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Abstract

This paper develops a new distribution-free multivariate procedure for statistical
process control based on minimal spanning tree (MST), which integrates a mul-
tivariate two-sample goodness-of-fit (GOF) test based on MST and change-point
model. Simulation results show that our proposed procedure is quite robust to non-
normally distributed data, and moreover, it is efficient in detecting process shifts,
especially moderate to large shifts, which is one of the main drawbacks of most
distribution-free procedures in the literature. The proposed procedure is partic-
ularly useful in start-up situations. Comparison results and a real data example
show that our proposed procedure has great potential for application.
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1 Introduction

Multivariate statistical process control (MSPC) are particularly useful, when
there is need to monitor several quality characteristics of a process simulta-
neously (Stoumbos et al. (2000)). It is usually assumed that there are mg inde-
pendent and identically distributed (iid) historical observations, X, +1, - - -, X0 €
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RP, for some integer, p > 1, and the ith future observation, x;, is collected
over time from the following multivariate change-point model

Fy(x), for i=—-mo+1,...,0,1,...,7,
Fi(x), for i=7+1,...,

where 7 is the unknown change point, Fy(x) # Fj(x) are respectively the pre-
change distribution function and the post-change distribution function. This
change-point model is also employed in this paper.

Most MSPC methods are based on a fundamental assumption that the pro-
cess data have multinormal distributions (see Zou and Tsung (2011) for more
details), and some recent works based on this assumption include Alkahtani
and Schaffer (2012) and Lee (2012). However, it is well recognized that in
many applications, the underlying process distribution is unknown and not
multinormal, so that the statistical properties of commonly used procedures,
which were designed to perform best under the normal distribution, could
potentially be (highly) affected (Montgomery (2005)). Distribution-free or
robust procedures may be useful in such situations.

In the last several years, univariate nonparametric control charts have at-
tracted much attention from researchers and a nice overview of this topic was
presented by Chakraborti et al. (2001). See Zou and Tsung (2010); Hawkins
and Deng (2010); Qiu and Li (2011a,b), and the references therein for some
recent development. Some efforts have also been devoted to robust MSPC. Liu
(1995) and Li et al. (2013a) proposed control schemes based on data-depth;
Qiu and Hawkins (2001) and Qiu and Hawkins (2003) suggested a computa-
tionally trivial nonparametric multivariate CUSUM procedure based on the
antiranks of the measurement components; Stoumbos and Sullivan (2002) rec-
ommended the classical MEWMA chart because it is robust in the sense that
the in-control (IC) run length distribution for a continuous non-normal pro-
cess is quite close to the distribution for a multinormal process with the same
control limit if the weighting parameter, A, is small; Qiu (2008) proposed a
distribution-free multivariate CUSUM procedure based on log-linear model-
ing; Zou and Tsung (2011) developed a multivariate sign EWMA (MSEWMA)
control chart for monitoring location parameters; Phaladiganon et al. (2011)
proposed a bootstrap-based multivariate 72 control chart that can efficiently
monitor a process when the distribution of observed data is nonnormal or
unknown; and Li et al. (2013b) developed a multivariate spatial-sign EWMA
(SSEWMA) control scheme for monitoring shape parameters.

The good performance of the works above is generally based on a large number
of historical observations so as to have enough information on the unknown
distribution Fy(+) in Eq. (1). In many applications, however, we have no many



historical observations. The number of IC historical observations used for cal-
ibrating the necessary parameters are often rather small. In such situations,
there would be considerable uncertainty in the parameter estimation, which
in turn would distort the IC run-length distribution. Mahmoud and Marave-
lakis (2010) showed through simulation that the performance of the MEWMA
chart would be seriously affected if the vector of means and the covariance ma-
trix are estimated based on a small number of Phase I samples. Self-starting
methods, which can handle sequential monitoring and estimating simultane-
ously, were developed accordingly. See Hawkins and Olwell (1998) and Mont-
gomery (2005) for a detailed review. Recently, Zou et al. (2012) developed a
multivariate self-starting method based on spatial rank EWMA (SREWMA)
for monitoring location parameters. It has distribution-free properties over a
broad class of population models in the sense that the IC run-length distri-
bution is (or is always very close to) the nominal one when the same control
limit designed for a multinormal distribution is used. But their method leaves
a tuning parameter A to choose, and when A is not small, say A > 0.05, its
IC ARL performance will be unsatisfactory. So their procedure may be only
efficient to small or moderate shifts.

