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Control charts are widely used in industries to monitor a process for quality improvement.
Evaluation of the average run length (ARL) or average time to signal (ATS) plays an im-
portant role in the design of control charts and performance comparison. In this paper, we
review several basic and popular procedures, including the Markov chain and integral equa-
tion methods for computing ARL, ATS and associated run length distributions for cumulative
sum (CUSUM) charts, exponentially weighted moving average (EWMA) charts, and combined
control charts, respectively. Some important references and key formulations are provided for
practitioners.
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1. Introduction

Control charts are very important tools in statistical process control (SPC), whose
main objective is to improve and guarantee the quality of processes so as to satisfy
customer requirements. Several charting schemes have been proposed to try to
simplify the process of SPC, in particular the Shewhart 𝑋̄ control chart ([1]), the
CUSUM control chart ([2]) and the EWMA control chart ([3]). Interested readers
are referred to [4–8] for the voluminous research, comprehensive discussions and
broad applications of control charts.
The basic idea of SPC chart is similar to the following sequential hypothesis test:

𝐻0 : 𝑋𝑖 ∼ 𝑁(𝜇0, 𝜎
2
0), 𝑖 ≥ 1←→ 𝐻1 : 𝑋𝑖 ∼

{
𝑁(𝜇0, 𝜎

2
0), 1 ≤ 𝑖 ≤ 𝜏,

𝑁(𝜇1, 𝜎
2
1), 𝑖 > 𝜏,

where 𝜇1 ∕= 𝜇0 and/or 𝜎1 ∕= 𝜎0, 𝜏 is an unknown change point. If there is no
enough confidence to reject the null hypothesis 𝐻0, we will say that the production
line is in “statistical control” (in control, IC) and stable with “common causes”,
which can not be removed easily from the process without fundamental changes
in the process itself. On the other hand, if it shows enough support to reject 𝐻0,
we will say that the control chart issues a signal and the production line is out
of “statistical control” (out-of-control, OC) and undergoes an unusual variation
due to “assignable causes”. One purpose of a control chart is to detect unusual
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variation as soon as possible, keeping at the same time the probability of erroneous
signal below a reasonable level.
Extensive research in recent years has developed variable sample rate (VSR)

control charts that vary the sampling rate as a function of current and prior sample
results, which include variable sampling intervals (VSI) chart, variable sample size
(VSS) chart and variable sample sizes and sampling intervals (VSSI) chart. The
advantage of using a VSR chart instead of a fixed sampling rate (FSR) chart is
that a VSR chart provides much faster detection of small and moderate process
changes, for a given IC ARL or ATS and a given IC average sampling rate. There
have been lots of research on control chart using VSR features in the literature, for
the 𝑋 control chart, see [9–12]; for the CUSUM control chart, see [13–15]; for the
EWMA control chart, see [16, 17]; for the CUSUM of Q chart, see [18]; for linear
profile, see [19]; for the cumulative count of conforming chart, see [20] and for the
Hotelling’s 𝑇 2 control chart, see [21].
Traditionally, the ARL, which is defined as the average number of samples be-

fore the chart signals, has been generally employed as a performance indicator to
evaluate the effectiveness of various control schemes, provided that the sampling
interval remains constant. However, when the sampling interval is variable, the
time to signal is not a constant multiple of the ARL, and thus ARL is not ap-
propriate for evaluating the effectiveness of VSI control charts. The widely used
performance indicators for control charts with VSI are the ATS, which is defined
as the expected time from the start of the process to the time when the charts
indicate an OC signal, and the adjusted average time to signal (AATS), which is
defined as the expected time from the occurrence of an assignable cause to the time
when the charts indicate an OC signal. The AATS is also called the steady-state
ATS (SSATS). When the sampling sizes are variable, a necessary indicator is the
average number of samples to signal (ANSS), which is the expected number of
samples taken from the start of the process to the time the charts signal.
When the process is IC, a chart with a larger IC ARL or ATS indicates a lower

false alarm rate than other charts. When the process is OC, a chart with a smaller
OC ARL or ATS indicates a better detection ability of process shifts than other
charts. Therefore, in comparison of various candidate control charts, ARL or ATS
is very important and also popular used criterion. Given the voluminous research in
various areas of control charts, the purpose of this paper is to give detailed review of
the computation of ARL and ATS, encourage research of control charting and SPC,
and provide handy references for practitioners. The main methods for computing
ARL in the literature are Markov chain approach ([22]), integral equation approach
([23]) and Monte Carlo simulation. Monte Carlo simulation is not reviewed in this
paper, because in some cases, the computation burden is considerable. For example,
in the low defect rate process, even the IC ARL can be quite large ([24, 25]). Some
approximations to the run length distribution are made in [2, 26–29], among others.
The comparison between Markov chain approach and integral equation approach
is made in [30].
This paper is the result of an extensive literature review of the most recent

developments in the area of computation of ARL, ATS and related indexes, and
the rest of this paper is organized as follows. In Sections 2-4, we give detailed review
of the Markov chain approach and integral equation approach for CUSUM control
charts, EWMA control charts and combined control charts, respectively. In Sections
5 and 6, we turn our focus on adaptive control charts and show some differences
between steady state ARL (SSARL) and ARL, SSATS and ATS, and also some
basic methods for correlated data. Finally, we summarize our conclusions in Section
7. Two numerical methods for integral equations are deferred to the Appendix.
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2. Methods for CUSUM Control Charts

Markov chain method was originally proposed by [22] for CUSUM control chart,
and from then on the Markov Chain idea, due to its ease to implement, was widely
applied in various control schemes. Integral equation method ([23]) is another basic
and popular method. Although in most cases the integral equations cannot be
solved directly, they can be converted into a set of linear equations with the help
of Gauss quadrature, and then the ARL can be obtained indirectly. In this section,
we will give detailed review of the Markov chain approach and integral equation
approach for one-sided and two-sided CUSUM and adaptive CUSUM ([31]).

2.1. Markov Chain Method

Noting that the operation of a CUSUM scheme forms a Markov process with a con-
tinuous state space, [22] found that good approximations to the various character-
istics of the run length distribution can be obtained by discretizing the probability
distribution of the monitoring statistics so that the CUSUM is restricted to a finite
set of values. Then the transition probability matrix can be easily constructed from
the given probability distribution. Hence, the exact probability distribution of run
length and its moments can be determined.
For different control charts, the differences in Markov chain method mainly lie

in the transition probability matrix. We will give elaborate introductions on the
Markov chain method proposed by [22] first, and then show its applications in
other practical control charts.

2.1.1. Markov Chain Method ([22])

For one-sided CUSUM control chart, [22] used the V-mask type of scheme at

time n: 𝑆𝑛 =
𝑛∑
𝑖=1

(𝑋𝑖 − 𝑘), where 𝑋𝑖 is the observed process characteristic variable

and 𝑘 is reference value. The control chart issues a signal if 𝑆𝑛 > ℎ, where ℎ is
control limit. They first considered the discrete case, that is,𝑋𝑖, 𝑘, ℎ are all positive
integers, and so that 𝑆𝑛 can only take one of the integral values 0, 1, 2, . . . , ℎ. If
𝑆𝑛 = 𝑖, the scheme is said to be in state 𝐸𝑖, where 𝐸ℎ is an absorbing state. The
initial state is assumed to be 𝐸0.
The transition probabilities from state 𝐸𝑖 to state 𝐸𝑗 are determined only by the

probability distribution of 𝑋 as follows:

𝑝𝑖𝑗 = 𝑃{𝑆𝑛+1 ∈ 𝐸𝑗 ∣𝑆𝑛 ∈ 𝐸𝑖} = 𝑃{𝑆𝑛 +𝑋𝑛+1 − 𝑘 = 𝑗∣𝑆𝑛 = 𝑖}
= 𝑃{𝑋𝑛+1 − 𝑘 = 𝑗 − 𝑖}, 𝑖 ∕= ℎ, 𝑗 ∕= ℎ, 𝑗 ∕= 0,

𝑝𝑖0 = 𝑃{𝑋 ≤ 𝑘 − 𝑖},
𝑝𝑖ℎ = 𝑃{𝑋 ≥ 𝑘 + ℎ− 𝑖},
𝑝ℎ𝑗 = 0, 𝑗 = 0, 1, ..., ℎ− 1,

𝑝ℎℎ = 1.

