
An adaptive Shiryaev-Roberts procedure for

signalling varying location shifts

Jiujun Zhang a, Zhonghua Li b, Qin Zhou c, Zhaojun Wang b,∗
aDepartment of Mathematics, Liaoning University, Shenyang 110036, P.R.China
bLPMC and Institute of Statistics, Nankai University, Tianjin 300071, P.R.China

cSchool of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116,
P.R.China

Abstract

This paper proposes a new adaptive chart based on the Shiryaev-Roberts procedure,
by updating the reference value in an adaptive way to achieve the aim of overall
good performance over a range of future expected but unknown mean shifts. A
two-dimensional Markov chain model is developed to analyze the run length perfor-
mance. The design guidelines are given. The comparisons of run length performance
of the proposed scheme and other charts show that the proposed chart provides quite
effective detecting ability over a range of mean shift sizes. The implementation of
the new chart is illustrated by a real data example.
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1 Introduction

Statistical surveillance is used when regularly observed time series data are
available, with the goal of giving a signal as soon as the data provide enough
evidence of an important distributional change while maintaining the rate of
false alarms at a low level. For this purpose, many alternative control chart
approaches have been proposed in the literature. A statistical process control
(SPC) chart is a procedure devised to monitor the stability of a process by
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plotting a sequence of statistics on a chart that involves a centerline and one or
more statistically determined control limits and is used in evaluating whether
a process is in control or out of control.

SPC charts originated in the late 1920s with the works of Shewhart (1926)
and Shewhart (1931). While they are effective in detecting large shifts in a
process parameter, Shewhart charts are not very effective in reacting to small
parameter shifts. Thus, alternative control chart approaches that combine in-
formation over time have been proposed in the literature, e.g. the cumulative
sum (CUSUM) chart, exponentially weighted moving average (EWMA) chart.
These alternative control charts have been shown to be more effective than the
Shewhart charts in detecting small, sustained shifts in a process parameter.

In 1961, for detecting a change in the drift of a Brownian motion, Shiryaev
introduced an alternative change detection procedure, which is now usually
referred to as the Shiryaev-Roberts (SR) procedure (Shiryaev (1961) and
Roberts (1966)). The SR procedure has received some attention in the lit-
erature. Pollak and Siegmund (1985) compared the SR procedure with the
CUSUM procedure for detecting a change in the drift of a Brownian motion
process based on the conditional average delay time criterion. In addition, Pol-
lak and Siegmund (1991) compared the performance of the CUSUM with the
SR procedure for detecting a shift in a normal mean when the in-control value
of the mean is unknown, but can be estimated from a training sample. Kenett
and Pollack (1996) showed that the SR surveillance scheme has several advan-
tages over classical CUSUM charts when a non-homogeneous Poisson process
is considered. Moustakides et al. (2009) also offered a detailed comparative
performance analysis of the SR procedure and the CUSUM chart, but the
results are based on asymptotic approximations. In addition, Moustakides et
al. (2011) developed integral equations and a concise numerical method to
compute a number of performance metrics and evaluated the SR procedure’s
performance for various initialization strategies. Furthermore, Polunchenko
et.al (2014) extended the framework of Moustakides et al. (2011). Recently,
Zhang et al. (2011a) proposed a new single chart with SR procedure to mon-
itor both mean and variance. It is shown that the new chart performs better
than the other charts in most cases.

All of the properties mentioned above give the SR procedure an advantage
over the other competing procedures. Moreover, the optimal performance of
the SR charts heavily depends on the assumption that the shift magnitude,
say 𝛿, is known. In other words, optimal selection of the reference value relies
on the target shift. Because we rarely know the exact shift value of a process
before it is detected, it may be more important to look at a range of known
or unknown mean shifts. Thus, a SR chart with a pre-specified reference value
usually can not have an optimal performance for both small and large shifts.
It is, therefore, desirable that a control chart performs well over a range of
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mean shift sizes.

To provide good ARL performance over a range of mean shift sizes, an alter-
native approach is to consider a multiple model or a mixture of several control
charts. In fact, Lorden (1971) has already considered and studied such a
model. Lucas (1982) and Hawkins and Zamba (2003) proposed a Shewhart
limit in conjunction with the CUSUM chart. Lucas and Saccucci (1990) rec-
ommended that a Shewhart limit be used in conjunction with the EWMA
chart. This method can increase the efficiency of a chart for detecting large
shifts. In addition, Dragalin (1997) investigated and studied a combination
of several CUSUM charts with running extensive simulations to detect mean
shifts in a range. They have shown the efficiency of the combined CUSUM
charts, and provided various designs for these procedures, based on numer-
ical simulations. This approach is very flexible, but with this comes greater
complexity in its design.

Another effective alternative method is to use a single adaptive control chart.
When a single chart is used, the design and operation of the monitoring
scheme can be greatly simplified compared with the combined charts. Among
them, Lorden (1971) first proposed a so-called generalized CUSUM proce-
dure when the parameter is unknown. Later Pollak and Siegmund (1975)
proposed a mixture type analog of CUSUM procedure. Pollak (1987) intro-
duced the mixture-type analog of SR procedure and proved the second-order
asymptotic minimaxity of this procedure in a certain sense. The main difficul-
ties in implementing these procedures are the complexity of their statistics.
Dragalin (1996) presented two adaptive procedures (VD chart) to estimate
the process parameter with the CUSUM and SR chart when the parameter is
unknown. The main drawback of this procedure is that the statistic is inap-
propriate since the control limit of the chart changes as estimation of 𝛿, varies
and using a unified control limit will result in imbalanced detection ability for
different values of 𝛿.

