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Abstract

In many practical situations, multiple variables often need to be monitored

simultaneously to ensure the process is in control. In this article, we develop

a feasible multivariate monitoring procedure based on the general Multivariate

Exponentially Weighted Moving Average (MEWMA) to monitor the multivariate

count data. The multivariate count data is modeled using Poisson-Lognormal

distribution to characterize their inter-relations. We systematically investigate the

effects of different charting parameters, and propose an optimization procedure to

identify the optimal charting parameters. In particular, we provide a design table

to the quality engineers as a simple tool to design the optimal MEWMA chart. To

further improve the efficiency, we integrate the variable sampling intervals (VSI)

in the monitoring scheme. We use simulation studies and an example to elicit the

application of the proposed scheme. The results are encouraging and demonstrate

effectiveness of the proposed methods well.
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1 Introduction

Control charts, since the first introduction by Shewhart (1926), have been proven ef-

fective in statistical process control (SPC) to monitor and improve the performance of

products or manufacturing processes. They have been widely used in many quality con-

trol applications and developed with many variants (e.g., Jiang et al., 2012; Zou et al.,

2012; Zou and Tsung, 2010). They also play an important role in the success of en-

terprise in today’s globally competitive marketplace (e.g., Wu et al., 2007; Morgan and

Dewhurst, 2008).

In recent decades, advances in modern data acquisition techniques and computing

power have enabled the collection and analysis of many quality characteristics simultane-

ously. And it has been noted that if these quality characteristics are monitored separately

as individuals, it might not be very effective in detecting process changes (Lowry et al.,

1992). As a result, many multivariate control charts (e.g., Reynolds and Cho, 2006; Zou

and Tsung, 2011; Li et al., 2013b) have been proposed to better utilize the abundant

data for process monitoring. In fact, Woodall and Montgomery (1999), Stoumbos et al.

(2000), Bersimis et al. (2007) and Woodall and Montgomery (2014) point out that mul-

tivariate control charts are one of the most rapidly developing areas of SPC and suggest

that basic and applied research is still needed.

Although multivariate control charts have been receiving a well-deserved attention

in the literature, most of the works assumed that the data follow multivariate normal

distributions. While this assumption often holds in manufacturing processes where qual-

ity characteristics are represented as continuous measurements, it might not be valid

in many service industries or social sciences where discrete data are more common (Li

et al., 2013a). For example, multivariate count data can be found useful in epidemiology

(e.g., incidences of different types of illness), marketing (purchases of different products),

industrial control (different types of faults) (Brijs et al., 2004; Karlis and Meligkotsidou,

2005), and the number of vacations, career interruptions, scores of soccer games, num-

ber of children, etc (Berkhout and Plug, 2004). In all these circumstances, traditional

analysis using multivariate normal approximation can be misleading because the data

might have a lot of zero counts when the marginal mean is small.

Due to its increasing popularity and critical importance, many researchers have

proposed to generalize the Poisson distribution to multivariate case to model multi-

dimensional count data. Among them, the first type approximates the multivariate

count data by multivariate normal distributions through transformation (Niaki and Ab-

basi, 2009). However, when the expectation of the data are small and many zeros are
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present, the approximation could be misleading. Another method, proposed by Tsionas

(2001) and Karlis (2003), considers a special case of the multivariate Poisson model,

which assumes all the pairs of variables have the same covariance. This assumption is

rather restrictive in practice. Karlis and Meligkotsidou (2005) propose a multivariate

Poisson distribution with general covariance structures. Although it relaxes the assump-

tions in Tsionas (2001) and Karlis (2003), the inference becomes quite difficult and

computationally demanding, especially when the dimension or the sample size is large.

In addition, a common drawback of the aforementioned works is that they do not

allow for zero or negative correlation, and thus lack generality. A few other studies

recognized this limitation. For example, Chib and Winkelmann (2001) and Munkin

and Trivedi (1999) propose an alternative bivariate count model that allows for more

general correlation structures by considering dependence among counts through corre-

lated random effects. Van Ophem (1999) models dependence through known univariate

distribution functions up to some parameters. Aitchison and Ho (1989) propose the

multivariate log normal mixture of independent Poisson distributions, which allows for

zero or negative correlation for data with any dimensions (not limited to bivariate data).

Despite these model developments, there lacks a systematic methodology to moni-

tor the multivariate count data. To fill in the research gap, we propose an MEWMA

scheme to monitor the multivariate Poisson count data. The remainder of the article

is organized as follows. Section 2 introduces the proposed MEWMA scheme in details.