Let 𝑝𝑟 = 𝑃{𝑋 − 𝑘 = 𝑟} and 𝐹𝑟 = 𝑃{𝑋 − 𝑘 ≤ 𝑟} and assume the values of 𝑘,
ℎ and the probability distribution of 𝑋 are given. Then the transition probability
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matrix P has the following form

P =

⎡⎢⎢⎢⎢⎣
𝐹0 𝑝1 ⋅ ⋅ ⋅ 𝑝ℎ−1 1− 𝐹ℎ−1

𝐹−1 𝑝0 ⋅ ⋅ ⋅ 𝑝ℎ−2 1− 𝐹ℎ−2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝐹1−ℎ 𝑝2−ℎ ⋅ ⋅ ⋅ 𝑝0 1− 𝐹0

0 0 ⋅ ⋅ ⋅ 0 1

⎤⎥⎥⎥⎥⎦ .

Many of the results we require can be obtained by working with the matrix R
obtained from P by deleting the final row and column, so P is rewritten in the
form of partitioned matrix

P =

(
R (I−R)1
0T 1

)
,

where I is the ℎ × ℎ identity matrix and the vector 1 has each of its ℎ elements
equal to unity. Let 𝑇𝑖 be the number of steps taken starting from 𝐸𝑖 to reach the
absorbing state 𝐸ℎ for the first time and 𝑻 = (𝑇0, 𝑇1, . . . , 𝑇ℎ−1)

′. Then ARL with
initial state 𝐸𝑖 is just the 𝑖th component of 𝐸(𝑻 ). For 𝑟 = 1, 2, . . ., define

𝑭 𝑟 = (𝑃{𝑇0 ≤ 𝑟}, 𝑃{𝑇1 ≤ 𝑟}, . . . , 𝑃{𝑇ℎ−1 ≤ 𝑟})𝑇 ,
𝑳𝑟 = (𝑃{𝑇0 = 𝑟}, 𝑃{𝑇1 = 𝑟}, . . . , 𝑃{𝑇ℎ−1 = 𝑟})𝑇 .

Again by the properties of Markov chain, for 𝑟 = 1, 2, . . .,

𝑭 𝑟 = (I−R𝑟)1,
𝑳𝑟 = R𝑳𝑟−1 = R𝑟−1(I−R)1.

By the definition of expectation,

𝐸𝑇𝑖 =

∞∑
𝑚=1

𝑚𝑃{𝑇𝑖 = 𝑚} =
∞∑
𝑚=1

𝑃{𝑇𝑖 ≥ 𝑚}.

So the ARL can be obtained as

𝐴𝑅𝐿 = 𝐸(𝑻 ) = (I−R)−11. (1)

From Eq. (1), the distributional function of run length has a form very similar to
the univariate geometric distribution.
As for the commonly used form of upper-sided CUSUM control chart, i.e., de-

cision interval (DI) form, which is equivalent to the V-mask form above ([7]) and
has the following definition:

𝑆𝑛 = max{0, 𝑆𝑛−1 +𝑋𝑛 − 𝑘}.

When 𝑆𝑛 ≥ ℎ, the control chart issues a signal. For convenience, we denote this
chart by 𝐶+(𝑆0, 𝑘, ℎ). In a similar way, denote lower-sided CUSUM control chart
by 𝐶−(𝑠0, 𝑘, ℎ), which is defined as

𝑠𝑛 = min{0, 𝑠𝑛−1 +𝑋𝑛 + 𝑘}.

When the observed process characteristic variables 𝑋 are theoretically continu-
ous, [22] represented the continuous scheme by a Markov chain having 𝑡+1 states
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by dividing the state space of 𝑆𝑛 into 𝑡+ 1 subintervals:

[0, 𝜔/2) ∪ [𝜔 − 𝜔/2, 𝜔 + 𝜔/2) ∪ ⋅ ⋅ ⋅ ∪ [(𝑡− 1)𝜔 − 𝜔/2, (𝑡− 1)𝜔 + 𝜔/2) ∪ [ℎ,∞),

where 𝜔 = 2ℎ/(2𝑡 − 1). When the statistics 𝑆𝑛 fall in the 𝑖th (𝑖 = 0, 1, 2, . . . , 𝑡)
subinterval 𝐼𝑖, it is said that 𝑆𝑛 is in state 𝐸𝑖. Obviously, 𝐸𝑡 is the absorbing state.
The transition probabilities 𝑝𝑖𝑗 = 𝑃{𝑆𝑛+1 ∈ 𝐼𝑗 ∣𝑆𝑛 ∈ 𝐼𝑖), 𝑖 = 0, 1, . . . , 𝑡−1 for the

Markov chain are then as follows:

𝑝𝑖0 = 𝑃{𝑆𝑛 ∈ 𝐼0∣𝑆𝑛−1 = 𝑖𝜔} = 𝑃{𝑋𝑛 ≤ 𝑘 − 𝑖𝑤 + 𝑤/2},
𝑝𝑖𝑗 = 𝑃{𝑆𝑛 ∈ 𝐼𝑗 ∣𝑆𝑛−1 = 𝑖𝜔}

= 𝑃{(𝑗 − 𝑖)𝑤 − 𝑤/2 < 𝑋𝑛 − 𝑘 ≤ (𝑗 − 𝑖)𝑤 + 𝑤/2}, 1 ≤ 𝑗 ≤ 𝑡− 1,

𝑝𝑖𝑡 = 𝑃{𝑆𝑛 ∈ 𝐼𝑡∣𝑆𝑛−1 = 𝑖𝜔} = 𝑃{𝑋𝑛 − 𝑘 > (𝑡− 𝑖)𝑤 − 𝑤/2}.

Then ARL can be computed by Eq. (1). [32] proposed a more accurate numerical
method for the transition probabilities 𝑝𝑖𝑗 = 𝑃{𝑆𝑛+1 ∈ 𝐼𝑗 ∣𝑆𝑛 ∈ 𝐼𝑖).
2.1.2. Computation of ARL for Adaptive CUSUM

Assume observations 𝑋𝑖 are independently and identically distributed (i.i.d.) as
normal with mean 𝜇 and variance 𝜎2, and a step shift 𝛿 (in units of the stan-
dard deviation) is issued at some unknown point during the process. Because the
CUSUM statistics are obtained based on likelihood ratio test ([7]), it is well known
that if the IC parameters, say 𝜇 and 𝜎 are assumed to be known, the CUSUM
with reference value 𝑘 = 𝛿/2 is optimal for detecting this shift ([33–36]). How-
ever, the reference value is designed for a given shift and is generally difficult
to be determined especially in the start-up stages, where even the IC parame-
ters are not accurately identified. In order to overcome this limitation, [37] pro-
posed the idea of adaptive CUSUM (ACUSUM). [37] first used EWMA to esti-
mate the size of shift, and then chose the reference value adaptively according to
the estimated size of shift. For 𝐶+(𝑆0, 𝑘, ℎ), the monitoring statistics are 𝑆+

𝑡 =
max{0, 𝑆+

𝑡−1+(𝑋𝑡−𝑄+
𝑡 /2)/ℎ(𝑄

+
𝑡 /2)}, where 𝑄+

𝑡 = max{𝛿+min, (1−𝜆)𝑄+
𝑡−1+𝜆𝑋𝑡},

0 < 𝜆 ≤ 1 is the smoothing constant, ℎ(𝑘) is a known operating function of 𝑘 with
the aim to make the control limit 𝑐 close to 1, 𝛿+min > 0 is a minimum location
shift of high importance for early detection, 𝑄+