Recently, Sparks (2000) proposed a new adaptive CUSUM (ACUSUM chart)
procedure by dynamically adjusting the reference value of the conventional
CUSUM chart. Simulation results showed that the proposed ACUSUM chart
is robust at signaling varying location shifts. Further, Shu and Jiang (2006)
developed a two-dimensional Markov chain model to analyze the performance
of ACUSUM charts. Jiang et al (2008) also proposed an adaptive CUSUM
chart with EWMA-based shift estimators (JSA chart). Zhang et al. (2011b)
discussed an adaptive SR chart for monitoring the process variance over a
range of dispersion shift sizes. To this end, in this paper, we develop a new
adaptive SR procedure for monitoring the process mean. Our new adaptive
chart is much simpler than the VD chart and it can be anticipated that the
new chart will provide an overall good performance over a range of future
mean shifts.
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The remainder of the paper is organized as follows. In Section 2, the SR test
is presented and the comparison between the SR and the CUSUM chart is
briefly reviewed. Furthermore, an adaptive SR procedure is proposed and the
run length performance study through a Markov chain method is discussed
in Section 3. The effects of parameters and design guidelines are provided in
Section 4. The performance comparison for detecting is presented in Section
5. Section 6 contains a real data example to illustrate the application of our
proposed chart. The conclusion and discussion are given in the last section.

2 The motivation of the proposed chart

In this section, we firstly review the SR procedure for location briefly and then
the comparison with the CUSUM procedure is given by numerical analysis in
terms of ARL.

2.1 The derivation of SR chart for monitoring a normal process mean

Let x𝑡 = (𝑥𝑡1, . . . , 𝑥𝑡𝑛) denotes a sample of size 𝑛 ≥ 1 taken on a quality
characteristic 𝑥. The monitoring problems with 𝑛 > 1 and 𝑛 = 1 are usually
referred to as group observations case and individual observations case, re-
spectively. In what follows, we assume that the x𝑡 for 𝑡 ≥ 1, the observations
collected over time, come from the following process model

𝑥𝑡𝑖 = 𝜇+ 𝜀𝑡𝑖, 𝑖 = 1, . . . , 𝑛, 𝑡 = 1, 2, . . . ,

where 𝜀𝑡1, . . . 𝜀𝑡𝑖 are identically and independently distributed (i.i.d) normal
variables with mean 0 and standard deviation 𝜎. When the process is in-
control, 𝜇 = 𝜇0 and 𝜎 = 𝜎0. In this paper, we consider the Phase II case
in which the in-control (IC) 𝜇0 and 𝜎0, are assumed to be known, i.e., it
is assumed that the IC data set used in Phase I is enough to estimate the
parameters well.

When a process shift occurs, 𝜇 = 𝜇1, where 𝜇1 = 𝜇0 + 𝛿𝜎0 and 𝛿 ∕= 0 and
the probability density function (pdf) is denoted as 𝑔(𝑥). The values of 𝛿 is
known before monitoring. Without loss of generality, we assume 𝜇0 = 0 and
𝜎0 = 1 and the pdf is denoted as 𝑓(𝑥). If the in-control mean is not 0, or the
in-control variance is not 1, one can transform the random variable such that
the distribution of the transformed variable is 𝑁(0, 1).

According to Moustakides et al. (2009), for 𝑡 ≥ 1, define Λ𝑡 =
𝑔(x𝑡)
𝑓(x𝑡)

, to be
the “instantaneous” likelihood ratio between the post-change and pre-change
hypotheses. Then, under the assumption, we have
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Λ𝑡 =
𝑔(𝑥𝑡1, 𝑥𝑡2, ⋅ ⋅ ⋅ , 𝑥𝑡𝑛)

𝑓(𝑥𝑡1, 𝑥𝑡2, ⋅ ⋅ ⋅ , 𝑥𝑡𝑛)
= exp{𝛿

𝑛∑
𝑗=1

𝑥𝑡𝑗 − 𝑛𝛿2

2
} = exp{𝑛𝛿𝑥𝑡 − 𝑛𝛿2

2
}, (1)

where 𝑥𝑡 =
1
𝑛

∑𝑛
𝑗=1 𝑥𝑡𝑗 is the sample mean. The SR procedure stops and raises

an alarm at 𝑇 𝑆𝑅
ℎ = inf{𝑡 ≥ 1 : 𝑅𝑡 ≥ ℎ}, where 𝑅𝑡 is the SR detection statistic

defined as

𝑅𝑡 =
𝑡∑

𝑙=1

𝑡∏
𝑗=𝑙

Λ𝑗, (2)

and ℎ > 0 is chosen to achieve a specified IC-ARL. It is easily verified that
the SR statistic allows the following convenient recursive representation

𝑅𝑡 = (1 +𝑅𝑡−1)Λ𝑡, (3)

where 𝑅0 = 0. Next, we will compare the SR chart with the traditional
CUSUM chart in terms of ARL.

2.2 Comparison between the SR and the CUSUM chart

The CUSUM chart proposed by Page (1954) is one of the most popular algo-
rithms for accomplishing this, in part due to certain ARL optimality properties
(Lorden , 1971; Pollak, 1985; Moustakides , 1986). The CUSUM works by ac-
cumulating the deviations from the target 𝜇0 that are above target with one
statistic 𝐶+ and that are below target with another statistic 𝐶−. The statis-
tics 𝐶+ and 𝐶− are called one sided upper and lower CUSUM respectively.
They are calculated as

𝐶+
𝑡 = max(0, 𝐶+

𝑡−1 + (𝑥𝑡 − 𝜇0)− 𝑘), (4)

𝐶+
𝑡 = max(0, 𝐶+

𝑡−1 − (𝑥𝑡 − 𝜇0)− 𝑘), (5)

with the initial value 𝐶+
0 = 𝐶−

0 = 0. The value of 𝑘 is called the reference or
allowable value and it is often chosen about halfway between the target 𝜇0 and
the shift of mean that one is interested in detecting. Thus, 𝑘 = 1

2
∣𝜇1 − 𝜇0∣. If

either of the two equations (4) and (5) exceeds the control limit ℎ, the process
is said to be out of control. In case of rational subgroups (of sizes 𝑛 > 1 ), 𝑥𝑡

is replaced by 𝑥𝑡.