Section 3 studies the numerical performance of the proposed MEWMA control chart

using extensive simulation studies. Section 4 presents a data example about household

purchase amounts for four different products. Section 5 discusses the extension to Vari-

able Sampling Intervals (VSI). Section 6 concludes this article with some remarks and

future works.

2 Multivariate Count Data Monitoring

In this section, we first present a brief introduction to multivariate Poisson-log normal

model proposed in Aitchison and Ho (1989). Then we develop a multivariate count data

monitoring scheme based on this model using the general MEWMA method.
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2.1 Multivariate Poisson-Log Normal Distribution

Aitchison and Ho (1989) propose a multivariate Poisson-log normal distribution to model

the multivariate count data. The model is composed of two parts. Given the pa-

rameter θ ≡ [θ1, θ2, · · · , θd], which is a d dimensional vector, each element of X ≡
[X1, X2, · · · , Xd] follows a Poisson distribution Xi ∼ Poiss(θi), i = 1, 2, · · · , d. And

Xi, Xj (i 6= j) are independent from each other conditional on θ. Here we use Poiss(θi)

to denote the univariate Poisson distribution with mean θi.

To model the correlation among different components of X, we let θ be random, and

follow a multivariate log-normal distribution, with density function g(θ|µ,Σ)

g(θ|µ,Σ) = (2π)−d/2
d∏

i=1

θ−1i · |Σ|−
1
2 · exp

{
−(lnθ − µ)′Σ−1(lnθ − µ)

2

}
, (1)

where lnθ shall be interpreted as [ln θ1, ln θ2, · · · , ln θd]. Equivalently, we have lnθ follows

the multivariate normal distribution N(µ,Σ). As a result, the distribution of X can be

considered as a (continuous) mixture of independent Poisson distribution with mixture

probability specified according to a log-normal distribution. By integrating θ out, the

marginal distribution of X is

P(X|µ,Σ) =

∫
Rd
+

d∏
i=1

exp(−θi)θXi
i

Xi!
· g(θ|µ,Σ)dθ, (2)

where Rd
+ denotes the positive orthant of d-dimensional real space Rd, and X can only

take non-negative integers. Although model (2) is complicated, it may be found useful

in many cases, e.g., the count of butterflies of different species (Aitchison and Ho, 1989),

where the count data are naturally obtained in two-step procedures.

When the parameters µ,Σ are unknown in model (2), they can be estimated from

historical collected data X1,X2, · · · ,Xn. Even though no analytical form of the maxi-

mum likelihood estimator (MLE) can be obtained, efficient numerical methods can be

used to find the solution, as detailed in Aitchison and Ho (1989). Alternatively, we can

use the moment based estimation, where a more concise representation is available. In

particular, through the formula of conditional expectation

E(X) = E[E(X|θ)]
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and the conditional variance

Var(X) = E[Var(X|θ)] + Var[E(X|θ)],

we have

E(Xi) ≡ αi = exp(µi + σii/2),

Var(Xi) = αi + α2
i · [exp(σii)− 1],

Cov(Xi, Xj) = αiαj · [exp(σij)− 1], (3)

where σij denotes the (i, j) element of Σ. We can observe from (3) that, the expectation

of X only depends on µ and the diagonal elements of Σ, while the variance/covariance

of X depends on both parameters.

2.2 MEWMA Scheme for Multivariate Count Data

In this section, we further develop a monitoring scheme to monitor the multivariate

count data. The statistical monitoring method developed here can be used to detect

changes in the distribution, and to provide support for further analysis and decision

making. In this article, we focus on the Phase II monitoring problem, i.e., we assume

the in-control parameters µ0 and Σ0 are known exactly or has been accurately estimated

from historical in-control samples. In practice, these parameters can be estimated from a

group of measurements. Provided that the sample size is sufficiently large, it has minimal

impact to treat the estimated parameters as known (Dai et al., 2011).

In the proposed approach, we directly construct the monitoring statistics based on

the individual observations Xk, k = 1, 2, · · · , n. Note that the sampling interval κ is set

to 1 here for clear exposition, and the generalization to VSI will be discussed in Section 5.

