical modeling, statistical analysis, etc.

Several researchers have suggested that, like a physical product, data are the
end-result of a manufacturing process, with raw data as the input, and a polished,

∗Corresponding author. Email: zjwang@nankai.edu.cn

ISSN: 0094-9655 print/ISSN 1563-5163 online
c⃝ 2008 Taylor & Francis
DOI: 10.1080/0094965YYxxxxxxxx
http://www.informaworld.com



October 7, 2015 21:6 Journal of Statistical Computation & Simulation GSCS-2014-0781-R1

2

transformed data product as the output [5]. Many of the concepts and procedures
of product quality control should have been applied to the problem of producing
better quality information outputs. The applying control chart methods to enhance
data quality is limited and rudimentary. These applications included univariate
Shewhart chart, univariate cumulative sum (CUSUM) and exponentially weighted
moving average (EWMA) methods. Nevertheless, none used multivariate methods
to control the multidimensional data quality process, but instead relied on multiple
univariate control charts. A nice review, including the defining, measuring and
monitoring data quality, can be found in Jones-Farmer et al. [5] and the references
therein. Pierchala et al. [6] applied 7,569 charts simultaneously to monitor the data
quality in the Fatality Analysis Reporting System (FARS). Jones-Farmer et al. [5]
stated that the false alarm rate would be notably high for this application and
there would be little power to detect actual process changes. Whenever one wants
to monitor several quality variables, there are another two reasons for introducing a
multivariate control procedure. On the one hand, multiple univariate control charts
may make determining the control limits by simulation quite complicated [7]. On
the other hand, multivariate methods can take advantage of relationships among
quality variables [8].

In recent years, the problem of on-line monitoring a large number of data streams
through sequential observations has become increasingly important [9, 10]. As dis-
cussed by Woodall and Montgomery [8], the number of variables available in many
process-monitoring applications, such as for computer network, healthcare and so-
cial networks, has grown tremendously. Such data streams are sometimes referred
to as being “high dimensional”. With thousands of input data streams, typical met-
rics like the probability of a false alarm and average run length (ARL) lose their
usefulness because one will likely have out-of-control (OC) signals at each time
period for which data are collected. Thus, under a false discovery rate (FDR) ap-
proach, some recent articles control the percentage of signals that are false alarms
[11–13]. However, different from the non-sequential context, in the sequential case
one should control the FDR given that there is no alarm among all the ongoing
streams before the current time point. To this end, Du et al. [14] propose a proce-
dure which is able to control the conditional FDR (CFDR) at each time point. In
such situations, we are interested in how to monitor the quality of the data itself
via CFDR.

In this paper, we are concerned with sequential monitoring data qualities, such as
accuracy, consistency, completeness, etc., of data streams in a situation where the
number of data streams is very large. If we suspect data qualities of a data stream
deteriorate, then we stop monitoring the corresponding stream provisionally. To
monitor these data qualities of high-dimensional data streams, we suggest using
one-sided multivariate exponentially weighted moving average (MEWMA) scheme.
To make use of the fact that there is no alarm among all the ongoing streams before
the current time point, we use the conditional null distribution rather than the
unconditional null distribution to transform the MEWMA statistic to its p-value.
We propose a novel algorithm to control the CFDR of data streams pointwise in
time. We choose the FDR and power as two criteria used for the performance
comparison because the ARL loses its usefulness. Numerical results show that the
proposed MEWMA scheme has both less conservative FDR and higher average
power.

Our contributions are to focus on data qualities of high-dimensional data streams,
to use a multivariate method to control the multidimensional data quality process,
and to adjust the MEWMA scheme via CFDR to enable it to have less conservative
FDR and high average power. The rest of this paper is organized as follows. In the
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next section, the statistical model and existing works are presented to illustrate
our motivation. Then the proposed one-sided MEWMA scheme is introduced. The
following section is devoted to investigating the numerical performance of the pro-
posed MEWMA scheme. Finally, an illustrative example and our conclusions are
given.