CUSUM chart is superior to the Shewhart chart at least for small and moder-
ate shifts. Therefore, it is worthwhile to compare the performance of SR and
CUSUM charts. Theoretical properties of the SR procedure have been devel-
oped and are well documented in the literature. However, most of the results
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are based on asymptotic approximations found in sequential analysis or diffu-
sion theory. The limited analytical results found in the literature are usually
comparisons of the asymptotic approximations to results obtained through
Monte Carlo simulations.

In the literature, run length performance is usually used to compare surveil-
lance procedures, where the run length is the number of samples taken until
the chart signals a change in the process parameter. The most commonly
used efficiency criterion is the average run length (ARL), which is the average
number of observations needed for the procedure to signal a change in the
distribution. It is desirable that the ARL should be large if the process is in
control and be small if the process is out-of-control. Quite often zero-state (ZS)
and steady-state (SS) ARL measures are used for this purpose. The ZS-ARL
is based on the assumption that the specified shift in the parameter occurs
when the chart is at its initial condition. On the other hand, the SS-ARL is
based on averaging these out-of-control values, but under the assumption that
the process has been operating for a while and that the process mean stays
on the target until the specified shift in the mean occurs. Based on the run
length performance, the properties of the CUSUM chart have been thoroughly
studied in the literatures.

It is well known that both schemes enjoy specific optimality properties un-
der different optimality criteria. More precisely, it follows from Moustakides
(1986) that the CUSUM procedure is (min-max) optimal with respect to the
Lorden (1971) detection measure. On the other hand, it follows from Pollak
and Tartakovsky (2009) that the SR procedure is optimal with respect to the
relative integral average detection delay (RIADD) measure. The exact ana-
lytical characterization of the two performance measures was recently made
possible by Moustakides et al. (2009) through a set of integral equations. It
is shown that the CUSUM procedure outperforms the SR procedure with re-
spect to Lorden’s performance measure, i.e., ZS-ARL, while the SR procedure
is superior with respect to the RIADD measure, i.e., SS-ARL.

In order to make it clear, we made a similar comparison between the SR pro-
cedure and the CUSUM procedure in terms of SS-ARL for different values of 𝛿
(the smallest standardized shift considered important to be detected quickly)
and under different possible shift sizes in the process mean, 𝜇. The IC-ARL
is chosen to be 200 and the sample size are set to be 1 and 5, respectively.
All ARL values are estimated using 100,000 simulations of data taken as nor-
mally distributed. The results are summarized in Table 1. It can be seen that
the SS-ARLs for the SR procedure are always smaller than the SS ARLs of
CUSUM chart only if 𝜇 ≤ 𝛿. Similar conclusions were also given in Mahmouda
et al. (2008), which were based on only the case of 𝑛 = 1.

[Insert Table 1 about here]
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It should be noted that 𝛿 is the smallest standardized shift size that a surveil-
lance method is designed to detect optimally. In practice, however, the true
shift can be different from the shift for which the surveillance method is opti-
mal. A drawback of the SR scheme is that it is designed to detect a particular
mean shift size, say 𝛿, and may perform far away for detecting shifts of sizes
smaller or lager than 𝛿. To this end, in the next section, we propose an adap-
tive SR (ASR chart) chart for monitoring process mean by integrating the idea
of the adaptive CUSUM for process mean problem proposed by Sparks (2000)
with the SR chart. It can be easily implemented and provides a balanced
protection against a broad range of shift sizes by properly setting parameters.

3 An adaptive SR chart for the process mean

As discussed above, the SR chart can only be optimized in terms of SS-ARL
if we have accurate information on the value of 𝛿. In practice, 𝛿 is unknown
and in certain cases its magnitude even varies over time due to causes such as
gradual deterioration of equipment, waste accumulation or human causes. In
order to enhance the detection ability for a range of shift sizes, we propose an
adaptive charting method based on SR procedure.

3.1 An adaptive SR chart for the process mean

Assume that we are only interested in detecting process increase, i.e., 𝛿 > 0.
Let 𝛿𝑡 standard for the process mean at time 𝑡. It is natural to use this value
in the SR statistic by setting 𝛿 = 𝛿𝑡, say,

𝑅𝑈
𝑡 = (1 +𝑅𝑈

𝑡−1)Λ
∗
𝑡 , (6)

where

Λ∗
𝑡 = exp{𝑛𝛿𝑡𝑥𝑡 − 𝑛

2
𝛿2𝑡 }. (7)

A signal is given when 𝑅𝑈
𝑡 exceeds a specified control limit ℎ. It might be

expected to be nearly optimal in detecting the mean change in such situations.
However, this statistic is inappropriate since the control limit of 𝑅𝑈

𝑡 changes as
𝛿𝑡 varies and using a unified control limit will result in imbalanced detection
ability for different values of 𝛿 (see Sparks (2000) for a related discussion).
Alternatively, we proposed to use 𝑅𝑈

𝑡 /ℎ𝑈(𝛿𝑡), where ℎ𝑈(𝛿𝑡) is an operating
function that denotes the control limit for the upper-sided ASR chart. Using
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operating function is one of the main differences between our chart and the
VD chart.

In this paper, we come up with a regression fit approximating this function
and use it as a convenient formula for practitioners. We use EXCEL to fit these
functions. Table 2 tabulates the approximated ℎ𝑈(⋅) for 𝑛 = 1 and 𝑛 = 5 and
IC ARL=100, 200, 300, 400 and 500 by six-order polynomial fits based on
forty points (𝛿𝑖, ℎ𝑈(𝛿𝑖)) with 𝛿𝑖 equally spaced in [0.05,2.0].