We use the general MEWMA (Hawkins et al., 2007) method to detect small to moderate

changes effectively. When the process is in control, Xk has mean m0 and covariance

matrix Ω0, both of which depending on µ0,Σ0 implicitly according to (3). Upon the

collection of each sample Xk, it iteratively calculates

Yk = R · (Xk −m0) + (I−R)Yk−1, (4)

where Y0 = 0, I is the identity matrix, and R is the smoothing matrix. As suggested by

Hawkins et al. (2007), we use equal diagonal elements and equal off-diagonal elements
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in R

rii =
λ

1 + (d− 1)c
, rij =

cλ

1 + (d− 1)c
, i 6= j (5)

where rij are the (i, j)th element of R, and λ, c are design parameters of the MEWMA

chart. In particular, when c = 0, the smoothing matrix R becomes the conventional

form in Lowry et al. (1992).

Based on the MEWMA statistic Yk, we can detect the changes using the T 2 statistic

T 2
k = Y′kW

−1
k Yk, (6)

where

Wk ≡ Var(Yk) =
k−1∑
j=0

(I−R)jRΩ0R(I−R)j

= Wk−1 + (I−R)k−1RΩ0R(I−R)k−1

= RΩ0R + (I−R)Wk−1(I−R) (7)

is the covariance matrix of Yk. When T 2
k > h, the control limit, we generate an alarm

and declare the process is out of control. The h values are determined such that the

average time to signal (ATS) of the MEWMA when the process is in control meets the

specification ATS0.

2.3 Performance Measures

The Mahalanobis distance s, which is used to measure the magnitude of change from

the in-control mean vector µ0 to the out-of-control mean vector µ1, is defined as

s = [(µ1 − µ0)
′Σ−1(µ1 − µ0)]

1/2. (8)

When the process is in-control, s = 0; on the contrary, when there is a shift in the mean

vector, s > 0. Despite the T 2 type statistic, the MEWMA scheme is not directionally

invariant. Because of the continuous mixture, both expectation and covariance matrix

of X depend on µ. As a result, the distribution of the test statistic T 2
k generally depends

on the direction of µ−µ0 in addition to s. The design of our procedure will be inevitably

quite complicated because it is not invariant. As Hawkins et al. (2007) point out, “the

ARL performance of the nondiagonal smoothing scheme is affected by the direction of

the shift and by the correlation structure, thereby complicating the chart design”, and
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at the same time, they also show that “using nondiagonal components for the smoothing

matrix creates additional computational requirements but offers a practical advantage

of improving the performance in detecting a shift in the process mean vector for many

quality control environments.” Considering the improvement of the performance, we still

suggest the general smoothing method of Hawkins et al. (2007), and the design codes for

the proposed MEWMA procedure are available from the authors upon request.

The in-control and out-of-control performance of a univariate or multivariate control

chart is usually measured by the Average Time to Signal (ATS), which indicates the

average time required to signal a process shift (for out-of-control cases) or to produce a

false alarm from the beginning of the process (for in-control status). When the process

is in control, we want the ATS, denoted by ATS0, to be large enough so that false alarms

occur infrequently. On the other hand, when the process is out-of-control, the ATS

should be as short as possible in order to minimize the delay in detecting the process

shifts. In this article, the out-of-control ATS will be calculated in the steady-state mode,

assuming that the process has reached its steady state when the shift occurs. In contrast,

the ATS0 is calculated under zero-state. Besides, the out-of-control shift is assumed to

occur in the middle of the time between taking two samples.

Since it is quite difficult to predict the sizes of process shifts in most scenarios, we

want to design the chart to have satisfactory performance over a wide range of possible

process shifts rather than one particular shift (Sparks, 2000). Average Extra Quadratic

Loss (AEQL) is a widely used design criterion in the literature to measure the gen-

eral detecting ability over the entire range of shifts (Taguchi and Wu, 1980; Serel and

Moskowitz, 2008). As the name indicates, AEQL is based on the quadratic loss function.

The index AEQL can be calculated as

AEQL =
1

smax

∫ smax

0

s2 · ATS(s)ds, (9)

where ATS(s) is the ATS when the process mean shifts with magnitude s, and smax is the

maximum range of shift that is possible or meaningful. Here, we use the Mahalanobis

distance as the shift magnitude s to account for the scale differences in different quality

characteristics. It is noted that AEQL is a weighted average of ATS using the squared

shift magnitude (s2) as the weight. This weight can be justified as quality is inversely

proportional to variability (Montgomery, 2009). This reflects the fact that loss in quality

per unit time increases quadratically with an increase in s (Taguchi and Wu, 1980). The

bigger s is, the more it affects the production, and consequently the larger effect it has

on AEQL. If a chart has a small AEQL value, its out-of-control ATS value over the entire
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shift range is expected to be small on average, subsequently reducing the loss in quality

incurred in the unknown out-of-control cases.