𝑡 is an estimation of shift for the
unknown mean, and in general 𝑄+

0 = 𝛿+min.
Compared with CUSUM charts, the ACUSUM chart proposed by [37] can be effi-

cient in signaling a broader range of mean shifts, by dynamically adjusting its refer-
ence values according to current process information. However, the ARL values are
obtained through Monte Carlo simulation in [37]. [31] developed a two-dimensional
Markov chain model to analyze run length performance of the ACUSUM chart,
which improves on the theoretical understanding of the ACUSUM schemes and
also allows the analysis without running extensive Monte Carlo simulations.
[31] modeled (𝑆+

𝑡 , 𝑄
+
𝑡 )

𝑇 as a two-dimensional Markov chain. They chose

a large control limit 𝐿 for the process of 𝑄+
𝑡 so that the IC region can be partitioned

within a two-dimensional rectangle [0, 𝑐] × [𝛿+min, 𝐿] to obtain a discretized Markov
chain. Assume that the number of states along the axis 𝑆+

𝑡 over the range [0, 𝑐] is 𝑚1,
then the width of each segment is 𝜔 = 2𝑐/(2𝑚1−1), except that the width of the first
segment is 𝜔/2. Similarly, the axis 𝑄+

𝑡 over the interval [𝛿+min, 𝐿] is segmented into
𝑚2 states such that the width of each segment is Δ = 2(𝐿− 𝛿+min)/(2𝑚2− 1), except
that the width of the first segment is Δ/2. The states along the axis 𝑆+

𝑡 and the
axis 𝑄+

𝑡 are labelled by 𝑖 = 0, 1, 2, ...,𝑚1 − 1 and 𝑗 = 0, 1, 2, ...,𝑚2 − 1, respectively.
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Therefore, the IC region is divided into a number of 𝑁 = 𝑚1 ×𝑚2 two-dimensional
rectangles.

Let 𝑝(𝑖,𝑗)(𝑘,𝑙) be the transition probability of (𝑆+
𝑡 , 𝑄

+
𝑡 )

𝑇 from state (𝑖, 𝑗) to state

(𝑘, 𝑙). Let 𝑆+
𝑡 be 𝑖𝜔, which is the midpoint of the 𝑖th state along axis 𝑆+

𝑡 , when
𝑆+
𝑡 is in the 𝑖th state and similarly let 𝑄+

𝑡 be 𝛿+min + 𝑗Δ, which is the midpoint of
the 𝑗th state along axis 𝑄+

𝑡 , when 𝑄
+
𝑡 is in the 𝑗th state. When neither of 𝑘, 𝑙 is

0, the transition probability 𝑝(𝑖,𝑗)(𝑘,𝑙) can be evaluated by

𝑝(𝑖,𝑗)(𝑘,𝑙) = 𝑃{𝑆+
𝑡+1 ∈ 𝑘,𝑄+

𝑡+1 ∈ 𝑙∣𝑆+
𝑡 ∈ 𝑖, 𝑄+

𝑡+1 ∈ 𝑗}

= 𝑃{(𝑘 − 0.5)𝜔 < 𝑆+
𝑡−1 +

[𝑋𝑡 − (𝛿+min + 𝑙Δ)/2]

ℎ([𝛿+min + 𝑙Δ]/2)
< (𝑘 + 0.5)𝜔,

𝛿+min + (𝑙 − 0.5)Δ < (1− 𝜆)𝑄+
𝑡−1 + 𝜆𝑋𝑡 < 𝛿+min + (𝑙 + 0.5)Δ ∣

𝑆+
𝑡−1 = 𝑖𝜔,𝑄+

𝑡−1 = 𝛿+min + 𝑗Δ}.

When 𝑘 ∕= 0, 𝑙 = 0 or 𝑘 = 0, 𝑙 ∕= 0 or 𝑘 = 0, 𝑙 = 0, the transition probability 𝑝(𝑖,𝑗)(𝑘,𝑙)
can be obtained in the same way but with a simpler representation. Therefore, if
the distribution of observations 𝑋𝑡 is given, it is immediate to compute the above
transition probabilities. Finally, the ARL values can be evaluated by formula (1).
[38] proposed a new self-starting approach that integrates the CUSUM of the Q

chart with the feature of adaptively varying the reference value, to better detect
a range of shifts with unknown process parameters. Since [39] had shown that the
Q statistics are i.i.d. normal random variables under IC conditions, that is, the IC
mean and variance of the process are both known, the two-dimensional Markov
chain model developed by [31] can be used to evaluate the IC ARL of the proposed
adaptive CUSUM of the Q chart.
Note that to evaluate the overall ARL of a two-sided ACUSUM scheme, a four-

dimensional Markov chain based on the vector (𝑆+
𝑡 , 𝑆

−
𝑡 , 𝑄

+
𝑡 , 𝑄

−
𝑡 )

𝑇 need to be devel-
oped. However, this would be computationally burdensome. Instead, [31] suggested
that the ARL of a two-sided ACUSUM scheme be derived from those of two one-
sided schemes, i.e.,

1

𝐴𝑅𝐿
=

1

𝐴𝑅𝐿+
+

1

𝐴𝑅𝐿− (2)

where 𝐴𝑅𝐿+ and 𝐴𝑅𝐿− are the respective ARLs for the upper- and lower-sided
ACUSUM schemes. We will defer the conditions on which this formula can hold to
next subsection.

2.1.3. Methods for Two-sided CUSUM

In the previous subsections, the Markov chain method is illustrated with upper-
sided CUSUM (𝐶+(𝑆+

0 , 𝑘
+, ℎ+)), and it is straightforward to apply the Markov

chain method to lower-sided CUSUM (𝐶−(𝑠−0 , 𝑘
−, ℎ−)). If practitioners want to

detect both the increase and decrease in shifts simultaneously, a pair of one-sided
schemes (two-sided schemes) is needed. Although the overall ARL of a two-sided
CUSUM can also be evaluated by a two-dimensional Markov chain based on vec-
tor (𝑆+

𝑛 , 𝑠
−
𝑛 )

𝑇 , the computation would be burdensome and even impossible due to
computer limitation when the number of states is large. Fortunately, under the
condition of non-interaction, the ARL of two-sided schemes can be obtained from
the ARL of the upper-sided and lower-sided schemes by Eq. (2). Thus, the cru-
cial question in this situation is whether the upper-sided and lower-sided schemes
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interact. Note that the upper-sided and lower-sided schemes do not interact im-
plies whenever the monitoring statistics of one of the upper-sided and lower-sided
schemes issue a signal, the monitoring statistics of the other one will reset to zero.
[40] proved the relationship in Eq. (2) under the condition of non-interaction.

[41] derived the following formula for computing the ARL of CUSUM control chart
with fast initial response (FIR)

𝐴𝑅𝐿(𝑠) =
𝐿𝐻(𝑠)𝐿𝐿(0) + 𝐿𝐻(0)𝐿𝐿(𝑠)− 𝐿𝐻(0)𝐿𝐿(0)

𝐿𝐻(0) + 𝐿𝐿(0)
, (3)

where 𝐿𝐻 and 𝐿𝐿 denote ARLs for upper- and lower-sided CUSUM, respectively
and the “s” or “0” in the parentheses represents the initial value of the monitoring
statistics. Note that the formula in Eq. (2) is just a special case of the formula
in Eq. (3), if the initial value 𝑠 is set to 0. [42] derived necessary and sufficient
conditions for non-interaction of upper- and lower-sided schemes and also obtained
two-sided ARL expression similar to Eq. (2) through Laplace transformation.
When 𝑘+ = 𝑘−, ℎ+ = ℎ−, [41] extended the Markov chain method of [22] di-

rectly to two-sided CUSUM control chart. The vector (𝑆+
𝑛 , 𝑠

−
𝑛 ) is modeled as a

two-dimensional Markov Chain. Suppose that the state is denoted by 𝐸𝑖𝑗 , 𝑖, 𝑗 =
0, 1, . . . , 𝑡− 1. Note that 𝐸00 represents both of the statistics (𝑆+

𝑛 , 𝑠
−
𝑛 ) are in initial

states zero, and 𝐸𝑖𝑗 represents the statistic 𝑆
+
𝑛 is in state 𝑖, while the other statistic

𝑠−𝑛 is in state 𝑗. All the absorbing states (i.e., 𝑖 = 𝑡 or 𝑗 = 𝑡) are labelled as one
state. Then, the transition probability matrix has dimension (𝑡2 + 1)× (𝑡2 + 1).
From the discussions above, we can know that the difficulty in computing ARL

for two-sided CUSUM lies in the large number of states, which will lead to tedious
computation of the inverse matrix of the transition matrix. And what is worse,
when the dimension of the transition probability matrix is so high that it is ill-
conditioned, the inverse matrix does not exist. [43] studied the state space of two-
sided CUSUM control chart 𝐶+(𝑆+

0 , 𝑘
+, ℎ+)∪𝐶−(𝑠−0 , 𝑘

−, ℎ−), and minimized the
number of states included in the Markov chain in order to make the Markov chain
methods as efficient as possible.