[Insert Table 2 about here]

Certainly, it is required to estimate 𝛿𝑡 in applications. Moreover, the EWMA
scheme has been used in Sparks (2000) and Shu and Jiang (2006) to estimate
the current process mean level. Although some other methods can be used, we
still use the EWMA scheme due to its simplicity and efficiency in the current
paper. To be specific, the conventional EWMA statistic for the process mean
can be obtained recursively as

𝑄𝑡 = (1− 𝜆)𝑄𝑡−1 + 𝜆𝑥𝑡, (8)

where 𝜆 is a smoothing parameter with 0 < 𝜆 < 1. Note that this estimator
is such simpler than its counterpart VD chart.

Practically speaking, when detecting upward shift, there is always a minimum
magnitude of interest of 𝛿 > 0 for early detection, say 𝛿min. In order to maintain
the advantages of ASR charts for detecting small shifts while improving the
sensitivity for detecting large shifts, 𝛿min usually takes small values in the ASR
procedures to guarantee the sensitivity to small shifts.

Therefore, for the purpose of improving the efficiency in detecting shifts larger
than 𝛿min, we suggest to use

𝑄+
𝑡 = max{𝛿min, (1− 𝜆)𝑄+

𝑡−1 + 𝜆𝑥𝑡}, (9)

instead, where the starting value of 𝑄+
0 can be set to 𝛿min or some other values.

Finally, by using (5), the upper-sided ASR charting statistic is defined as

𝑅𝑈
𝑡 = (1 +𝑅𝑈

𝑡−1)Λ
∗
𝑡 , (10)

where

Λ∗
𝑡 = exp{𝑛𝑄+

𝑡 𝑥𝑡 − 𝑛

2
𝑄+2

𝑡 }. (11)
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The ASR chart triggers a signal when 𝑅𝑈
𝑡 /ℎ𝑈(𝑄

+
𝑡 ) > ℎ𝑐, where ℎ𝑐 > 0 is a

control limit chosen to achieve a specified IC-ARL.

3.2 Markov chain estimates of ARL for the ASR chart

The Markov chain approach, integral equation approach and Monte Carlo
simulations have been widely used to study the run length performance of
control charts (Li et al, 2014). Due to the simple format of the estimator of 𝛿
in equation (8), the run length performance of our ASR charts, as described
below, can be investigated using a two-dimensional Markov chain model. This
allows one to apply a two-dimensional extension of the univariate Markov
chain approach to calculate the ARL. For the VD chart, the run length per-
formance was evaluated by simulation and this is the advantage of our ASR
chart compared with the VD chart.

Similar to Zhang et al. (2011b), we develop a Markov chain model for an

upper ASR chart. It can be seen that the random vector (
𝑅𝑈

𝑡

ℎ(𝑄+
𝑡 )
, 𝑄+

𝑡 ) can

be modeled as a Markov chain. First, we choose a large control limit 𝐿 for
the process of 𝑄+

𝑡 so that the IC region can be partitioned within a two-
dimensional rectangle [0, ℎ𝑐] × [𝛿min, 𝐿] to a discretized Markov chain, i.e.,

{0 ≤ 𝑅𝑈
𝑡

ℎ(𝑄+
𝑡 )

≤ ℎ𝑐, 𝛿min ≤ 𝑄+
𝑡 ≤ 𝐿}. Assume that the number of states along

the axis
𝑅𝑈

𝑡

ℎ(𝑄+
𝑡 )

over the range [0, ℎ𝑐] is 𝑚1, then the width of each segment is

𝜔 = 2ℎ𝑐/(2𝑚1 − 1), except that the width of the first segment is 𝜔
2
. Similarly,

the axis 𝑄+
𝑡 over the interval [𝛿min, 𝐿] is segmented into 𝑚2 states such that

the width of each segment is Δ = 2(𝐿−𝛿min)/(2𝑚2−1), except that the width
of the first segment is Δ/2. The states along the axis 𝑅𝑈

𝑡 /ℎ(𝑄
+
𝑡 ) and 𝑄+

𝑡 are
labeled by 𝑖 = 0, 1, ⋅ ⋅ ⋅ , (𝑚1 − 1) and 𝑗 = 0, 1, ⋅ ⋅ ⋅ , (𝑚2 − 1), respectively. The
center point of state 𝑖 along the axis 𝑅𝑈

𝑡 /ℎ(𝑄
+
𝑡 ) is 𝑖𝜔, and the center point of

state 𝑗 along the axis 𝑄+
𝑡 is 𝛿min+ 𝑗Δ. Therefore, the IC region is divided into

a number of 𝑁 = 𝑚1 ×𝑚2 two-dimensional rectangles.

Define:

𝑎1 =
1

𝑛(𝛿𝑚𝑖𝑛 + 𝑙Δ)
{log[(𝑘 − 0.5)𝜔ℎ(𝛿min + 𝑙Δ)

1 + 𝑖𝜔ℎ(𝛿min + 𝑗Δ
)] +

𝑛(𝛿𝑚𝑖𝑛 + 𝑙Δ)2

2
},

𝑎2 =
1

𝑛(𝛿𝑚𝑖𝑛 + 𝑙Δ)
{log[(𝑘 + 0.5)𝜔ℎ(𝛿min + 𝑙Δ)

1 + 𝑖𝜔ℎ(𝛿min + 𝑗Δ
)] +

𝑛(𝛿𝑚𝑖𝑛 + 𝑙Δ)2

2
},

𝑏1 = 𝛿min + [𝑙 − 0.5− (1− 𝜆)𝑗]
Δ

𝜆
, 𝑏2 = 𝛿min + [𝑙 + 0.5− (1− 𝜆)𝑗]