Besides AEQL, there are several other criteria in the literature. The standard de-

viation of the run length (SDRL) or median run length (MRL) considers the shape of

the run length distribution, which changes with the magnitude of the shift (Gan, 1993).

However, they only consider the detecting performance for one particular shift instead of

a wide range of shifts. In addition, neither the MRL nor SDRL considers the sampling

interval, so their usage is limited. Another heuristic measure of the overall performance

is the Average Ratio of ATS (ARATS) (Wu et al., 2009; Ou et al., 2011a). It directly

calculates the average of the ratios between the out-of-control ATS(s) of a chart to be

evaluated and the ATS(s) of a benchmark chart. In this article, AEQL will be used

as the objective function for the designs of the control charts, because the computation

of AEQL does not require a predetermined benchmark chart and therefore is relatively

more tractable.

To find the parameters of the MEWMA chart leading to the smallest AEQL, we can

solve the following optimization problem:
Objective: min AEQL,

Constraint: ATS0 = τ,

Independent design variables: c, λ,

Dependent design variables: h.

(10)

The optimal values of the charting parameters c, λ, h can be determined by minimizing

AEQL. In determining the parameters of the MEWMA chart, different combinations of

independent design variables (c and λ) are searched. Correspondingly, the dependent

design variable (control limit h) is adjusted simultaneously such that the constraint in

Eq. (10) is satisfied.

3 Simulation Study

3.1 Design Table

This section provides a design table (Table 1) for various specifications of d, τ and smax

(the specification of in-control mean and variance is consistent with Jiang et al. (2012)).

For each case, the charting parameters are provided as well as the optimal AEQL. In

practice, the SPC practitioners can select a chart for which the tabulated values of d, τ
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and smax are closest to the desired values for their application. This design table should

cover the most common used occasions in industrial applications.

We want to highlight that the optimal combinations of (c, λ) have the same values

across different settings. This reflects the relative robustness of the smoothing matrix.

In fact, our numerical results show that if other values are used, the performance is

not optimal, but close to optimal, in terms of AEQL. For example, when d = 3, τ =

370, smax = 3 and (c, λ) = (0.8, 0.05), the AEQL is 12.235; when (c, λ) = (0.7, 0.1), the

AEQL is 12.418. As Ou et al. (2011a) point out, most of the design strategies used in

SPC are heuristic. They make no attempt to secure the global optimal solution. Instead,

they focus on deriving a relatively convenient procedure for approximating the optimum

that could be adopted in practice.

Table 1: Design table of the MEWMA chart

d τ smax c λ h AEQL

2 200 3 0.9 0.1 8.107 10.356

4 0.9 0.1 8.109 10.868

370 3 0.9 0.1 11.357 12.597

4 0.9 0.1 11.213 12.795

500 3 0.9 0.1 13.168 13.794

4 0.9 0.1 13.230 13.927

3 200 3 0.9 0.1 9.504 10.040

4 0.9 0.1 9.621 10.631

370 3 0.9 0.1 13.037 12.139

4 0.9 0.1 12.900 12.282

500 3 0.9 0.1 14.489 13.028

4 0.9 0.1 14.800 13.284

4 200 3 0.9 0.1 10.882 9.856

4 0.9 0.1 10.882 10.378

370 3 0.9 0.1 14.339 11.769

4 0.9 0.1 14.298 11.968

500 3 0.9 0.1 16.289 12.924

4 0.9 0.1 16.273 12.899
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Table 2: A factorial experiment for specifications d, τ and smax. Their effects on AEQL
are estimated as -0.722, 3.021, 0.286, respectively.

d = 2 d = 4

τ=200 τ=500 τ=200 τ=500

smax 3 4 3 4 3 4 3 4

c 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

λ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

AEQL 10.356 10.868 13.794 13.927 9.856 10.378 12.924 12.899

3.2 Factorial Experiment

In this section, a 23 experiment is carried out to evaluate the performance of the MEWMA

control chart. The effects of dimension d, allowable minimum in-control average time to

signal τ , and the maximum shift smax are discussed thoroughly. The specifications vary

at two levels (d = 2, 4), (τ = 200, 500) and (smax = 3, 4) (see Table 2 and Figure 1).