2.2. Integral Equation Method

The idea of computing ARL through integral equation method was firstly pro-
posed in EWMA control chart, in which the monitoring statistics are cumulated
with exponential weight and naturally effective for upper- and lower-sided shifts si-
multaneously. From then on, the integral equation method also finds its application
in CUSUM control charts.

2.2.1. Integral Equation Method: General Idea

For one-sided CUSUM control chart 𝐶+(𝑆0, 𝑘, ℎ), let 𝑓(𝑥) and 𝐹 (𝑥) be the prob-
ability density function (PDF) and cumulative distribution function (CDF) of the
process variable 𝑋, 𝐿(𝜇) denote ARL when the CUSUM starts with initial value
𝜇, and suppose the initial value of the monitoring statistics 𝑆0 = 𝜇.
Note that, for the first observation 𝑋1, one and only one of the following three

events happens

{𝑋1 − 𝑘 + 𝜇 ≥ ℎ}, {𝑋1 − 𝑘 + 𝜇 ≤ 0}, {0 < 𝑋1 − 𝑘 + 𝜇 < ℎ}.
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Then

𝐿(𝜇) = 1⋅𝑃{𝑋1 ≥ ℎ+𝑘−𝜇}+(1+𝐿(0))𝑃{𝑋1 ≤ 𝑘−𝜇}+
∫ ℎ

0
(1+𝐿(𝑦))𝑓(𝑦+𝑘−𝜇)d𝑦,

i.e.,

𝐿(𝜇) = 1 + 𝐿(0)𝐹 (𝑘 − 𝜇) +
∫ ℎ

0
𝐿(𝑦)𝑓(𝑦 + 𝑘 − 𝜇)d𝑦, (4)

which is the integral equation for computing the ARL of one-sided CUSUM
𝐶+(𝑆0, 𝑘, ℎ).
Although ARL is an important and widely employed criterion for evaluating

control charts, it is known that the distribution of run length is skewed and has long
right tail, so it may be necessary to have further information on the distribution
of run length. Let 𝑝(𝑛, 𝜇) denote the probability of run length 𝑇 equaling 𝑛 with
initial value 𝜇.
When 𝑇 = 1,

𝑝(1, 𝜇) = 1− 𝐹 (ℎ+ 𝑘 − 𝜇); (5)

When 𝑇 = 𝑛 = 2, 3, . . .

𝑝(𝑛, 𝜇) = 𝑝(𝑛− 1, 0)𝐹 (𝑘 − 𝜇) +
∫ ℎ

0
𝑝(𝑛− 1, 𝑥)𝑓(𝑥− 𝜇+ 𝑘)d𝑥. (6)

Moreover, for theoretically continuous variables, [8] showed that the following
formula

𝑝(𝑛, 0) ≃ 1

𝐿(0)
exp

{
−𝑛− 1

𝐿(0)

}
should be a good approximation to the distribution of run length.
When the process variable 𝑋𝑖 follows exponential distribution, the analytic so-

lutions for the above integral equations are derived in [44].

2.2.2. Integral Equation Methods for CUSUM with Estimated Parameters ([45])

The performance of the CUSUM is generally evaluated with the assumption that
the process parameters are known. In practice, the parameters are rarely known
and are frequently replaced with estimates from an IC reference sample. In this
case, it is with high probability that the monitoring statistics would be correlated,
because the monitoring statistics are constructed based on the same historical
reference data. [45] discussed the run length distribution of the CUSUM with esti-
mated parameters and provided a method for approximating the distribution and
moments of run length.
Assume the IC process parameters 𝜇0 and 𝜎20 are unknown and a sample of 𝑚

subgroups of size 𝑛, (𝑋𝑖1, . . . , 𝑋𝑖𝑛), 𝑖 = 1, . . . ,𝑚, from an IC process is collected.
Commonly used estimators for 𝜇0 and 𝜎0 are

𝜇̂0 =
1

𝑚𝑛

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑖𝑗 , 𝜎̂0 =
𝑆𝑝
𝑐4,𝑚

,
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where 𝑆𝑝 =

√
1

𝑚(𝑛−1)

𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝑋𝑖𝑗 − 𝑋̄𝑖⋅)2 and 𝑐4,𝑚 =
√
2Γ(𝑚(𝑛−1)+1

2
)√

𝑚(𝑛−1)Γ(𝑚(𝑛−1)

2
)
to make

𝜎̂0 an unbiased estimator of 𝜎. Taking 𝐶+(𝑆0, 𝑘, ℎ) for example, the monitoring
statistics in [45] are

𝑆𝑡 = max(0, 𝑆𝑡−1 + 𝑦𝑡 − 𝑘),

where 𝑦𝑡 =
𝑋̄𝑡−𝜇̂0

𝜎̂0/
√
𝑛
and 𝑋̄𝑡 is the mean of the 𝑡𝑡ℎ subgroup of 𝑛 process observations

(𝑛 ≥ 1).
In order to derive the run length distribution of the CUSUM chart when param-

eters are estimated, it is helpful to rewrite 𝑦𝑡 as

𝑦𝑡 =
1

𝑊
(𝛾𝑍𝑡 + 𝛿 − 𝑍0√

𝑚
),

where 𝑊 = 𝜎̂0

𝜎0
is a random variable, the distribution of which is related to the

square root of a 𝜒2 random variable, representing the ratio of the estimator of the
IC standard deviation to the IC standard deviation, 𝑍0 =

√
𝑚 𝜇̂0−𝜇0

𝜎0/
√
𝑛
is a standard

normal random variable, representing the standardized distance from the estimated

IC mean to the true IC process mean, 𝑍𝑡 =
√
𝑛(𝑋̄𝑡−𝜇)
𝜎 is also a standard normal

random variable, representing the standardized subgroup average at time 𝑡, where
𝜇 and 𝜎 are the respective mean and standard deviation of the process at time 𝑡,
the constant 𝛾 = 𝜎

𝜎0
is the ratio of the standard deviation at time 𝑡 to the true IC

standard deviation and the constant 𝛿 = 𝜇−𝜇0

𝜎0/
√
𝑛
represents a standardized shift in

the mean. Note that if the process is IC, then 𝛾 = 1 and 𝛿 = 0.
With 𝑇 denoting run length and by Eq. (5) and Eq. (6), it is shown that the

conditional PDF of 𝑇 is

𝑃{𝑇 = 1∣𝑤, 𝑧0, 𝛾, 𝛿, 𝜇} = 1− Φ

(
𝑤

𝛾
[ℎ− 𝜇+ 𝑘] +

𝛿

𝛾
− 𝑧0
𝛾
√
𝑚

)
,

𝑃{𝑇 = 𝑡∣𝑤, 𝑧0, 𝛾, 𝛿, 𝜇} = 𝑃{𝑇 = 𝑡− 1∣𝑤, 𝑧0, 𝛾, 𝛿, 0}Φ
(
𝑤

𝛾
[𝑘 − 𝜇]− 𝛿

𝛾
+

𝑧0
𝛾
√
𝑚

)
+
𝑤

𝛾

∫ ℎ

0
𝑃{𝑇 = 𝑡− 1∣𝑤, 𝑧0, 𝛾, 𝛿, 𝑠}𝜙

(
𝑤

𝛾
[𝑠− 𝜇+ 𝑘]− 𝛿

𝛾
+

𝑧0
𝛾
√
𝑚

)
𝑑𝑠,

where Φ and 𝜙 are the CDF and PDF of standard normal random variables. Note
that𝑊 and 𝑍0 are independent due to the independence of 𝜇̂0 and 𝜎̂0. The marginal
distribution of run length 𝑇 can be given by