This paper develops a new distribution-free multivariate procedure for statisti-
cal process control by integrating a powerful two-sample multivariate number
of runs test based on MST (Friedman and Rafsky (1979)) into the effective
change-point model. Simulation studies show that the proposed method is su-
perior to SREWMA scheme of Zou et al. (2012) in monitoring moderate to
large process shifts. The reason why we compare our proposed procedure with
SREWMA scheme of Zou et al. (2012) is that there is no other corresponding
distribution-free and self-starting multivariate detecting scheme as far as we
know. As our proposed procedure avoids the need for a lengthy data-gathering
step before charting (although it is generally necessary and advisable to collect
several warm-up samples) and it does not require knowledge of the underly-
ing distribution, the proposed procedure is particularly useful in start-up or
short-run situations.

The rest of this paper is organized as follows. The brief review, description,
design of our proposed procedure are given in Section 2. The performance
comparisons with SREWMA scheme of Zou et al. (2012) are discussed in
Section 3. A real data example is considered in Section 4. And the conclusion
and discussion of the proposed chart are given in Section 5.

2 Methodology

Our proposed methodology is described in four parts. In Sections 2.1 and 2.2,
brief reviews of the multivariate number of runs test based on MST and the



SREWMA scheme of Zou et al. (2012) are presented, respectively. In Section
2.3, a distribution-free multivariate procedure based on MST is derived for
Phase I. In Section 2.4, our method is extended to self-starting control scheme,
which can be used for monitoring and estimating simultaneously.

2.1 A review of multivariate number of runs test

Consider samples of size m and n respectively from distributions F, and F),
both defined on RP. The null hypothesis H, to be tested is F, = F,. We are
interested in general alternative hypothesis I, # F),.

In the two-sample problem, we consider the edge weighted graph consisting of
the N (N = m+n) pooled sample data points as nodes, and edges linking all
pairs. This “complete” graph has N(/N—1)/2 edges. Take the weight associated
with each edge to be Euclidean distance between the nodes (points) defining
it. The MST of this graph is thus the subgraph of minimum total distance
that provides a path between every two nodes.

Friedman and Rafsky (1979) suggested that the multivariate number of runs
test as follows: (1) construct the MST of the pooled sample data points, (2)
remove all edges for which the defining nodes originate from different samples,
and (3) define the test statistic R as the number of disjoint subtrees. Rejection
of Hy is for a small number of subtrees.

Friedman and Rafsky (1979) also derived the expectation and variance of the
statistic R as

E[R] = 27]’\'[”1 +1, (2)
Var[R|C] = N(?V”f 3 {2"”;{ N, (NC_;)](VN*_Z VY = 1) = + 2]} 3

where C' is the number of edge pairs that share a common node.

2.2 A review of SREWMA scheme

Zou et al. (2012) developed a new multivariate self-starting methodology for
monitoring location parameters, which is based on adapting the multivariate
spatial rank to on-line sequential monitoring. The weighted version of the
rank-based test is used to formulate the charting statistic by incorporating



the EWMA control scheme. They used the following multivariate location
change-point model:

o+ Qey, for i =-—-me+1,...,0,1,...,7,
X ~ (4)
1+ Qey, for i=74+1,...,

The charting statistic is given by

Q= 25w feonl R (M)} we, )

where wy = (1 — M) wy_1 + ARp(Mx,), M= Q7! Rp(x) = E,[Ux~-Yy)], ¥y
is distributed according to F, and U(x) is the spatial sign function. See more
details of the derivation and application of the charting statistic in Zou et al.
(2012).

2.8  Multivariate procedure for Phase I

We begin by considering the Phase I problem of detecting a change-point in
a fixed-size sequence of observations. We denote the observations available by
{x1,...,%:}, and the goal is to test whether they are with the same proba-
bility distribution. Note that we assume that no prior knowledge is available
regarding this distribution, other than that it is continuous.

Using the terminologies of statistical hypothesis testing, the null hypothesis
is that there is no change-point so that all the observations come from the
same distribution, while the alternative hypothesis is that there exists a sin-
gle change-point 7 in the sequence which partitions the data into two sets,
with xq,...,X, coming from the pre-change distribution Fy, and x,,1,...,X;
coming from a different post-change distribution Fj, i.e.,

HngiNFo, fOIizl,...,t,

H1 3X1,...,X7-NF0, XT+1,...,XtNF1.