2. The statistical model and existing works

Both Wang and Strong [15] and Lee et al. [16] organized data quality dimensions
into intrinsic and contextual categories. Intrinsic refers to data qualities that are
objective and native to the data, such as accuracy, consistency, completeness, etc.
Contextual refers to data qualities that are dependent on the context in which the
data is observed or used, such as relevancy, believability, accessibility etc. Following
Jones-Farmer et al. [5], we limit our study to consider the more general intrinsic
measures of data quality, and suppose that each data quality variable can be rep-
resented by a Bernoulli process. Topalidou and Psarakis [17] gave a good review
of multinomial and multiattribute control charts, including Bernoulli process. The
work is, however, not applicable for large number of data streams.

2.1. The statistical model

Suppose that there is a large number of independent data streams over time, say,
observation Xn,t at the nth data stream over time t = 1, 2, . . . for n = 1, . . . , Nt

with large Nt. Here, we monitor the quality of the data itself. For the nth data
stream, we observe mn data qualities Yn,t = (Yn,1,t, . . . , Yn,mn,t)

′ such as accuracy,
consistency, completeness, etc. For example, if Yn,k,t denotes whether the data is
accurate, then

Yn,k,t =

{
0, Xn,t is accurate,

1, Xn,t is inaccurate.

Let �n,k,t = Pr{Yn,k,t = 1}, then E(Yn,k,t) = �n,k,t and V ar(Yn,k,t) = �n,k,t(1 −
�n,k,t) for k = 1, . . . ,mn. To assess the degree of correlation among the variables
in Yn,t, let Σn be the phi coefficient matrix. The phi coefficient (also known as
the mean square contingency coefficient) is a special case of Pearson’s correlation
coefficient for dichotomous variables [5].

In practice, the data consumers may be more interested in the increase of �n,k,t,
which indicates the quality of the data product has deteriorated. Our statistical
model suppose �n,k,t changes from �0

n,k to another unknown value �1
n,k > �0

n,k
immediately after an unknown change-point. We assume that, for each stream n,
Yn,1,Yn,2, . . . are independent in time domain (t), then test the following null and
alternative hypotheses at time t. Under the null hypothesis all the data steams are
in-control (IC), that is

H0
n,t : {�n,k,1 = �n,k,2 . . . = �n,k,t = �0

n,k, k = 1, . . . ,mn},

for n = 1, . . . , Nt. Under the alternative hypothesis, certain data streams occur
changes at some unknown change-points, that is,

H1
n,t : {�n,k,1 = . . . = �n,k,(�n,k) = �0

n,k;�n,k,(�n,k+1) = . . . = �n,k,t = �1
n,k, k = 1, . . . ,mn},
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where �n = (�n,1, �n,2, . . . , �n,mn
)′ is an unknown change-point vector.

When t = 1, N1 data streams are observed for the information on data quality.
As t increases, some other new data streams may enter into the monitoring system
if new information are available. Similarly, some existing data streams may get out
of the monitoring system if the data qualities of these data streams are suspected
to deteriorate, and these streams may also start over again after appropriate ad-
justment has been made so that the data qualities are IC again. Considering the
observation Yn,t is a mn-dimensional vector and the number of data streams Nt is
very large, we propose using a multivariate control method incorporating the FDR
procedure. We briefly review the existing work in the next subsection.

2.2. The existing work

The use of multivariate control charts to monitor and improve the quality of manu-
facturing and service processes is well researched. Multivariate control charts have
a long history in statistics, dating back to 1940’s. The chi-squared control chart
was described by Hotelling [18]. Multivariate cumulative sum (MCUSUM) and
MEWMA control charts have been proposed to improve the performance of a sim-
ple chi-squared chart [19–22].

One of the most widely used control charts is the MEWMA chart suggested by
Lowry et al. [20] as an extension to its univariate counterpart, which in its simplest
form (special case) is defined as follows. Suppose that we observe m-dimensional
vector X1,X2, . . . with IC mean vector �0 and covariance matrix Σ. Let

Zt = (1− �)Zt−1 + �(Xt − �0), (1)

where Z0 is the m-dimensional zero vector and � ∈ (0, 1) is a smoothing parameter.
The chart signals if

Wt = ZTt Σ−1
Zt

Zt > H, (2)

where H > 0 is chosen to achieve a specified IC ARL. It is known that Zt has a
covariance matrix equal to

ΣZt
=
�[1− (1− �)2t]

2− �
Σ,

or, as t→∞

ΣZt
=

�

2− �
Σ.