𝑃{𝑇 = 𝑡∣𝛾, 𝛿, 𝜇} =
∫ ∞

−∞

∫ ∞

0
𝑃{𝑇 = 𝑡∣𝑤, 𝑧0, 𝛾, 𝛿, 𝜇}𝑓𝑤(𝑤)𝜙(𝑧0)𝑑𝑤𝑑𝑧0,

where 𝑓𝑤(𝑤) is the PDF of 𝑊 .
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Then ARL (the first moment of 𝑇 ) can be computed as follows

𝐸(𝑇 ∣𝛾, 𝛿, 𝜇) =
∞∑
𝑡=1

𝑡𝑃{𝑇 = 𝑡∣𝛾, 𝛿, 𝜇}

=

∫ ∞

−∞

∫ ∞

0
𝑀(𝑤, 𝑧0, 𝛾, 𝛿, 𝜇)𝑓𝑤(𝑤)𝜙(𝑧0)𝑑𝑤𝑑𝑧0, (7)

where𝑀(𝑤, 𝑧0, 𝛾, 𝛿, 𝜇) is the ARL conditioned on particular observations of𝑊 and
𝑍0. Similarly, the second moment of 𝑇 is given by

𝐸(𝑇 2∣𝛾, 𝛿, 𝜇) =
∫ +∞

−∞

∫ +∞

0
𝑀2(𝜔, 𝑧0, 𝛾, 𝛿, 𝜇)𝑓𝜔(𝜔)𝜙(𝑧0)𝑑𝜔𝑑𝑧0, (8)

where𝑀2(𝑤, 𝑧0, 𝛾, 𝛿, 𝜇) is the second moment of 𝑇 conditioned on particular values
of 𝑊 and 𝑍0.
By systematically choosing the particular values of the random variables 𝑊 and

𝑍0 to be the appropriately scaled abscissae, the double integrals in the equations
above can be approximated by Gaussian quadrature or be solved by the method
of [46], which is summarized in the Appendix of this paper.

3. Methods for EWMA Control Charts

Generally speaking, the ARL computing procedures by Markov chain approach and
integral equation approach for EWMA control charts are quite similar to those for
CUSUM control charts. One point practitioners should keep in mind is that the
EWMA is naturally effective for both upper- and lower-sided shifts simultaneously,
while CUSUM has to be separately designed for one- and two-sided shifts.

3.1. Markov Chain Method

3.1.1. Markov Chain Method for EWMA

With 𝑋𝑡 being the observed process variable, the monitoring statistic of EWMA
control chart is

𝑆𝑡 = (1− 𝜆)𝑆𝑡−1 + 𝜆𝑋𝑡, (9)

where 𝜆 ∈ (0, 1] is the smoothing parameter ([3]).
From the definition of the monitoring statistic of EWMA control chart in Eq.

(9), the EWMA is naturally effective for both upper- and lower-sided shifts simul-
taneously. [47, 48] divided the interval between the upper and lower control limits
into subintervals with equal length 𝜔, and labelled the two absorbing states (i.e.,
the one beyond upper control limit and the one beyond lower control limit) as one
state. Then the transition probability 𝑝𝑖𝑗 can be obtained as follows,

𝑝𝑖𝑗 = 𝑃{𝑆𝑡+1 ∈ 𝐼𝑗 ∣𝑆𝑡 ∈ 𝐼𝑖}
= 𝑃{𝑗𝜔 − 𝜔/2 < (1− 𝜆)𝑆𝑡 + 𝜆𝑋𝑡+1 ≤ 𝑗𝜔 + 𝜔/2∣𝑆𝑡 = 𝑖𝜔(the centre point of interval 𝐼𝑖)}
= 𝑃{𝑗𝜔 − 𝜔/2 < (1− 𝜆)𝑖𝜔 + 𝜆𝑋𝑡+1 ≤ 𝑗𝜔 + 𝜔/2},

from which the ARL can be computed by Eq. (1) if the distribution of 𝑋𝑡 is given.
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3.1.2. Computation of ARL for Adaptive EWMA

Note, from the definition in Eq. (9), that the Shewhart control chart ([1]) is a
special case of EWMA control chart with 𝜆 = 1. It is known that ([47]) the smooth-
ing parameter has great effect on EWMA control chart for different shift sizes, i.e.,
the EWMA control chart with small 𝜆 can quickly detect small to moderate shifts,
while the EWMA control chart with large 𝜆 can signal quickly for large shifts,
and a single EWMA scheme cannot have a “nearly minimum” ARL for both small
and large shifts simultaneously. Due to the reasons that it is generally difficult to
determine the unknown shift size in practice and it is usually necessary for prac-
titioners to detect a range of shifts, it is badly in need of a control scheme that
can achieve good performance for a wider range of shifts. [49] proposed adaptive
EWMA (AEWMA) control chart that essentially tries to combine an EWMA and
a Shewhart chart in a smooth way. The underlying idea is to adapt the weight of
the past observations to detect, in a more balanced way, shifts of different sizes.
The monitoring statistic in [49] is

𝑆𝑡 = (1−𝜛(𝑒𝑡))𝑆𝑡−1 +𝜛(𝑒𝑡)𝑋𝑡, 𝑆0 = 𝜇

where 𝑒𝑡 = 𝑋𝑡 − 𝑆𝑡−1, 𝜛(𝑒𝑡) = 𝜙(𝑒𝑡)
𝑒𝑡

as a varying weight and 𝜙(𝑒) is a score
function. It can be seen that Shewhart and EWMA charts are special cases of
AEWMA chart if we set 𝜛(𝑒𝑡) = 𝑒𝑡 or 𝜛(𝑒𝑡) = 𝜆𝑒𝑡. [49] considered the following
three score functions:

𝜙ℎ𝑢(𝑒) =

⎧⎨⎩𝑒+ (1− 𝜆)𝑘, if 𝑒 < −𝑘,
𝑒− (1− 𝜆)𝑘, if 𝑒 > 𝑘,
𝜆𝑒, otherwise.

𝜙𝑏𝑠(𝑒) =

{
𝑒[1− (1− 𝜆)(1− (𝑒/𝑘)2)2], if ∣𝑒∣ ≤ 𝑘,
𝑒, otherwise.

𝜙𝑐𝑏(𝑒) =

⎧⎨⎩
𝑒, if 𝑒 ≤ −𝑝1,
−𝜙𝑐𝑏(−𝑒), if − 𝑝1 < 𝑒 < −𝑝0,
𝜙𝑐𝑏(𝑒), if 𝑝0 < 𝑒 < 𝑝1,
𝑒, if 𝑒 ≥ 𝑝1,
𝜆𝑒, otherwise,

where 0 < 𝜆 ≤ 1, 𝑘 ≥ 0, 0 ≤ 𝑝0 < 𝑝1 𝜙𝑐𝑏(𝑒) = 𝜆𝑒 + (1 −
𝜆)( 𝑒−𝑝0𝑝1−𝑝0 )

2
[
2𝑝1 + 𝑝0 − (𝑝0 + 𝑝1)(

𝑒−𝑝0
𝑝1−𝑝0 )

]
.