Δ

𝜆
,

𝑐= min[𝑏2,max(𝑎1, 𝑏1)], 𝑑 = max[𝑏1,min(𝑎2, 𝑏2)], 𝑒 = max[𝑎1,min(𝑎2, 𝑏2)].
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Let 𝑃(𝑖,𝑗)(𝑘,𝑙) be the transition probability of (
𝑅𝑈

𝑡

ℎ(𝑄+
𝑡 )
, 𝑄+

𝑡 ) from state (𝑖, 𝑗) to

state (𝑘, 𝑙). Then, when 𝑘 ∕= 0 and 𝑙 ∕= 0, the transition probability 𝑃(𝑖,𝑗)(𝑘,𝑙)

can be evaluated by

𝑃(𝑖,𝑗)(𝑘,𝑙)=𝑃𝑟{ 𝑅𝑈
𝑡

ℎ(𝑄+
𝑡 )

instate k,Q+
t instate l∣ RU

t−1

h(Q+
t−1)

instate i,Q+
t−1instate j}

=𝑃𝑟{(𝑘 − 0.5)𝜔 < 𝑅𝑡/ℎ(𝑄
+
𝑡 ) < (𝑘 + 0.5)𝜔,

𝛿min + (𝑙 − 0.5)Δ < (1− 𝜆)𝑄+
𝑡−1 + 𝜆𝑥𝑡 < 𝛿min + (𝑙 + 0.5)Δ

∣ 𝑅𝑡−1

ℎ(𝑄+
𝑡−1)

= 𝑖𝜔,𝑄+
𝑡−1 = 𝛿min + 𝑗Δ}

=𝑃𝑟{(𝑘 − 0.5)𝜔 <
1 +𝑅𝑡−1

ℎ(𝑄+
𝑡 )

Λ∗
𝑡 < (𝑘 + 0.5)𝜔, 𝑏1 < 𝑥𝑡 < 𝑏2}

=𝑃𝑟{ (𝑘 − 0.5)𝜔ℎ(𝑄+
𝑡 )

1 + 𝑖𝜔ℎ(𝛿min + 𝑗Δ)
< Λ∗

𝑡 <
(𝑘 + 0.5)𝜔ℎ(𝑄+

𝑡 )

1 + 𝑖𝜔ℎ(𝛿min + 𝑗Δ)
, 𝑏1 < 𝑥𝑡 < 𝑏2}

=𝑃𝑟{𝑎1 < 𝑥𝑡 < 𝑎2, 𝑏1 < 𝑥𝑡 < 𝑏2},

then, when the process is IC, the probability can be presented as

𝑃(𝑖,𝑗)(𝑘,𝑙)=𝑃𝑟{𝑐 < 𝑥𝑡 < 𝑑}
=Φ(

√
𝑛𝑑)− Φ(

√
𝑛𝑐),

where 𝜙(⋅) is the probability distribution function of the standard normal
distribution.

Similarly, when 𝑘 ∕= 0 and 𝑙 = 0,

𝑃(𝑖,𝑗)(𝑘,0)=𝑃𝑟{𝑎1 < 𝑥𝑡 < 𝑎2, 𝑥𝑡 < 𝑏2}
=𝑃𝑟{𝑎1 < 𝑥𝑡 < max[𝑎1,min(𝑎2, 𝑏2)]

=Φ(
√
𝑛𝑒)− Φ(

√
𝑛𝑎1).

When 𝑘 = 0 and 𝑙 ∕= 0,

𝑃(𝑖,𝑗)(0,𝑙)=𝑃𝑟{𝑥𝑡 < 𝑎2, 𝑏1 < 𝑥𝑡 < 𝑏2}
=𝑃𝑟{𝑏1 < 𝑥𝑡 < max[𝑏1,min(𝑎2, 𝑏2)]}
=Φ(

√
𝑛𝑑)− Φ(

√
𝑛𝑏1).

When 𝑘 = 0 and 𝑙 = 0,

𝑃(𝑖,𝑗)(0,0) =𝑃𝑟{𝑥𝑡 < 𝑎2, 𝑥𝑡 < 𝑏2

=𝑃𝑟{𝑥𝑡 < min(𝑎2, 𝑏2)}
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=Φ(
√
𝑛min(𝑎2, 𝑏2)).

Then, we have

𝑃(𝑖,𝑗)(𝑘,𝑙) =

⎧⎨⎩

𝑃𝑟{𝑐 < 𝑥𝑡 < 𝑑}, if 𝑘 ∕= 0 and 𝑙 ∕= 0

𝑃𝑟{𝑎1 < 𝑥𝑡 < 𝑒}, if 𝑘 ∕= 0 and 𝑙 = 0

𝑃𝑟{𝑏1 < 𝑥𝑡 < 𝑑}, if 𝑘 = 0 and 𝑙 ∕= 0

𝑃𝑟{𝑥𝑡 < min(𝑎2, 𝑏2)}, if 𝑘 = 0 and 𝑙 = 0,

The ZS-ARL of the upper ASR chart can then be obtained by the following
equation:

𝐴𝑅𝐿 = p𝑇
𝑖𝑛𝑖(I−Q)−11,

where p𝑖𝑛𝑖 is any initial probability vector of states and the submatrix 𝑄 con-
tains the probabilities of going from one transient state to another. Transient
states are referred to as in-control states, and the absorbing state is referred
to as the out-of-control state.

In order to calibrate the SS-ARL, according to Lucas and Saccucci (1990),
define

P∗ =

⎛⎜⎝ Q (I−Q)1

0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0 0

⎞⎟⎠ .

Let p𝑠𝑠 be the cyclical steady-state probability vector, then p𝑠𝑠 can be obtained
by solving simultaneously p = P∗𝑇p subject to p1 = 1, where 1 is a vector of
ones. The cyclical SS-ARL is given by

𝐴𝑅𝐿 = p𝑇
𝑠𝑠(I−Q)−11.