To develop a one-sided MEWMA chart, Joner et al. [23] suggested that a re-
flecting boundary (cf. [24, 25]) is placed on the EWMA vector given in Equation
(1),

Zt = max{0, (1− �)Zt−1 + �(Xt − �0)},

where the maximum operator refers to an element-wise comparison of the two
vectors. This Zt is used in Equation (2) to form the one-sided MEWMA statistic.
Alternative one-sided MEWMA approaches can be found in Fassò [26] and Yahav
and Shmueli [27].
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Generally speaking, three methods, Markov chain, integral equation and Monte
Carlo simulation, have been widely used for analyzing the performance of control
charts. See Li et al. [28] for an overview of the Markov chain and integral equation
methods. As mentioned before, the ARL loses its usefulness when monitor high-
dimensional data streams. Therefore, we first briefly review the pioneering work of
Benjamini and Hochberg [29]. Benjamini and Hochberg [29] aimed at controlling
the FDR instead of the type one error rate at a prespecified level �, while max-
imizing the number of rejected hypotheses. Consider testing N independent null
hypotheses H0

1 , . . . ,H
0
N based on the corresponding p-values P1, . . . , PN . Let V be

the number of true null hypotheses declared significant and let R be the total of null
hypotheses declared significant. The FDR is then defined as E(Q), where Q = V/R
is defined as the proportion of the rejected null hypotheses which are incorrectly
rejected, with the convention Q = 0 when R = 0. The procedure proposed by Ben-
jamini and Hochberg [29], also called the BH procedure, runs as follows: let H0

(i)

correspond to the ordered p-values P(i), and J = max{1 ≤ i ≤ N : P(i) ≤ i�/N}. If
such a J exists, reject J hypotheses associated with P(1), . . . , P(J); otherwise reject
none. More sophisticated alternative multiple testing procedure can be found in
Storey et al. [30] and Gavrilov et al. [31]. Some recent articles also applied FDR
procedure to Shewhart [32], CUSUM [33] and EWMA [34] charts.

Before ending this section, we briefly review the CFDR procedure proposed by
Du et al. [14]. The goal of Du et al. [14] is to sequentially detect the signals of
multiple streams simultaneously based on the test statistics {Si,t, i ∈ It} using
CFDR, where It denotes the indices of streams proceeding to time t. Given the
fact that the event Gt−1

i = {Si,t−1 ≤ qt−1, . . . , Si,1 ≤ q1} has occurred, the ith
data stream is OC if Si,t > qt, for some threshold qt to be determined, where
qt′ , t

′ = 1, . . . , t − 1, denote the thresholds applied to the test statistics Si,t′ with
respect to the streams proceeding to time t. The conditional false discovery rate
(CFDR) is defined as

CFDR(qt;Gt−1) = E(
V (qt;Gt−1)

R(qt;Gt−1) ∨ 1
∣Gt−1),

where a∨ b = max{a, b}, V (qt;Gt−1), R(qt;Gt−1) denote the number of false rejec-
tions and the total number of rejections with respective to the threshold qt given
Gt−1 =

∩
i∈It{G

t−1
i }.

Du et al. [14] assume that the observation Xi,t for the ith data stream at time
t comes from univariate normal distribution, and present some mild conditions on
the dependence structure of the stream observations under which CFDR can be
controlled. Our statistical model differs from that of Du et al. [14]. We focus on
monitoring potentially a large number of streams vectors where elements of the
vectors are Bernoulli random variables. In our statistical model, a false discovery
would naturally be defined as signalling the stream to be out of control when in
fact the observations have been in control since the start. The scheme discussed in
the next section is applicable when the �n’s are different and �n,k,t, k = 1, . . . ,mn

occur changes at different times.
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3. The proposed one-sided MEWMA scheme