The ARL of an AEWMA scheme can be approximated using the approach de-
scribed by [47] for an EWMA control chart; that is, by discretizing the infinite-state
transition probability matrix of the continuous-state Markov chain with the corre-
sponding transition probabilities

𝑝𝑖𝑗 = 𝑃{(1−𝜛(𝑒𝑡))𝑆𝑡−1 +𝜛(𝑒𝑡)𝑋𝑡 ∈ 𝐼𝑗 ∣𝑆𝑡−1 ∈ 𝐼𝑖}
= 𝑃{𝑆𝑡−1 + 𝜙(𝑋𝑡 − 𝑖𝜔) ∈ 𝐼𝑗 ∣𝑆𝑡−1 ∈ 𝐼𝑖}
= 𝑃{𝑗𝜔 − 𝑖𝜔 − 𝜔

2
< 𝜙(𝑋𝑡 − 𝑖𝜔) ≤ 𝑗𝜔 − 𝑖𝜔 +

𝜔

2
}

= 𝑃{𝑖𝜔 + 𝜙−1(𝑗𝜔 − 𝑖𝜔 − 𝜔

2
) < 𝑋𝑡 ≤ 𝑖𝜔 + 𝜙−1(𝑗𝜔 − 𝑖𝜔 +

𝜔

2
)},
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if 𝜙(𝑒) is not increasing in 𝑒. For the functions 𝜙ℎ𝑢(𝑒), 𝜙𝑏𝑠(𝑒) and 𝜙𝑐𝑏(𝑒) defined
above, the inverse functions are given respectively by

𝜙−1
ℎ𝑢 (𝑣) =

⎧⎨⎩𝑣 − (1− 𝜆)𝑘, if 𝑣 < −𝜆𝑘,
𝑣 + (1− 𝜆)𝑘, if 𝑣 > 𝜆𝑘,
𝑣/𝜆, otherwise.

𝜙−1
𝑏𝑠 (𝑣) =

{
𝜙∗𝑏𝑠(𝑣), if ∣𝑣∣ ≤ 𝑘,
𝑣, otherwise,

where 𝜙∗𝑏𝑠(𝑣) is the unique real root, with absolute value less than 𝑘, of the poly-
nomial 𝑦 − (1− 𝜆)𝑦(1− (𝑦/𝑘)2)2]− 𝑣 and

𝜙−1
𝑐𝑏 (𝑣) =

⎧⎨⎩
𝑣, if 𝑣 ≤ −𝑝1,
−𝜙∗𝑐𝑏(−𝑣), if − 𝑝1 < 𝑣 < −𝜆𝑝0,
𝜙∗𝑐𝑏(𝑣), if 𝜆𝑝0 < 𝑣 < 𝑝1,
𝑣, if 𝑣 ≥ 𝑝1,
𝑣/𝜆, otherwise,

where 𝜙∗𝑐𝑏(𝑣) is the unique root of 𝜙𝑐𝑏(𝑦)− 𝑣 in the interval (𝑝0, 𝑝1). The ARL can
be computed by Eq. (1).
From the definition of the monitoring statistic of AEWMA, it can detect, in a

more balanced way, shifts of different sizes, i.e., the shift size is not a constant step
shift but in an interval, say (𝜇1, 𝜇2). For interval shifts, [50] proposed dual CUSUM
control chart. For AEWMA, more design parameters are necessary besides the
smoothing parameter 𝜆 and the control limit ℎ. For example, if 𝜙ℎ𝑢(.) or 𝜙𝑏𝑠(.) is
used, then the parameters are 𝜃 = (𝜆, ℎ, 𝑘). To avoid the flaw that the ARL of a
chart designed for a small shift is quite different from that designed for a large shift,
[49] devised a design strategy, in which the minimizing of the penalized function
involved can be worked out through simulated annealing algorithm ([51]).
Recently, [52] introduced an integral equation technique for evaluating the ARL

of the AEWMA chart when the parameters are unknown. They considered six most
commonly used estimators of the process standard deviation, which are, following
the notations in Section 2.2.2,

𝜎̂1 =
𝑆

𝑐4(𝑛)
, 𝜎̂2 = 𝑐4(𝑛)𝑆, 𝜎̂3 =

𝑅̄

𝑑2(𝑛)
, 𝜎̂4 = 𝑐4(𝜈 + 1)𝑆𝑝, 𝜎̂5 = 𝑆𝑝, 𝜎̂6 =

𝑆𝑝
𝑐4(𝜈 + 1)

,

where 𝜈 = 𝑚(𝑛 − 1), 𝑐4(⋅) and 𝑑2(⋅) are “control chart constants” tabulated in
[4]. Then the Markov Chain approach of [52] can be obtained by replacing 𝑋𝑡 of
[49] by 𝑦𝑡. Noting that the performance of the AEWMA is conditioned on specific
estimates of 𝜇̂0 and 𝜎̂0, [52] considered marginal ARL as in Eq. (7). They, moreover,
studied the PDF of 𝑊 𝑓𝑤(𝑤) in detail.

3.1.3. Methods for Two-sided EWMA with Reflecting Boundaries

It is known that [41] recommended the use of CUSUM charts with FIR in a
situation where a manufacturing process usually begins in an OC state, so that an
OC signal will be issued earlier. Similarly, [53] evaluated the run length properties
of one-sided EWMA with reflecting boundaries. A reflecting boundary can prevent
the monitoring statistics of EWMA from drifting to one side indefinitely.



January 2, 2013 23:23 Journal of Statistical Computation & Simulation arl*review*gscs

Journal of Statistical Computation & Simulation 13

The monitoring statistics of the upper- and lower-sided EWMA with reflecting
boundaries are

𝑆+
𝑡 = max{𝐴, (1− 𝜆+)𝑆+

𝑡−1 + 𝜆+𝑋𝑡}, 𝑆−
𝑡 = min{𝐵, (1− 𝜆−)𝑆−

𝑡−1 + 𝜆−𝑋𝑡},

where 𝐴 and 𝐵 are two reflecting boundaries, 𝑆+
0 = 𝑢,𝐴 ≤ 𝑢 < ℎ+ and 𝑆−

0 =
𝑣, ℎ− < 𝑣 ≤ 𝐵. An OC signal is issued when 𝑆+

𝑡 ≥ ℎ+ or 𝑆−
𝑡 ≤ ℎ−.

[54] showed numerically that under the condition of non-interaction, the ARL
of two-sided EWMA schemes with reflecting boundaries can be obtained from
the ARL of the upper-sided and lower-sided schemes by Eq. (2). The fact that
the upper-sided and lower-sided EWMA schemes with reflecting boundaries do
not interact implies whenever the monitoring statistics of one of the upper-sided
and lower-sided schemes issue a signal, the monitoring statistics of the other one
will reset to the corresponding reflecting boundary. Without loss of generality,
assuming 𝜆+ = 𝜆− = 𝜆, 𝐵 ≤ ℎ+ and 𝐴 ≤ ℎ−, [55] derived the necessary and
sufficient conditions for non-interaction of the upper- and lower-sided EWMA with
reflecting boundaries, and showed that similar to computing the ARL of CUSUM
control chart with FIR ([41]), the ARL of a pair of one-sided EWMA control charts
with reflecting boundaries can be computed by Eq. (3).

3.2. Integral Equation Method

3.2.1. Integral Equation Method for EWMA

With the monitoring statistics defined in Eq. (9), [23] presented a numerical
procedure using integral equations for the tabulation of moments of run lengths of
EWMA control chart. In a similar way to the derivation of the integral equations in
Eq. (4) for CUSUM, the ARL when the EWMA starts with initial value 𝜇, denoted
as 𝐿(𝜇), satisfies the following integral equation

𝐿(𝜇) = 1 ⋅ Pr(∣(1− 𝜆)𝜇+ 𝜆𝑋1∣ > ℎ) +

∫
∣(1−𝜆)𝜇+𝜆𝑦∣≤ℎ

[1 + 𝐿((1− 𝜆)𝜇+ 𝜆𝑦)]𝑓(𝑦)𝑑𝑦

= 1 +
1

𝜆

∫ ℎ

−ℎ
𝐿(𝑦)𝑓(

𝑦 − (1− 𝜆)𝜇
𝜆

)𝑑𝑦,

where 𝑓(.) is the PDF of observed variable. This integral equation for 𝐿(.) is a
Fredholm integral equation of the second kind, and can be approximated numeri-
cally.
Furthermore, the probability 𝑝(𝑛, 𝜇), denoting the probability of run length

equals 𝑛 given that the EWMA starts at initial value 𝜇, satisfies the following
integral equation

𝑝(𝑛, 𝜇) =

∫
{∣(1−𝜆)𝜇+𝜆𝑦∣≤ℎ}

𝑝(𝑛− 1, (1− 𝜆)𝜇+ 𝜆𝑦) ⋅ 𝑓(𝑦)𝑑𝑦

=
1

𝜆

∫ ℎ

−ℎ
𝑝(𝑛− 1, 𝑦)𝑓(

𝑦 − (1− 𝜆)𝜇
𝜆

)𝑑𝑦.