4 Effects of parameters and design guidelines

From the description of Section 3, the performance of the ASR chart is re-
lated to the initial value 𝑄+

0 , the smoothing parameter 𝜆, and the minimum
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magnitude 𝛿min. First, we investigate the effect of the initial value of 𝑄+
0 on

charts’ performance.

It can be expected that 𝑄+
0 does not affect charts’ steady-state performance

and thus we only need to consider the zero-state cases. Table 3 tabulates the
OC-ARL values of ASR charts with different values of 𝑄+

0 = 1.0, 1.5, 2.0, 2.5
under different possible shift sizes in the process mean, 𝜇, when 𝜆 = 0.1, 𝛿min =
1.0, 𝑛 = 1. 𝑄+

0 has a small effect on the OC-ARL and less effect on the IC-
ARL. In general, a large value of 𝑄+

0 slightly improves the sensitivity of ASR
charts to large shifts but reduces the sensitivity to small shifts, and vice versa
for a small value of 𝑄+

0 . Thus, we recommend setting 𝑄+
0 = 2.0 and this choice

will be used in the following comparisons.

[Insert Table 3 about here]

It should be noted that the control limit ℎ = 1.5 provides nearly an identical
IC-ARL for all ASR charts with different 𝑄+

0 . Shu and Jiang (2006) pointed
out that this insensitivity of the IC-ARL to 𝑄+

0 indicates a very good prop-
erty because the OC performance can be adjusted by changing 𝑄+

0 without
changing the control limit. This is similar to the effect of a head start on
conventional CUSUM and EWMA charts (Lucas (1982)).

The effects of the parameters (𝛿min, 𝜆) are also investigated. Table 4 presents
the OC-ARL values of ASR charts with different values of 𝛿min = 0.25, 0.5, 0.75,
1.0 for various mean shifts when 𝜆 = 0.1, 𝑄+

0 = 2.0, 𝑛 = 5. Generally, a large
value of 𝛿min improves the sensitivity of ASR charts to large shifts but reduces
the sensitivity to small shifts, and vice versa for a small value of 𝛿min. More-
over, the value of 𝛿min improves the detection ability of ASR when 𝛿 ≥ 𝛿min but
reduces the efficiency when 𝛿 < 𝛿min. Overall, the ASR chart with 𝛿min = 0.5
seems to be always robust in detecting various mean changes on the whole,
and thus it is a reasonable choice in practice.

[Insert Table 4 about here]

We can also observe that, once the parameters 𝛿min and 𝑄+
0 are fixed, 𝜆 can

be tuned to minimize the OC-ARL for any particular shift. However, this
optimal value of 𝜆 degrades the sensitivity to other shifts and finding the
optimal value of 𝜆 is too complicated for practical use. To this end, we can
select 𝜆 ∈ [0.05, 0.2], as is often suggested in literature.

From the performance of the ASR charts shown above, the following design
procedure is recommended when the ASR chart is used: 1) Specify the IC-
ARL; 2) If there is no prior knowledge of the dispersion shift size, 𝛿min = 0.5
and 𝜆 = 0.1 are suggested, which are useful choices in practice in order to
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detect small and moderate mean shifts quickly; 3) If there is some knowledge
of the mean shift size and the shift size is small, small 𝛿min and 𝜆 are suggested,
and vice versa; 4) After specifying (𝛿min, 𝜆), determine the control limit ℎ to
achieve a desired IC-ARL. A Fortran program to find the control limit ℎ is
available from the authors upon request.

5 Comparison with other charts

In this section, we compare our ASR chart with the SR chart, JSA chart and
the VD chart. The JSA chart performs better than the ACUSUM chart, so, we
will not consider the ACUSUM chart in this comparison. Some other works,
such as those of Lorden and Pollak (2005) and Lorden and Pollak (2008), also
address this problem via direct estimation. However, their works are based on
mathematical theory, which we will not consider, either.

Suppose [𝛿1, 𝛿2] is the potential mean shift range for detection. In this com-
parison, the IC-ARL is taken as 400 and 𝑛 = 1 is considered. In order to be
consistent with Jiang et al (2008), the ASR parameters are chosen as 𝜆 = 0.3,
𝛿min = 1.0, the JSA parameters are chosen as 𝜆 = 0.3, 𝛿min = 1.0, 𝛾 = 1.5
and the VD parameter is chosen as 𝜃0 = 1 (see Dragalin (1996) and Jiang
et al (2008) for more details). For the other two SR charts, 𝛿 = 𝛿1 = 0.25
and 𝛿 = 𝛿2 = 2 (denoted as SR1 and SR2 chart) are considered. This range is
considered to be small and moderate shift size.

In this Table, 𝛿 is the smallest standardized shift considered important to be
detected quickly and 𝜇 is the possible shift sizes in the process mean. The
ARL values of the SR and ASR charts are obtained using the Markov chain
method and the ARL values of the JSA chart are selected from Table 2 of
Jiang et al (2008). Both of the ZS-ARL and SS-ARL are considered in this
comparison. The same values of control limits were used for computing both
zero-state and steady-state OC-ARL values. The ZS-ARL and the SS-ARL
comparison results are summarized in Table 5. From this table we observed
the following results:

∙ The comparison between the ASR and SR charts:
It can be seen from this Table that a single SR chart can only signal either

small or large shifts quickly once the corresponding 𝛿 is chosen. For example,
for detecting the small shift, e.g., 𝜇 = 0.5, the SS-ARL of the SR1 chart is
21.93, but for the SR2 chart, the SS-ARL increases to 43.77. However, for
detecting the large shift, e.g., 𝜇 = 2, the SS-ARL of the SR1 chart is 5.31,
but for the SR2 chart, the corresponding value deduces to 2.83. Note that
the difference between the ZS-ARL and SS-ARL of the SR1 chart is very
significant. Also we can see that the ASR chart performs better than the
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SR1 chart when 𝜇 > 0.50 and almost always outperforms the SR2, except
for very large shift.