We consider the following EWMA statistics for the ntℎ data stream at time t

Sn,k,t = (1− �)Sn,k,(t−1) + �
Yn,k,t−�

0
n,k√

�0
n,k(1− �0

n,k)
, (3)

where Sn,k,0 = 0, k = 1, . . . ,mn. We have E(Sn,k,t) = 0 if the data qualities of the
ntℎ data stream are IC up to time t. The two-sided monitoring statistic according
to Lowry et al. [20] can be expressed as

Wn,t =
2− �

�[1− (1− �)2t]
STn,tΣ

−1
n Sn,t, (4)

where Sn,t = (Sn,1,t, . . . , Sn,mn,t)
T .

If we only focus on the deterioration of data qualities, according to Joner et
al. [23], we can obtain a one-sided MEWMA monitoring statistic by substituting
Sn,t = (SJn,1,t, . . . , S

J
n,mn,t)

T into Equation (4), where

SJn,k,t = max{0, (1− �)SJn,k,(t−1) + �
Yn,k,t−�

0
n,k√

�0
n,k(1− �0

n,k)
}, k = 1, . . . ,mn.

However, when t > 1, SJn,k,(t−1) is not an unbiased estimator of zero any more un-

der the null hypothesis H0
n,t. Therefore, we construct a novel one-sided MEWMA

statistic using three steps. We first calculate the EWMA statistics Sn,k,t by Equa-
tion (3). Then, we modify Sn,k,t by

S+
n,k,t = Sn,k,tI(Sn,k,t > 0) = max{0, (1− �)Sn,k,(t−1) + �

Yn,k,t−�
0
n,k√

�0
n,k(1− �0

n,k)
}. (5)

Finally, the Sn,t = (S+
n,1,t, . . . , S

+
n,mn,t)

T is used in Equation (4) to obtain the one-
sided MEWMA monitoring statistic.

In practice, some improvement efforts may be undertaken to improve data qual-
ity. In this case, having a two sided method becomes important. It is direct to use
Sn,k,t instead of S+

n,k,t to construct our MEWMA statistic. Here, the statistic S+
n,k,t

given in Equation (5) has its own merit. To begin with, the resulting chart will
signal only as a result of increases in the �n,k,t since no element of Sn,t will ever
be less than zero. In addition, our proposal for the one-sided MEWMA statistic is
different from that of Joner et al. [23] in the way that we take the maximum of zero
and Sn,k,t, and Sn,k,t is an unbiased estimator of zero under the null hypothesis
H0
n,t.
We propose a simulation-based method to control the CFDR at a prespecified

level �, while maximizing the number of rejected hypotheses. The proposed method
seems somewhat similar to that of Shen et al. [35], where they focus on a single
stream of Poisson count data. We first use the Monte Carlo simulation to get the
conditional empirical null distributions of MEWMA statistics. Then, we use the
conditional null distributions to transform MEWMA statistics to their p-values.
Finally, we employ the BH procedure to on-line monitoring. More sophisticated al-
ternative multiple testing procedure can be used in conjunction with our approach,
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but that is not the focus of this paper.
To clearly explain the algorithm, we first consider the monitoring at the time

point t = 1. For the ntℎ data stream, we randomly generate IC observations
Yn,k,1,j , k = 1, . . . ,mn, j = 1, . . . ,M , where M is a sufficiently large integer. Calcu-
late observations Sn,k,1,j , Wn,1,j and the empirical p-values

Pn,1 = #{Wn,1,j ≥Wn,1}/M.

Order the empirical p-values as P(1),1 ≤ . . . ≤ P(N1),1, where P(i),1 corresponds

to H0
(i),1, for i = 1, . . . , N1. Let J = max{1 ≤ i ≤ N1 : P(i) ≤ i�/N1}. If such

a J exists, let the data-driven threshold q1 = P(J),1, and reject J hypotheses
associated with P(1),1, . . . , P(J),1; otherwise let q1 = 0, and reject none. If an alarm
with respective to a stream is made at the current time, the monitoring for this
stream stopped provisionally. The monitoring of this stream may start over after
appropriate adjustment has been made so that the process is IC again.