3.2.2. Integral Equation Methods for EWMA with Estimated Parameters

[56] derived run length distribution of the EWMA chart with estimated param-
eters and [57] relaxed the assumption of known parameters and developed accord-
ingly design procedures for the EWMA chart. The general idea and procedure for
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EWMA control chart with estimated parameters are nearly the same as those for
CUSUM control charts introduced in Section 2.2.2, only bearing in mind that the
differences in the form of monitoring statistics and conditional transition probabil-
ities.

4. Methods for Combined Control Charts

Although the computation of ARL of Shewhart control chart is comparatively easy
due to the independence of the monitoring statistics, it is known that Shewhart
chart is only effective for detecting large process shifts. In order to improve the per-
formance of Shewhart chart for small to moderate shifts, Shewhart control chart
with supplementary runs rules using historical data was proposed in the literature.
In this section, we will review the Markov chain approach of [58] to model sup-
plementary runs rules used with Shewhart control charts, and some methods for
combined Shewhart and CUSUM or EWMA control charts.

4.1. Markov Chain Method for Shewhart Control Charts with
Supplementary Runs Rules

The reason why Shewhart control chart is not as sensitive in detecting small to
moderate shifts is that it only makes use of the information of the current sample
and ignores all the information that the past samples can provide. [58] proposed
Shewhart control chart with supplementary runs rules 𝑇 (𝑘,𝑚, 𝑎, 𝑏), which signals
if 𝑘 of the last 𝑚 standardized sample means fall in the interval (𝑎, 𝑏), 𝑎 < 𝑏. Thus
the usual Shewhart chart is denoted by {(𝑇 (1, 1,−∞,−3), 𝑇 (1, 1, 3,∞)}, and the
Shewhart chart with supplementary runs rules is given by a larger collection of
rules of the form 𝑇 (𝑘,𝑚, 𝑎, 𝑏). Various combinations of the following rules can be
considered and be combined to form most of the control charts suggested in the
literature.
The difficulty in computing ARL with Markov chain is to find a procedure that

yields the minimal number of states required to represent the charts with Markov
chain. Then the nonzero elements of the transition probability matrix can be de-
termined and used to construct recursive equations for obtaining the run length
probabilities. [58] gave a simple and efficient method, using Markov chains, to ob-
tain the exact run length properties of Shewhart control charts with supplementary
runs rules.
For the rule 𝑇 (𝑘𝑖,𝑚𝑖, 𝑎𝑖, 𝑏𝑖),𝑚𝑖 > 1, define the vectors

𝑾 ′
𝑖 = (𝑊𝑖,1, . . . ,𝑊𝑖,𝑚𝑖−1),

where

𝑊𝑖,𝑗 =

{
1, if the 𝑗th previous observation was in (𝑎𝑖, 𝑏𝑖),
0, otherwise.

It seems that 𝑾 𝑖 can be used to define the state space. Note, however, that if∑𝑚𝑖−2
𝑗=1 𝑊𝑖,𝑗 < 𝑘𝑖 − 1, and even if the next sample falls into (𝑎𝑖, 𝑏𝑖), the Shewhart

control chart with rule 𝑇 (𝑘𝑖,𝑚𝑖, 𝑎𝑖, 𝑏𝑖) will not issue a signal. To overcome this
limitation, define

𝑿 ′
𝑖 = (𝑋𝑖,1, . . . , 𝑋𝑖,𝑚𝑖−1),
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where

𝑋𝑖,𝑗 =

{
𝑊𝑖,𝑗 , if

∑𝑗
𝑙=1(1−𝑊𝑖,𝑙) < 𝑚𝑖 − 𝑘𝑖 + 1,

0, otherwise.

[58] showed that

The vector 𝑿 ′
𝑖 indicates by 1s only those observations falling in (𝑎𝑖, 𝑏𝑖) that may

contribute to an OC signal. Thus a transient state of a chart using 𝑡 rules can be
represented by 𝑺′ = (𝑿 ′

1, . . . ,𝑿
′
𝑡), where the subvector 𝑿 ′

𝑖 is defined as previously
for the rule 𝑇 (𝑘𝑖,𝑚𝑖, 𝑎𝑖, 𝑏𝑖), 𝑖 = 1, 2, . . . , 𝑡. Moreover, to reduce the length of the
vector 𝑺′, it is often convenient to replace the subvector associated with any rule
𝑇 (𝑚,𝑚, 𝑎, 𝑏),𝑚 > 1, with a counter 𝑙, where 𝑙 can take the values 0, 1, ...,𝑚− 1. The
number 𝑙 is the number of consecutive points in the interval (𝑎, 𝑏) since the last point
not in (𝑎, 𝑏).

It follows to compute the transition probability after the state space is deter-
mined, and then the ARL can be computed using Markov chain method by Eq.
(1).

4.2. Methods for Combined Shewhart-CUSUM or Shewhart-EWMA

[59] proposed combined Shewhart-CUSUM control chart by adding Shewhart con-
trol limits to a CUSUM control chart and showed that the combined scheme can
give an improved ARL curve, because it can be designed to detect more quickly
large shifts of the mean with only small changes in the speed of detecting small
to moderate shifts or in the IC ARL. Note that the only change in the computa-
tion procedure for a combined Shewhart-CUSUM control chart from a standard
CUSUM control chart is the insertion of Shewhart control limits. For observations
greater than the Shewhart control limits, the transition probability goes to the ab-
sorbing state, while for a standard CUSUM control chart some of this probability
would be distributed over transition states with higher CUSUM values.
[47] proposed a combined Shewhart-EWMA control chart that provides protec-

tion against both large and small shifts in a process and showed that properties
of the combined Shewhart-EWMA can be obtained by modifying the transition
probability matrix for an EWMA control chart. The modified one-step transition
probabilities are given by

𝑝𝑖𝑗 = 𝑃 {min[𝑆𝐶𝐿𝑈 ,max(𝑆𝐶𝐿𝐿, 𝑋𝐿)] < 𝑋𝑛 ≤ max[𝑆𝐶𝐿𝐿,min(𝑆𝐶𝐿𝑈 , 𝑋𝑈 )]} ,

where

𝑋𝐿 =
1

𝜆
[(𝑗𝜔 − 𝜔/2)− (1− 𝜆)𝑖𝜔], 𝑋𝑈 =

1

𝜆
[(𝑗𝜔 + 𝜔/2)− (1− 𝜆)𝑖𝜔],

𝑖, 𝑗 = −𝑡,−𝑡+1, ⋅ ⋅ ⋅ , 𝑡, 2𝑡+1 is number of states in Markov chain, 𝑆𝐶𝐿𝑈 and 𝑆𝐶𝐿𝐿
represent the upper and lower Shewhart control limits, respectively. Similarly, for
Shewhart with upper-sided CUSUM 𝐶+(𝑆0, 𝑘, ℎ), 𝑋𝐿 and 𝑋𝑈 need to be changed
into

𝑋𝐿 = 𝑗𝜔 − 𝜔/2− 𝑖𝜔 + 𝑘, 𝑋𝑈 = 𝑗𝜔 + 𝜔/2− 𝑖𝜔 + 𝑘.
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Then the one-step transition probability is

P =

(
R∗ p∗
0𝑇 1

)
,

where p∗ = (I−R∗)1.
It is useful to consider a robust CUSUM or EWMA that can provide protection

against occasional outliers in the data that might otherwise cause an OC signal.
The combined Shewhart-CUSUM or Shewhart-EWMA should not be used in these
situations because the addition of Shewhart limits causes the combined Shewhart-
CUSUM or Shewhart-EWMA to be sensitive to the occurrence of outliers. [60] and
[47] proposed robust CUSUM and robust EWMA, respectively. They considered the
two-in-a-row rule, i.e., a single observation outside of the outlier limits (e.g., ±4𝜎)
does not enter the CUSUM or EWMA, but two outliers in a row are considered to
be an OC signal.
In [47],

The run length properties of a robust CUSUM or EWMA using a two-in-a-row
rule can be obtained by modifying the transition probability matrix of a com-
bined Shewhart-CUSUM or Shewhart-EWMA. The IC transition probabilities will
be identical to the IC transition probabilities for the combined Shewhart-CUSUM
or Shewhart-EWMA, with the Shewhart limits representing outlier limits. When a
single outlier is observed, the control statistic remains in the same state and a counter
is set. If the next observation lies within the outlier limits, the counter is reset to 0;
otherwise an OC signal is given.