∙ The comparison between the ASR and JSA charts:
Apparently, for detecting small and moderate shift sizes, say, 𝜇 < 1, the

ASR chart is more sensitive than the JSA chart. On the other hand, for
detecting large shift sizes, e.g., 𝜇 ≥ 1, the JSA chart performs a little better
than the ASR chart.

∙ The comparison between the ASR and VD charts:
It can be seen that the VD chart is more sensitive than the ASR chart

for detecting small shifts ,e.g., 𝜇 ≤ 0.5, but less sensitive for detecting large
shifts.

Considering the satisfactory and robust performance for different sizes in de-
tecting the process shifts, we believe it is worth taking the effort in designing
and applying our proposed new chart. We will show the application of our
proposed chart by a real data example in the next section.

[Insert Table 5 about here]

6 An example

To illustrate how the ASR procedure is implemented, in this section, the ap-
plication of our proposed ASR chart is illustrated by a real data example
which contains a data set consisting of measurements of the inside diameter
of the cylinder bores in an engine block. Chen et al. (2001) used this data
set to show the implementation of their MaxEWMA chart for monitoring the
process mean and variance shifts. Zhang et al. (2011b) also used this data
set to show the implementation of their ASR chart for monitoring the process
variance shifts. The original data set can be found in Table 2 in Chen et al.
(2001).

First, we use the grand average 𝑥 of the preliminary data to estimate the
process mean 𝜇 and use 𝑆/𝑐𝑛 to estimate the process variance 𝜎, where 𝑐𝑛 is a
constant that depends only on the subgroup size 𝑛, 𝑆 = (𝑆1+⋅ ⋅ ⋅+𝑆𝑚)/𝑚 is the
average of the sample standard deviations, and 𝑆2

𝑖 =
∑𝑛

𝑗=1(𝑥𝑖𝑗 − �̄�𝑖)
2/(𝑛− 1)

is the 𝑖-th sample variance. In this data set, 𝑐4 is the known constant and
𝑐4 = 0.94 is used.

The process mean and variance are estimated from the data set and we have
𝜇 = 200.251 and 𝜎 = 3.306. To use our ASR chart to monitor process mean,
all the original data are standardized by the process mean and variance. In
this example, 𝛿𝑚𝑖𝑛 = 0.25, 𝑄0 = 2.0, 𝜆 = 0.1 is used and the IC-ARL is chosen
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to be 200. The corresponding control limit is 2.30. The chart is shown as a plot
in Fig. 1-(a). We can see that the curve has a suddenly decrease from sample 1
and this point exceeds the control limit, which is related to the process mean.
According to Chen et al. (2001), sample 1 corresponds to the time when the
regular operator is absent and a relief operator is in charge of the production.
This result is also consistent with Zhang et al. (2011b). When this point is
removed, we obtain 𝜇 = 200.123 and 𝜎 = 3.346, and our second ASR chart is
given as a plot in Fig. 1-(b). The OC signal is triggered at sample 11 and this
sample is also related to the process mean, which is consistent with the results
of the MaxEWMA chart when 𝑘 = 1. When these two samples are removed,
we obtain 𝜇 = 199.98 and 𝜎 = 3.378, and our third ASR chart is given as a
plot in Fig. 1-(c). It shows that there is no point falling outside the control
limit.

It should be noted that there are two other OC points, point 6 and point 16 in
Chen et al. (2001) and Zhang et al. (2011b), which are still in control in our
chart. From the original analysis we know that these two points are related
to the process variance. So, it can be seen that our ASR chart is not sensitive
to the variance shift. This, again, shows that the ASR chart is quite a useful
tool for practitioners to monitor the process mean.

[Insert Figure 1 about here]

7 Conclusions and considerations

In this paper, an adaptive SR chart (ASR chart) based on the Shiryaev-
Roberts procedure is proposed for monitoring the process mean of a normal
process that can be efficient in detecting a broader range of shifts, by dynam-
ically adjusting its reference values according to current process information.
A two-dimensional Markov chain model to analyze the run-length distribu-
tion of the ASR chart is proposed. Moreover, a simplified operating function
is derived by six-order polynomial fits and this function is very accurate in
the range [0.05, 2.0]. Since the ASR chart performs more robustly than other
procedures for detecting the process mean shift, we recommend its use in
practice. This paper considers the ASR charts performance with known pa-
rameters. When the process parameters, mean and standard deviation are
estimated, the performance of the ASR chart will be affected. This will be
further investigated in the future paper.

In addition, as pointed out by Jiang et al (2008), it is known that the EWMA
scheme is inefficient in capturing abrupt process mean changes of moderate
and large magnitudes. The best estimating procedures, according to Yashchin
(1995), can not be linear if they are to adapt to changes of large magnitude
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because the inertia (a long term measurement of estimation error) increases
as the magnitude of the shift increases. To alleviate this limitation, Yashchin
(1995) suggests using a non-linear estimator called the EWMA-C estimator,
which is a generalization of the EWMA statistic. Thus, it is expected that the
ASR chart using an EWMA-C mean estimator improves the same chart using
an EWMA estimator. This will be our interest in the future research.
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Table 1
Comparison of SS-ARL between SR and CUSUM charts with different 𝛿