If we know the change point is at sample k, we can test for the change-point im-
mediately by partitioning the observations into two samples S; = {x1, ..., Xy}
and Sy = {Xp41,...,%¢} of sizes ny = k and ny = t — k respectively, and then
performing an appropriate two sample hypothesis test. Here, we consider the
opposite number of the standardized two-sample multivariate number of runs



test, i.e.,

B Ryt — E[Ry4]
(Var|Ry|C]

: (6)

W]%t -

N|=

where Ry ; denotes the multivariate number of runs test statistic for the two
samples Sy and Sy, F[Ry,] and Var|[Ry.|C] can be computed through Eq. (2)
and Eq. (3), respectively. We reject the null hypothesis that no change occurs
at k if Wy, > hy, for some appropriately chosen value of Ay ;.

Note that we use the opposite number rather than the original number in
Eq. (6). Because we prefer monitoring statistics getting larger if the process
is out-of-control, and if there exist some shifts in the observations, the runs of
these observations will become smaller so that Wy, will become larger.

The statistic in Eq. (6) can be directly integrated into the change-point model.
Because we have no idea in advance where the change-point is located, we do
not know which value of k to use for partitioning. We can perform this test
by computing Wj,; for each integer value 0 < k < ¢, and this leads to the
maximized test statistic:

Wy = max Wj,. (7)

0<k<t

If W, > h; for some suitably chosen threshold h;, then the null hypothesis is
rejected, and we conclude that a change occurred at some point in the data. If
W, < hy, then we do not have enough information to reject the null hypothesis,
and hence conclude that no change has occurred. The choice of the threshold
h;y will be discussed in detail in the following subsection.

2.4 Multivariate procedure for sequentially monitoring

Having considered the problem of detecting changes in a fixed-size sample,
we now turn our attention to the task of sequentially Phase II monitoring
where new observations are being collected over time. Let x; denote the tth
observation where ¢ is increasing over time.

Once a new observation x; is collected, we regard {xi, ..., x;} to be a fixed-size
sample, and employ our proposed method based on Eq. (7) to test whether
a change-point has occurred. The problem of sequentially monitoring is then
reduced to performing a sequence of fixed-size tests, although the sample size
is increasing over time.

For Phase II monitoring, a commonly used criterion is the average run length



(ARL). Suppose it is desired to have the IC ARL (denoted as ARLj) equal
to . This can be achieved if we choose the threshold h; values such that the
probability « of incurring a false alarm at the ¢th observation equals to 1/7,
ie.,

P(Wl >h1) =«
P(Wt > ht|Wt_1 Sht—la--le < h1> =qa,t > 1.

(8)

It is not trivial to find such sequence of h; values which satisfy the requirement
in Eq. (8). We adopt the Monte-Carlo simulation approach, which was also em-
ployed in Hawkins and Deng (2010). To be more specific, 200,000 realizations
of the sequence {xy,...,Xj000} were firstly generated. Note that Henze and
Penrose (1999) proved that the multivariate number of runs test statistic R, ,
is asymptotically distribution-free under Hy. And our simulation studies show
that the h; values are nearly the same under any continuous distributions. So
these x; values can be iid sampled from any continuous distribution. Then for
each value of ¢, W, in Eq. (7) is computed for each of the 200,000 realizations.
The values for h; corresponding to the desired ARLj can be obtained through
the corresponding sample a percentiles. The values for h; are essentially criti-
cal values for the test statistic W; in Eq. (7), we, however, regard them as the
dynamic control limits, as is done in Hawkins and Deng (2010).

Table 1 shows the values of h; when ARLy, = 200, p = 5,my = 10 and
p = 10,my = 20, where my is the number of the warm-up data. Note that
these values appear to have converged by the 1000 observation, so if the stream
contains more than 1000 observations, it will be acceptable to let h; = higgo
for ¢ > 1000. The property of convergence for other commonly used ARLy,
or other dimensions, is still hold, so we do not report them in Table 1 to
save space. The Fortran programmes for implementing our proposed scheme,
including the procedures for finding h;, are available from the authors upon
request. Henceforth, our proposed procedure is referred to as the SMMST pro-
cedure for abbreviation, which is short for self-starting multivariate minimal
spanning tree.