Then, we consider the monitoring at the time point t = 2. Without loss of
generality, we assume that the ntℎ data stream does not signal alarm when t = 1,
say Pn,1 > q1. If q1 > 0, we calculate the 1 − q1 quantile of M observations
Wn,1,j , j = 1, . . . ,M , and denote it by Wn,1−q1 . We choose all Sn,k,1,j satisfied
the corresponding Wn,1,j < Wn,1−q1 as the space of feasible values and randomly
generated M observations from the space to make up and update Sn,k,1,j . If q1 = 0,
it is not necessary to update Sn,k,1,j . Next we randomly generate M observations
Yn,k,2,j , k = 1, . . . ,mn, j = 1, . . . ,M , and follow the similar procedure when t = 1.

The proposed algorithm is summarized as follows. To decrease the computational
load, we can stop updating the null distribution (Step 1-4) when t is sufficiently
large (e.g., t > 100).

Algorithm (when t = 1, begin with Step 3).
Step 1. Calculate the 1− qt−1 quantile Wn,1−qt−1

of M observations Wn,t−1,j .
Step 2. Generate M observations Sn,k,t−1,j satisfied the corresponding Wn,t−1,j <

Wn,1−qt−1
.

Step 3. For n = 1, . . . , Nt, generate IC observations Yn,k,t,j , k = 1, . . . ,mn, j =
1, . . . ,M .

Step 4. Calculate M observations Sn,k,t,j , Wn,t,j by equations (3) and (4) respec-
tively.

Step 5. Calculate the empirical p-values by Pn,t = #{Wn,t,j ≥Wn,t}/M .
Step 6. Order the empirical p-values as P(1),t ≤ . . . ≤ P(Nt),t, where P(i),t corre-

sponds to H0
(i),t, for i = 1, . . . , Nt.

Step 7. For a pre-chosen level �, let J be the largest i for which P(i),t ≤ i�/Nt.
Step 8. Find the data-driven threshold qt at time t by qt = P(J),t.

Step 9. If Pn,t ≤ qt, then the ntℎ data stream is halted provisionally, and update
Nt.

4. Performance comparisons

In this section, we compare the proposed MEWMA scheme with two alternative
methods to demonstrate the effectiveness of our approach. The first one combines
the one-sided MEWMA [23] statistic with the Algorithm in Section 3. The second
approach monitors the data qualities using the unconditional null distribution to
transform our proposed MEWMA statistic to its p-value. The two competitors are
abbreviated as Joner and Uncon schemes hereafter. For a relatively fair comparison,
we first control the percentage of signals that are false alarms (� = 0.05). Then,
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we compare the empirical power. A control scheme with higher average power
is considered better. Here, the empirical power at time point t is defined as the
average proportion of false null hypotheses that are rejected up to time t. A Fortran
program is available from the authors upon request.
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Figure 1. Empirical false discovery rate for the Joner, MEWMA and Uncon control schemes.
The legend in the last plot is applicable for all the others.

As mentioned before, we suppose that each data quality to be a Bernoulli process.
To simulate correlated binary variables with specified marginal means and correla-
tions, we use the Qaqish [36] method. For completeness, we report the method here.
Let Yn,t denote a mn×1 vector of Bernoulli random variables (Yn,1,t, . . . , Yn,mn,t)

′,
with E(Yn,t) = (�n,1, ..., �n,mn

)′ and corr(Yn,t) = {rn,i,j} = Σn. We consider the
case of equal means and AR(1) correlation for simplicity, say �n,1 = ... = �n,mn

,

rn,i,j = �∣j−i∣, for i ∕= j and ∣�∣ < 1. According to Qaqish [36], we should gener-
ate yn,1,t, . . . , yn,mn,t sequentially such that yn,i,t ∼ B(1, �i), i = 1, . . . ,mn, where
�1 = �n,1, �j = �n,1+�(yn,j−1,t−�n,1), j = 2, . . . ,mn. Here, we assume thatmn = 3,
�0
n,k = 0.05 and �1

n,k = 0.12. According to Chaganty and Joe [37], rn,i,j ≥ −0.053

for i ∕= j when the data qualities of the ntℎ stream are IC. Hence, we consider
three dependence structures, the values of � were chosen as 0.2, 0.5 and 0.8 respec-
tively. Let �1 denotes the fraction of streams occur changes during the monitoring
period T = 200. For illustrative purpose, we assume that �n’s are different but
�n,k,t, k = 1, 2, 3 occur changes at the same time, say �n,1 = �n,2 = �n,3 ∼ Pois-
son(10). Other parameters N1, � and M are chosen as 1000, 0.05 and 100,000
respectively, and all the simulation results in this section are based on 1500 repli-
cations.