SR CUSUM

𝛿 𝛿

n 𝜇 0.25 0.50 0.75 1.00 1.50 2.0 0.25 0.50 0.75 1.00 1.5 2.0

1 0.00 200 200 200 200 200 200 200 200 200 200 200 200

0.25 33.25 37.50 42.67 48.35 60.20 71.04 37.14 42.23 47.69 53.63 65.83 76.73

0.50 16.53 16.27 16.94 18.67 23.36 29.19 16.68 17.08 18.43 20.55 26.34 32.98

0.75 10.93 9.96 9.79 9.91 11.61 14.33 10.52 10.13 9.91 10.69 12.78 15.98

1.00 8.21 7.11 6.75 6.60 7.09 8.21 7.67 6.95 6.81 6.77 7.52 8.99

1.50 5.51 4.68 4.21 3.92 3.72 3.91 5.05 4.39 4.03 3.88 3.80 4.08

2.00 4.21 3.52 3.10 2.81 2.58 2.50 3.81 3.31 2.93 2.74 2.54 2.52

5 0.25 14.21 16.45 20.98 27.21 39.15 44.32 14.81 18.08 23.73 30.46 41.57 45.49

0.50 6.22 5.68 6.08 7.19 10.55 13.22 6.01 5.79 6.47 7.84 11.48 13.63

0.75 4.03 3.37 3.21 3.34 4.16 5.11 3.80 3.31 3.26 3.47 4.44 5.27

1.00 3.05 2.45 2.20 2.14 2.30 2.60 2.83 2.35 2.18 2.16 2.37 2.68

1.50 2.12 1.66 1.41 1.30 1.25 1.27 1.97 1.57 1.35 1.28 1.25 1.27

2.00 1.70 1.27 1.09 1.05 1.03 1.03 1.59 1.18 1.07 1.04 1.03 1.03
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Fig. 1. The ASR chart for the cylinder data with the dashed horizontal line indi-
cating its control limit.
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Table 2
Model for the upper control limit as a function of the mean shift of 𝛿 for the
upper-sided SR charts.

n ARL Operating models ℎ𝑈 (𝛿) for the SR chart

1 100 99.158-51.376𝛿-7.6842𝛿2+33.541𝛿3-26.256𝛿4+9.4566𝛿5-1.3297𝛿6

200 199.28-109.01𝛿+5.6921𝛿2+38.149𝛿3-32.423𝛿4+11.709𝛿5-1.5861𝛿6

300 298.13-158.41𝛿-5.4713𝛿2+78.355𝛿3-66.439𝛿4+25.232𝛿5-3.6687𝛿6

400 400.54-233.25𝛿+53.839𝛿2+22.583𝛿3-31.800𝛿4+14.061𝛿5-2.2433𝛿6

500 499.54-285.38𝛿+63.552𝛿2+11.349𝛿3-11.237𝛿4+1.4082𝛿5+0.3305𝛿6

5 100 100.01-126.05𝛿+48.962𝛿2+54.341𝛿3-82.945𝛿4+39.084𝛿5-6.2576𝛿6

200 198.04-237.10𝛿+64.389𝛿2+133.23𝛿3-158.00𝛿4+64.789𝛿5-9.1826𝛿6

300 296.69-348.09𝛿+75.842𝛿2+212.44𝛿3-226.06𝛿4+85.396𝛿5-11.096𝛿6

400 399.12-489.29𝛿+179.11𝛿2+159.76𝛿3-199.05𝛿4+72.973𝛿5-8.6252𝛿6

500 498.87-635.25𝛿+342.45𝛿2-29.059𝛿3-40.623𝛿4+2.8779𝛿5+3.2956𝛿6

Table 3
ZS-ARL values of ASR charts for different 𝑄0 when 𝜆 = 0.1, 𝛿min = 1.0 and 𝑛 = 1

𝑄0

𝜇 1.0 1.5 2.0 2.5

0.00 400 400 400 400
0.25 79.66 80.02 80.59 81.65
0.50 27.32 27.48 28.29 29.48
0.75 14.19 14.18 14.82 15.79
1.00 9.28 9.09 9.43 10.06
1.25 6.87 6.54 6.59 6.95
1.50 5.42 5.02 4.93 5.09
1.75 4.47 4.04 3.87 3.89
2.00 3.80 3.38 3.17 3.10

h 1.498 1.500 1.505 1.505
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Table 4
SS-ARL performance of ASR charts with different 𝛿𝑚𝑖𝑛 when 𝜆 = 0.1, 𝑄0 = 2.0

n=1 n=5
𝛿𝑚𝑖𝑛 𝛿𝑚𝑖𝑛

𝜇 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

0.00 400 400 400 400 400 400 400 400
0.25 53.35 53.61 64.58 76.12 17.93 21.77 29.84 40.76
0.50 25.43 21.04 22.13 24.91 7.18 6.72 7.35 8.93
0.75 15.52 12.33 12.10 12.46 4.35 3.81 3.69 3.88
1.00 10.71 8.53 8.04 7.94 3.10 2.68 2.46 2.40
1.25 8.06 6.41 5.97 5.76 2.44 2.08 1.88 1.77
1.50 6.40 5.11 4.72 4.49 2.02 1.73 1.53 1.41
1.75 5.30 4.25 3.90 3.68 1.75 1.47 1.29 1.20
2.00 4.52 3.63 3.34 3.14 1.54 1.27 1.13 1.08

h 65.8 3.8 2.00 1.50 2.99 1.38 1.138 1.05

Table 5
ARL comparison between ASR, SR, JSA and VD charts when 𝑛 = 1

ASR SR1 SR2 JSA VD
𝜇 ZS SS ZS SS ZS SS ZS SS ZS SS

0.00 400 400 400 400 400 400 400 400 400 400
0.25 81.95 78.85 70.02 47.52 122.7 121.7 92.82 88.28 73.17 68.97
0.50 28.10 25.69 37.02 21.93 44.59 43.77 30.52 26.14 27.71 23.66
0.75 14.56 11.08 25.71 14.17 19.73 19.16 14.71 11.28 15.47 12.75
1.00 9.38 7.92 19.98 10.54 10.63 10.22 9.09 6.57 10.34 8.48
1.50 5.13 4.49 14.03 7.03 4.82 4.54 4.89 3.52 5.74 4.82
2.00 3.38 3.05 10.96 5.31 3.03 2.83 3.23 2.44 3.74 3.26
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