[Insert Table 1 about here]

3 Performance comparison

We present some simulation results in this section regarding the performance
of our proposed SMMST procedure and compare it with the SREWMA pro-
cedure of Zou et al. (2012), which is reviewed in Section 2.2. Comparing the



SMMST procedure with alternative distribution-free methods turned out to
be difficult due to the lack of an obvious comparable method. This is because
most of the approaches in the literature were designed for the cases where
sufficient historical observations are available so as to accurately estimate the
IC distribution of the process or some IC parameters. See Zou and Tsung
(2011) for some discussions and reviews. A Shewhart-type procedure is ex-
pected to detect large shifts more efficiently than change-point approaches.
As we know, the multivariate version of Shewhart chart is not distribution-
free, and we only aim to focus on distribution-free procedure in this paper.
Thus, we consider the only exiting distribution-free and self-starting multi-
variate procedure SREWMA proposed by Zou et al. (2012), as we are aware
of so far. All the results in this section are obtained from 10,000 replications
unless indicated otherwise.

Following the robustness analysis of Zou and Tsung (2011) and Zou et al.
(2012), we consider the following distributions: (i) multinormal; (ii) multivari-
ate t with ¢ degrees of freedom, denoted as t,. ; (iii) multivariate gamma
with shape parameter ¢ and scale parameter 1, denoted as Gam, (. In addi-
tion, the following nonnormal distribution is involved in the comparison: (iv)
in each observed vector, the first [p/2] measurement components are i.i.d. ¢
distributed with (; degrees of freedom and the other p — [p/2] measurement
components are i.i.d. chi-square distributed with (, degrees of freedom, where
[-] is the function that rounds off a number to its nearest integer. The reason
for considering (iv) is that unlike (i)-(iii), its marginal distributions are not
all the same.

Note that the number and variety of covariance matrices and shift directions
are too large to allow a comprehensive, all-encompassing comparison. Our
goal is to show the effectiveness, robustness and sensitivity of the SMMST
procedure, and thus we only choose certain representative models for illustra-
tion. Specifically, for the first three distribution cases, the covariance matrix
>0 = (04)pxp is chosen to be oy = 1 and oy; = 0.5 for i,j = 1,2,...,p.
For brevity, a shift of size d keeps the same in all components, i.e., x; +de with
e = (1,1,...,1)T. Similar conclusions given below hold for other simulation
settings with various shift types.

The SMMST and SREWMA procedures are compared in terms of the out-
of-control average run length (OC ARL, denoted as ARL;). Because similar
conclusions hold for other cases, throughout this section, we only present the
results when ARLq = 200 for illustration. A lower-dimensional case with p =5
and a higher-dimensional case with p = 10 are involved for each distribution
considered. We fix the number of warm up data mg = 10 and 20 for p = 5 and
10, respectively. This also satisfies the requirement for starting SREWMA
(mo > p+ 2), however, one has to keep in mind that there is no this kind
of requirement for our SMMST procedure, although our SMMST procedure



will perform better if the number of warm up data mg is larger. For the
ARL, comparison, we consider the steady-state ARL (SSARL). To evaluate
the SSARL behavior of each chart, any series in which a signal occurs before
the (7 + 1)th observation is discarded.

We first consider the multinormal distribution. The simulation results for the
SREWMA with A = 0.05 and our SMMS'T procedure are presented in Table 2.
Apart from the parameters above, the performance of self-starting procedures
depends on the choice of 7 . We consider 7 = 40 and 90. From this table, we
observe that the SREWMA chart performs better than our SMMST procedure
with small shifts as we would expect, since the tuning parameter used here
(A = 0.05) is a small one, which is sensitive to small shifts. But the SMMST
procedure performs better with moderate and large shifts, say § > 1.5.

[Insert Table 2 about here]

As we can see from Table 2, the SMMST procedure is better, when § > 1.5.
Note that for 4 > 1.5, the modulus of shifts is 6,/p > 1.5,/p. From the
perspective of modulus, we can only conclude that, the SMMST procedure is
better for moderate to large shifts. Most charting techniques in the literature,
however, do not care about the detection of large shifts or have quite little
power in detecting large shifts, because it is believed that one can notice the
large shifts even with personal experiences instead of a chart, when large shifts
occur. But we do not think it is the same case in high dimensional monitoring.
Because in this circumstance, one can only check the process with experiences
dimension by dimension. Therefore, although the modulus of shifts ¢,/p may
be large with a not large J, but a high dimension p, (say, 06 = 1.5,p = 10),
one can not notice it immediately as in one dimension scenario. It is natural
to adjust some tuning parameters to make control chart sensitive to moderate
to large shifts, for example, take large A in the SREWMA chart of Zou et al.
(2012). But the SREWMA chart undergos a poor performance of ARLq with
large A, as is pointed out in Zou et al. (2012). From this perspective of view,
our SMMST procedure is particularly useful with moderate to large modulus
of shifts.