Figure 1 compares the empirical FDR using different control schemes. All schemes
generally control the FDR below the significance level 0.05. There is no clear winner
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Figure 2. The differences of power from the baseline MEWMA are shown. The legend in
the first plot is applicable for all the others.

between the MEWMA and Joner schemes. It confirms that the MEWMA scheme is
much less conservative than the Uncon scheme, especially when �1 is large. Figure
2 illustrates the difference of empirical power from the baseline case (MEWMA
scheme), which clearly reveals that the MEWMA scheme performs better than
the Uncon scheme, although these benefits become marginal as the time point t
increases. Compared with the Joner scheme, the MEWMA scheme performs worse
when t is small, but performs better as t increases. For illustrative purpose, some
empirical power results of three schemes are presented in Table 1. From Table 1,
we can observe that our MEWMA scheme outperforms the Uncon scheme, and the
performance of our MEWMA scheme is slightly better than the Joner scheme when
t ≥ 50. Figure 3 displays the conditional cumulative distribution function (CDF)
of the proposed MEWMA scheme based on 1 simulation run (M = 100000). It is
obvious from Figure 3 that the conditional CDFs depend on t, but they are stable
when t ≥ 50. To some extent, this result illustrates that we can stop updating the
null distribution when t is sufficiently large as mentioned in Section 3.

Finally, we consider the effect of parameter estimation on our proposed MEWMA
scheme. The effect of estimation error has been shown to be a severe problem even
when monitoring a single Bernoulli sequence. See Lee et al. [38]. We recommend
using the approach proposed by Jones-Farmer et al. [5] to estimate the parameters
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Table 1. Comparisons of empirical power

� = 0.2 � = 0.5 � = 0.8

t Joner MEWMA Uncon Joner MEWMA Uncon Joner MEWMA Uncon

�1 = 0.25

25 0.051 0.044 0.038 0.031 0.028 0.023 0.016 0.015 0.014
50 0.311 0.326 0.266 0.199 0.206 0.160 0.109 0.107 0.084
100 0.632 0.679 0.609 0.476 0.514 0.447 0.300 0.316 0.265
200 0.868 0.902 0.871 0.749 0.791 0.742 0.548 0.582 0.525

�1 = 0.50

25 0.091 0.080 0.059 0.052 0.047 0.032 0.023 0.021 0.014
50 0.436 0.457 0.347 0.302 0.314 0.224 0.172 0.172 0.119
100 0.759 0.798 0.714 0.618 0.659 0.555 0.429 0.456 0.355
200 0.932 0.952 0.926 0.853 0.883 0.828 0.694 0.729 0.635

�1 = 0.75

25 0.133 0.119 0.077 0.076 0.067 0.045 0.034 0.029 0.018
50 0.547 0.570 0.434 0.396 0.413 0.296 0.240 0.245 0.164
100 0.852 0.882 0.803 0.734 0.772 0.657 0.552 0.586 0.455
200 0.970 0.980 0.963 0.924 0.943 0.901 0.815 0.846 0.757
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Figure 3. The conditional cumulative distribution function (CDF) of the proposed
MEWMA scheme based on 1 simulation run (M = 100000).