The selection of d, τ and smax are referring to Wu et al. (2007) and Ou et al. (2012).

However, when it is necessary, more case studies for any particular values of d, τ and

smax can be easily applied through the same algorithm. In this factorial experiment,

there are totally 2× 2× 2 = 8 cases. For these eight combinations, with the constraint

ATS0 = τ , the MEWMA chart is optimized.

Table 2 and Figure 1 show the general effect of d, τ and smax on AEQL. It can

be observed that the specification τ has a significant impact on AEQL. The AEQL

raises along with the increase of τ , which coincides with the observations in univariate

control chart (Ou et al., 2012). However, the effects of the other two specifications d

and smax are negligible. Table 2 shows that for all eight cases, the combination (c, λ) =

(0.9, 0.1) are always the best selection. In another word, to improve the detection speed

among the shift range as well as to simplify the design, it is strongly suggested to adopt

(c, λ) = (0.9, 0.1) under different specifications, which is reliable and convenient for

quality engineers to implement.

3.3 An Illustrative Example

In this part, an illustrative example is provided to demonstrate the implementation of

the proposed MEWMA chart. The values of the zero-state ATS0 and steady-state ATS
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Figure 1: Marginal curves of specifications with levels d = 2, 4, τ = 200, 500, and smax

= 3, 4.

of the MEWMA chart are simulated using R. The parameters are selected such that

smax = 3, and ATS0 ≈ 370 (see Table 3). The performance of the chart is then evaluated

under different shift magnitudes, with results summarized in Table 4. It is interesting to

observe the following from Tables 3 and 4:

Table 3: Design parameters for the illustrative example

Specifications Charting Parameters Outcome

d τ smax c λ h AEQL

3 370 3 0.9 0.1 13.037 12.139

1. As shown in Table 4, the real ATS0 (= 371.185) obtained using simulation is very

close to τ (= 370) when the process is in-control (s = 0). It guarantees that

the false alarm rate will not be too high which would lead to the over control in

practice.

2. The bigger the shift s, the smaller the ATS, which indicates fast response in de-
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Table 4: ATS vs. s in the illustrative example

s ATS

0.00 371.185

0.30 93.395

0.60 30.945

0.90 14.678

1.20 8.606

1.50 5.678

1.80 4.004

2.10 2.912

2.40 2.260

2.70 1.796

3.00 1.430

tecting the changes. When the shift s is as large as 3, ATS will be as small as

1.430.

3. In this illustrative example, since it is known that the AEQL equals to 12.139, it

can be compared with other charts in terms of AEQL. Normally, the smaller the

AEQL, the better its detecting performance. Therefore, practitioners can know

which chart has better monitoring performance for a wide range of unknown shifts.

4 Data Example

The approach developed in this article is applied to an example provided in Brijs et al.

(2004). The data is collected in a large grocery store in the western United States and it

contains the purchase rates of 155 households over a period of 26 weeks in four product

categories, i.e. cake mix (C), cake frosting (F), fabric detergent (D) and fabric softener

(S). Table 5 lists the mean m0 of the purchase for each product category and Figure 2

shows the distribution of purchase rates. The purchases of the above commodities follow

the Poisson distribution. It is known that there exists a strong positive relation between

cake mix and cake frosting, and between fabric softener and fabric detergent, but not

between other combinations of these products. More concretely, only two correlations

are significantly larger than zero, i.e., r(C, F) = 0.66, and r(D, S) = 0.48, where r(A,B)
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denotes the correlation between the variables A and B. The correlation matrix Ω0 is

C F D S

C 1 0.66 0 0

F 0.66 1 0 0

D 0 0 1 0.48

S 0 0 0.48 1

. (11)

Table 5: Average purchase counts in each product category

Cakemix Frosting Detergent Softener

Mean 2.07742 1.54839 3.15484 2.20000

If the purchase pattern is regular, it can be considered to be in-control. However, in

case there is a sustained increase or decrease in purchase volume, the chart would trigger

an alarm, and further diagnosis and control can be pursued. According to domain or

expert knowledge, the shift is believed to be ranging 0 < s 6 3, i.e., smax = 3. In

this study, the benefit of making quick response to the out-of-control state overcomes

the negative impact raised by the minor increase of the false alarm rate and due to

confidential reasons, a set of simulated data is used for illustration. In case there is

a sudden increase of demand but the chart fails to detect it, the market might suffer

a great loss. Similarly, if demands decrease, it needs to be detected early as well and

proper actions should be carried out. Therefore, we consider the design with small τ

= 200. The optimal design parameters can be selected from the design table (Table 1)

within the catalogs of d = 4 and smax = 3. The optimal parameters for this problem are

c = 0.9, λ = 0.1, h = 10.882.