Next, the multivariate ¢ distribution and the multivariate gamma distribution
are considered. Tables 3 and 4 give ARL values with multivariate ¢t observations
with five degrees of freedom (¢, 5) and with multivariate gamma observations
with three degrees of freedom (Gam, 3), respectively. In these tables, we fix
mo + 7 = 100 for each comparison scenario for simplicity. For the SREWMA
chart, the value of A is chosen to be 0.025, because the bigger the A value is,
the worse the performance of ARLy is. For example, Zou et al. (2012) showed
that even when A\ = 0.05 with ¢193, the ARLg value is 177, which is far from
the nominal value 200, hence not very satisfactory.



[Insert Tables 3-4 about here]

The results in Tables 3-4 are similar. The SREWMA chart is efficient in de-
tecting the small shifts than the SMMST procedure. The SMMST is more
efficient in detecting moderate to large shifts, such as 6 > 1.5. This is as
expected, because the SREWMA | which is essentially based on ranks rather
than distances, shares a similar drawback as those rank-based charts for uni-
variate processes. That is, even though the shift is quite large, the ranks of the
observations may not be able to grow larger. Moreover, here we use a small
tuning parameter (A = 0.025), which is very sensitive to small shifts. So it
is not surprising that the SREWMA chart here is better than our SMMST
procedure in small shifts.

Table 5 shows the ARL values of the SMMST and SREWMA procedures in
monitoring a shift of the multivariate mixed-components observations. Again,
the SMMS'T procedure is more efficient in detecting moderate to large shifts,
such as § > 1.5. This demonstrates that the SMMST procedure is more sen-
sitive to moderate to large process shifts in non-normal observations, even for
a distribution with different marginal distributions.

[Insert Table 5 about here]

4 A real data example

In this section, we illustrate our SMMST procedure using a real data exam-
ple from a white wine production process from May 2004 to February 2007.
The data contains totally 4898 observations, and is publicly available in the
“Wine Quality Data Set” of the UCI Machine Learning Repository and can
be downloaded from http://archive.ics.uci.edu/ml/datasets/Wine+Quality. The
data were recorded by a computerized system, which automatically manages
the process of wine sample testing from producer requests to laboratory and
sensory analysis. For each of these observations, there are eleven continu-
ous measurements (based on physicochemical tests) including fixed acidity,
volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulphates and alcohol (denoted by y1,ya,- -, y11,
respectively). Another categorical variable, quality, indicating the wine quality
between 0 (very bad) and 10 (very excellent), is also provided based on sen-
sory analysis. The goal of this data analysis is mainly to model and monitor
wine quality based on physicochemical tests. Interested readers are referred to
Cortez et al. (2009) for more detail about this example and data set.

As pointed out by Cortez et al. (2009), it is desirable to setup an on-line
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detection system to monitor the production process of Vinho Verde wine to
guarantee its quality. Under the MSPC context of sequentially monitoring
the wine production process, we assume that the standard quality level is 7
(LVT7; as also suggested by Cortez et al. (2009)). As shown in Zou et al. (2012)
and Li et al. (2013b), the sample correlation matrix of this data contains
several large entries, which demonstrates that the variables have considerable
interrelationships and consequently a multivariate control chart is likely to be
more appropriate than a univariate control chart. Zou et al. (2012) and Li
et al. (2013b) also showed that the multivariate normality assumption is not
valid and thus we could expect that the SMMST chart would be more robust
and powerful than normal-based approaches for this data set.

It is also worth noting that although it is usually easy to collect observations
from physicochemical tests, obtaining sufficiently large 1C reference sample in
this process is difficult: sensory tests rely mainly on human experts, and thus
are rather time-consuming and expensive. Once a new technology in wine
making is used or some improvements are made in the production process,
one usually wants to monitor the process at the start-up stages in which only
a small reference sample (through sensory tests) would be available. There-
fore, our SMMST chart, which is a self-starting control chart, would be more
desirable in this situation.

Next, we assume that we have mg = 20 historical observations from LV7 and
initially monitored another 20 observations from LV7 and then collected the
LV6 observations sequentially. We construct the SMMST procedure to monitor
the wine quality. The ARL is fixed at 500. Figure 1 shows the resulting
SMMST procedure statistics along with its threshold h; values (the dashed
curve).