�0
n,k and Σn based on Phase I data. For illustration purpose, we randomly gen-

erate IC data with sample size m equals 1000, 10000 and 100000, respectively, as
Phase I data. Here, �0

n,k is estimated by its maximum likelihood estimator, Σn is
estimated by the Pearson’s correlation coefficient matrix. At each time point, we
generate M = 100000 observations from Phase I data to calculate the empirical
p-values used for online monitoring. The empirical FDR and power of the proposed
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MEWMA scheme based on different number of Phase I data are shown in Figure
4. From Figure 4, we find that there is no evident difference between the results
of m = 10000 and m = 100000. In addition, apparently, the results of m = 1000
seems worse than those of the other two cases. Therefore, in Phase I control, it is
important that the sample size m is sufficiently large so that the performance of
our proposed MEWMA scheme in Phase II monitoring will be affected negligibly.
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Figure 4. The empirical FDR and power of the proposed MEWMA scheme based on dif-
ferent numbers of Phase I data.

5. Illustrative Example

In this section, we use one example to illustrate how to apply the developed meth-
ods in practice. Jones-Farmer et al. (2014) integrated a discussion of a data pro-
duction process based on the cargo aircraft maintenance example. In the aircraft
maintenance database, there are 603 records. Each record has 14 separate data
properties which can be measured with quality metrics of accuracy, completeness,
and consistency. The data quality measures for this database can be summarized
to include 34 dichotomous variables. Jones-Farmer et al. (2014) constructed 34
similar Bernoulli CUSUM charts to monitor the data qualities. Generally, if the
above 14 separate data properties can be looked as 14 data streams, the question
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is how to monitor the data qualities of several data streams. We choose 10 out of
them according to Table 2 and Table 3 in Jones-Farmer et al. (2014), and adjust
the phi coefficient. The IC mean and phi coefficient were shown in Table 2.

Table 2. The IC mean and phi coefficient

n mn �0
n,1 �0

n,2 �0
n,3 rn,1,2 rn,1,3 rn,2,3

1 3 0.0006 0.0006 0.0018 0 0 0
2 3 0.3272 0.0006 0.0006 0 0 0
3 3 0.1818 0.0006 0.0006 0 0 0
4 3 0.4790 0.0006 0.0006 0 0 0
5 3 0.2834 0.0006 0.0006 0 0 0
6 3 0.4662 0.0006 0.0006 0 0 0
8 3 0.1993 0.0006 0.3272 0 0.18 0
8 2 0.2687 0.2687 – -0.2 – –
9 2 0.1042 0.1042 – -0.1 – –
10 2 0.0018 0.0018 – 0.2 – –

To demonstrate the effectiveness of our proposed method, we assume that the OC

mean �1
n,k = �0

n,k+ 1
2

√
�0
n,k(1− �0

n,k). Supposing N1 = 1000, we randomly generate

the data qualities of different data streams according to Table 2. We assume that
�1 = 75% of streams occur changes during the monitoring period T = 100. Assume
further that the change point time �n’s are different and �n,k,t occur changes at
the different time, say �n,k ∼ Poisson(10), k = 1, . . . ,mn. Other parameters �, �
and M are chosen as 0.05, 0.05 and 100,000 respectively. We aim to investigate the
number of discoveries at time t. We are also interested in the power and the false
discovery proportion up to time t (TFDP). The simulation results are shown in
Figure 5 from which we can observe that the proposed procedure works reasonably
well.
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Figure 5. (a)The number of discoveries; (b) TFDP; (c)Power curve.
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6. Concluding Remarks

We have presented a new framework to on-line monitor the intrinsic data quali-
ties, such as accuracy, consistency, completeness, etc., of a large number of data
streams based on the assumption of independence within data streams. For each
data stream, every data quality observation is a multidimensional variable with
marginal Bernoulli distribution. By this framework, a novel one-sided multivariate
exponentially weighted moving average (MEWMA) statistic is first calculated, and
then BH procedure is used to control the conditional false discovery rate (CFDR).
Compared to existing statistical process control (SPC) methods that are applied
to monitor data quality, the proposed framework has the contributions that (i) it
focuses on data qualities of high-dimensional data streams, (ii) it uses multivari-
ate method to control the multidimensional data quality process, (iii) it adjusts
the MEWMA scheme via CFDR. It still requires much future research on how to
on-line monitor under some special dependence structures and in cases when the
marginal Bernoulli distribution with a very low proportion nonconforming.
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