Figure 3 shows the statistic T 2 calculated with mean m0 and correlation matrix Ω0

(Brijs et al., 2004). In the first 155 samples, the process is in-control (s = 0), however,

after that a shift occurs at s = 1.65. The MEWMA chart signals an alarm at the 159th

sample with T 2
159 = 11.024. From the time the shift occurred to the time the system

detected it, there are 4 samples taken. Therefore the Run Length (RL) equals to 4. This

demonstrates that the MEWMA chart is very sensitive and is able to detect the shift in

a very short time. With the application of this MEWMA chart, this grocery store can

manage their product categories in a more scientific and efficient perspective.
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Figure 2: Distribution of Purchase Rates in the Example

5 Implementation of the VSI MEWMA Chart

Traditional control charts are operated by taking samples of fixed size (n) from the

process using a fixed sampling interval (κ). Conversely, the variable charts, such as the

VSI chart, vary the sampling rate as a function of the observed data from the process

(Arnold and Reynolds, 2001). Compared with the traditional control charts with fixed

sampling rate, the variable charts can detect process changes faster by sampling at a

higher rate when there is an indication of a process change. Recent developments in
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Figure 3: The charting example in monitoring grocery purchase data.

variable charts include the variable sample size and sampling intervals (VSSI) X̄ chart

using two sampling intervals and three sample sizes (Mahadik and Shirke, 2009), the

VSI cumulative sum (CUSUM) of Q chart for monitoring the process mean (Li et al.,

2010), the VSI EWMA chart for monitoring linear profiles (Li and Wang, 2010), the

VSI SPRT chart with super high detecting ability (Ou et al., 2011b) and the VSI and

VSSI CUSUM chart for monitoring process mean and/or variance (Ou et al., 2013).

In this section, a VSI MEWMA chart for detecting the multivariate Poisson process

will be investigated as a tentative exploration. This VSI MEWMA chart will adapt

the sampling interval between samples according to the on-line observed data and it is

expected to have an outstanding performance. For facilitation, the previous proposed

MEWMA chart is denoted as the Fixed Sampling Intervals (FSI) MEWMA chart.

For the proposed VSI MEWMA chart, the sample interval at the current sample

point depends on the data obtained in the last sample. The detection effectiveness

of the MEWMA chart should be further enhanced by adopting the VSI feature. This

feature allows the sampling interval between two sample groups to be changed based
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on the values of the sample statistics that provide information about the current state

of the process. The VSI charts using two sampling intervals are recommended by most

researchers (Daudin, 1992), because the dual scheme gains most of the benefits that can

be reached by the VSI charts and, meanwhile, is relatively easier to implement. The

VSI MEWMA chart proposed in this article also uses two different sampling intervals

alternatively depending on the current process status. When the process seems close

to an out-of-control condition, a short sampling interval κ1 will be used. Conversely,

when the process is likely to be in control, a long sampling interval κ2 is employed.

In the actual implementation of a VSI MEWMA chart for detecting mean shifts, the

statistic T 2
k for each sample is checked against a warning limit w. If T 2

k is larger than

w, it is considered as a warning of a shift in process mean and leads to the use of the

short sampling interval κ1 for the next sample. Otherwise (i.e. T 2
k ≤ w), the process is

thought in control and the long sampling interval κ2 will be used next. The first sample

taken from the process when it just starts could be chosen arbitrarily because it has

little influence on the in-control and steady-state out-of-control performance of the VSI

MEWMA chart. However, as recommended by most researchers (e.g., Li et al., 2010;

Li and Wang, 2010), the short sampling interval κ1 should be used as a safeguard to

provide additional protection against problems that may occur during the start-up.

A VSI MEWMA chart has six parameters: c, λ, h, κ1, κ2 and w. It is implemented

as follows (see Figure 4).
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Figure 4: Flowchart of the Implementation of the VSI MEWMA Chart

Table 6 enumerates the charting parameters for the VSI MEWMA chart while Table

7 demonstrates the values of ATS. The charting parameters are set referring to Ou et al.