[Insert Figure 1 about here]

From Figure 1, it can be seen that the SMMST procedure exceeds its threshold
h from around the 24th observation (the 4th LV6 observation). This excursion
suggests that a marked change has occurred. And its delay to detect this
change is 4 observations. In comparison, in the SREWMA chart of Zou et
al. (2012) with my = 30 historical observations from LV7, the delay is 25
observations. So, the SMMST is a reasonable alternative for non-multinormal
processes if we take its efficiency and robustness into account.

5 Conclusions

We developed a new distribution-free multivariate change-point model for
statistical process control based on minimal spanning tree. It integrates a

11



two-sample multivariate goodness-of-fit (GOF) test based on MST into the
change-point model. It is robust to non-normally distributed data, and ef-
ficient in detecting multivariate process shifts, especially moderate to large
shifts. As it avoids the need for a lengthy data-gathering step and it does not
require knowledge of the underlying distribution, our proposed procedure is
particularly useful in start-up or short-run situations.

It is worth pointing out here that apart from quick detecting abnormal changes,
isolating the shifted components or factors that are responsible for the change
is also a fundamental task of MSPC. For example, in the application from
the above section, it would be interesting and helpful to determine which
physicochemical factors are responsible for the change of quality. The prob-
lem of making the LASSO-based post-signal diagnostic method proposed by
Zou and Qiu (2009) suitable to be used after our proposed SMMST procedure
triggers a signal warrants further research.
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Table 1
Values of the threshold sequence h; corresponding to p = 5,10 and ARLy = 200.

p=5 p=10 t p=5 p=10
2.835 3.034 60 2.832 2.693
2.710 2.987 70 2.812 2.676
2.717 2.883 80 2.792 2.664
2.822 2.889 90 2.796 2.653
2.785 2.820 100 2.777 2.657
2.829 2.850 200 2.724 2.552
2.828 2.864 300 2.642 2.489
2.849 2.791 400 2.620 2.447
2.784 2.844 500 2.619 2.436
10 2.822 2822 600 2.544 2.428
20 2.892 2.792 700 2491 2417
30 2.875 2.757 800 2453 2.405
40 2.868 2.724 900 2.438 2.399
50 2.830 2.710 1000 2.431 2.394

OO0 ~JO T W |+

Table 2
ARL values with multinormal distributions.

SMMST SREWMA

0 7=40 7=90 7=40 7=90
p=2>5 0 200 203 197 198

1 14.2 12.8 11.4 9.93
1.5 7.35 6.46 7.69 6.95
2 4.97 4.95 6.39 5.77
3 3.59 3.35 5.42 4.89
4 3.38 3.29 5.10 4.59
0
1

199 202 196 197
11.0 10.1 9.57 8.77
1.5 6.26 6.13 6.80 6.27
2 4.27 4.13 5.73 5.25
3 3.85 3.81 4.89 4.44
4 3.61 3.49 4.60 4.17

Table 3
ARL values with multivariate ¢, 5 distributions.

0 SMMST SREWMA

p=5 0 197 202
1 19.8 13.2
15 913 9.28
2 7.43 7.87
3 420 6.35
4 3.52 5.84
p=10 0 203 196
1 12.8 11.7
15  7.72 8.41
2 5.84 7.01
3 421 5.80
4 3.90 5.35
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Table 4
ARL values with multivariate Gam,, 3 distributions.

p=5>5 0 201 203
1 14.3 10.7

1.5 7.64 8.03

2 5.01 6.89

3 3.45 6.01

4 3.06 5.69

p=10 0 203 201
1 11.5 9.73

1.5 5.97 7.32

2 4.13 6.34

3 3.83 5.52

4 3.32 5.23

Table 5
ARL values with mixed-components multivariate distributions.

0 SMMST SREWMA

p=95 0 200 200
1 19.8 12.4

1.5 8.91 9.04

2 7.06 7.37

3 4.50 6.18

4 3.48 5.74

p=10 0 197 198
1 18.2 10.0

1.5 7.36 7.48

2 5.78 6.34

3 3.90 5.47

4 3.74 5.13
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< - — SMMST chart
---- control limits

charting statistics

Time

Fig. 1. The SMMST procedure for monitoring the white wine production process,
along with the dashed curve indicating its critical values.
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