(e.g. 2011b). Compared with the ATS values for the FSI MEWMA chart in Table 4,

while the process is in control (s = 0.00), both of these two MEWMA charts generate an

ATS0 very close to τ (= 370). The superior of the VSI MEWMA chart becomes obvious

when the mean shift is large (s ≥ 1.80). In general, the VSI MEWMA chart outperforms

the FSI version by 8.05% in terms of AEQL.

Table 6: Case Study for VSI MEWMA Chart

Specifications Charting Parameters Outcome

d τ smax c λ h κ1 κ2 w AEQL

3 370 3 0.9 0.1 10.782 0.800 1.500 5.391 11.235

It is noted that, the FSI MEWMA chart is just a special case of the VSI MEWMA

chart with κ1 = κ2. It means that, under any circumstances or specifications, one can

design a VSI MEWMA chart that is more, or at least equally, effective compared with a
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Table 7: ATS vs. s in the Case Study for VSI MEWMA Chart

s ATS

0.00 368.923
0.30 98.191
0.60 33.274
0.90 15.684
1.20 9.199
1.50 5.722
1.80 3.897
2.10 2.661
2.40 1.881
2.70 1.288
3.00 0.903

counterpart FSI MEWMA chart. However, there are a few limitations to the applications

of the VSI MEWMA chart. Firstly, since two different sampling intervals (κ1 and κ2) are

to be used alternatively, the implementation of this chart is more complicated than the

FSI counterparts from a managerial and operational viewpoint. It may be impractical

in many production lines. Secondly, the determination of the parameters of the VSI

MEWMA chart is more difficult. Finally, the superiority of the VSI MEWMA chart

over the FSI MEWMA chart diminishes when the mean shift is small.

6 Conclusion

This article mainly conducts the investigation of the statistic based on a general MEWMA

control chart monitoring the mean of multivariate Poisson process with individual ob-

servations. More specifically, the rationale behind each setting of the control chart has

been discussed at length. It is strongly recommended to adopt c = 0.9 and λ = 0.1, as it

can improve the overall performance of the charts and meanwhile does not increase the

difficulty in implementation. Besides, a comprehensive investigation is carried out for

the effects of the specifications like dimension d and τ , et al. The AEQL is applied as the

general assessment to evaluate the overall effectiveness of the control charts. Practition-

ers may get some general idea about the relative performance of the MEWMA charts in

different conditions under the multivariate Poisson-log Normal distribution.

This article provides a design table containing 18 cases for different design specifica-

tions. It will aid the practitioners to select a chart conveniently and make contribution
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to promote the application of multivariate control chart. Finally, an example about the

purchase frequency in a set of product categories is presented to illustrate how the de-

sign table can facilitate the quality practitioners to employ the MEWMA chart for their

applications in practice. The result shows that the proposed procedure succeed to help

the retail category managers to devise customized merchandizing strategies.

Further, this article also proposes a VSI MEWMA chart, which uses the adaptive

sampling intervals to further increase the effectiveness of the MEWMA chart for detecting

process mean shifts. The procedures for the implementation of the VSI MEWMA chart

have been presented at full length. This VSI MEWMA chart employs a long sampling

interval κ2 when the process is likely to be in control and adopts a short sampling interval

κ1 when the process seems close to an out-of-control condition. The results of the case

study show that the adaptive feature has the potential to further increase the overall

detection effectiveness of the MEWMA chart compared with the FSI MEWMA chart

and, therefore, to reduce the manufacturing cost. This VSI chart is particularly effective

when the shifts are moderate to large.

The proposed methodology can be extended to some other topics in the field of mul-

tivariate SPC. First, the current version of the proposed chart is designed for detecting

mean shifts only. By using certain proper monitoring statistics, the proposed method

may be able to handle cases in which monitoring both the mean and covariance structure

is of interest. Second, much future research is also needed to construct a control chart

for multinomial observations, other than multivariate Poisson. Third, this article focuses

on Phase II monitoring only and assumes that the in-control parameters µ0 and Σ0 are

known exactly or has been well estimated from historical in-control samples. Therefore,

much future work is needed to extend our method to Phase I analysis, in which detection

of outliers in a historical data set would be of interest.

Appendix

To explain the parameters optimization in Eq. (10) clearly, we now provide a flow chart

(Figure A1) to illustrate the searching at full length.
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