The two-in-a-row rule requires a transition matrix which is twice the size of the
transition matrix for the previous rules. The doubling of the size of the transition
matrix is necessitated by an indicator, which keeps track of whether the previous
observation was a suspected outlier or not.
[61] gave out a unified Markov chain approach for computing the run length dis-

tribution in control charts with simple or compound rules. [62] proposed combined
CUSUM and Shewhart variance chart that provides simultaneous control of the
process mean and process variance. Exact expressions for the moments of the com-
bined CUSUM and Shewhart variance chart are given as integral equations. These
integral equations can be solved by using numerical methods for the computation
of ARL and higher moments of the combined CUSUM chart and Shewhart vari-
ance chart. [63] numerically compared the joint 𝑋̄-𝑆2, two-sided CUSUM-𝑆2 and
EWMA-𝑆2 control charts when process parameters are known and process param-
eters are estimated from retrospective data, respectively. In both cases, equations
for the conditional and unconditional run length distributions are developed, and
expressions for the ARL, the second moment of the run length (SMRL), and the
standard deviation of the run lengths (SDRL) are derived for these charts.

5. Methods for Adaptive Control Charts

Extensive research in recent years has developed VSR control charts that vary the
sampling rate as a function of current and prior sample results since [64] proposed
𝑋̄ charts with VSI. [65] showed that one important area of SPC research continues
to be the use of control charts with VSS and/or VSI. The widely used performance
indicators for adaptive control charts are the ATS, AATS (SSATS) and ANSS.
Noting that the computation methods for these indicators are similar to those for
ARL, we will just give a brief review on these methods in this section.
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5.1. Methods for Adaptive Shewhart Control Charts

The sampling scheme of adaptive control charts is to use a longer sampling interval
or a smaller sample size as long as the monitoring statistic is close to the target
so that there is no indication of process shifts. However, if the monitoring statistic
is far from the target, but still within the control limits so that there is some
indication of a process shift, then a shorter sampling interval or a larger sample
size is used. If the monitoring statistic falls out of the control limits, then the
process is considered to be OC.
[9] proposed a combined𝑋 control scheme with VSSI and [66] proposed𝑋 control

chart with variable parameters (VP). The monitoring statistics are

𝑌𝑖 =
𝑋 𝑖 − 𝜇0

𝜎/
√
𝑛(𝑌𝑖−1)

,

where 𝑛(𝑌𝑖−1) is the sample size of the 𝑖th sample determined by 𝑌𝑖−1. Denoting
the upper control limit by UCL, the lower control limit by LCL and the warning
limit by 𝑤, the sampling schemes for the next sample are

(𝑑(𝑦), 𝑛(𝑦)) =

{
(𝑑1, 𝑛1), if 𝑌𝑖 ∈ [−𝑤,𝑤],
(𝑑2, 𝑛2), if 𝑌𝑖 ∈ (𝐿𝐶𝐿,−𝑤) ∪ (𝑤,𝑈𝐶𝐿),

where 𝑑2 < 𝑑 < 𝑑1 and 𝑛1 < 𝑛 < 𝑛2 with 𝑑 and 𝑛 being the sampling interval and
sample size for an FSR sample scheme.
The ATS and ANSS can be computed by the Markov chain approach for com-

puting ARL ([22]), only with minor modifications. For control charts with VSI, it
is shown that

𝐴𝑇𝑆 = (I−R)−1d, 𝐴𝑁𝑆𝑆 = 𝑛(I−R)−11,

where d is a vector consisted of sampling intervals corresponding to different states.
For control charts with VSS, it is shown that

𝐴𝑇𝑆 = 𝐴𝑅𝐿 = 𝑑(I−R)−11, 𝐴𝑁𝑆𝑆 = (I−R)−1n,

where n is a vector consisted of sample sizes corresponding to different states. For
control charts with VSSI, it is shown that

𝐴𝑇𝑆 = (I−R)−1d, 𝐴𝑁𝑆𝑆 = (I−R)−1n.

5.2. Methods for Adaptive CUSUM Control Charts with VSI

[13] used Markov chain approach to evaluate properties such as the ATS and the
ANSS and they derived

ANSS = (I−R)−11 = M1, ATS = Md.

Recently, [67] proposed a new CUSUM control chart, which is based on both
adaptive and VSI features, and developed a two-dimensional Markov chain model
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to evaluate its runtime performance. The monitoring statistics are

⎧⎨⎩
𝑆0 = 0 ,
𝑆𝑖 = max ( 0, 𝑆𝑖−1 ) + (𝑋𝑖 − 𝑘𝑖)/ℎ(𝑘𝑖),
𝑘𝑖 = 𝛿𝑖/2 ,

where

𝛿𝑖 = max
{
𝛿min, (1− 𝜆)𝛿𝑖−1 + 𝜆𝑋𝑖

}
,

0 < 𝜆 ≤ 1 is the smoothing parameter and 𝛿min > 0 is a minimum magnitude of
interest for early detection. The sampling scheme is

𝑑(.) =

{
𝑑1, if 𝑆𝑖 < 𝑤 ,
𝑑2, if 𝑤 ≤ 𝑆𝑖 < ℎ.

With a similar approach to [31], [67] modeled (𝑆𝑖, 𝛿𝑖)
𝑇 as a two-dimensional

Markov chain. Therefore, the proposed adaptive CUSUM with VSI can be viewed
as an two-dimensional Markovian process with transition matrix R, which is an
𝑁×𝑁 matrix

R[(𝑖−1)𝑚𝛿+𝑗, (𝑚−1)𝑚𝛿+𝑛] = 𝑓(𝑖,𝑗),(𝑚,𝑛),

where 𝑓 ( 𝑖,𝑗 ),(𝑚,𝑛 ) is the transition probability of (𝑆, 𝛿 ) from state ( 𝑖, 𝑗 ) to state

(𝑚,𝑛 ) and 𝑚𝛿 is the number of states for 𝛿𝑖.

5.3. Methods for Control Charts with VSI at Fixed Time (VSIFT)

Although control chart with VSI is able to detect most process changes substan-
tially faster than that with fixed sampling interval. One disadvantage of control
chart with VSI is that the prediction of time at which samples will be taken can not
be done for more than the next sample. [16, 68] considered a modification of the
VSI idea in which samples are always taken at specified, equally-spaced, fixed-time
points with additional samples allowed between these fixed times when indicated
by the process observations.
Specifically, samples will be taken using the sampling interval 𝑑𝐹 as long as there

is no indication of a problem with the process. However, if there is some indication
of a problem with the process, the additional samples are allowed between the
fixed times. Suppose that the interval 𝑑𝐹 between two fixed times is divided into
𝜂 subintervals of length 𝑑1 such that the possible sampling times within 𝑑𝐹 are
𝑑1, 2𝑑1, . . . , (𝜂 − 1)𝑑1.
Take EWMA control chart for example. Supposing the first sample is sampled

at time 𝑡1 = 𝑚𝑑1, 𝑆1 = 𝑠, 𝑆0 = 𝑠0 and denoting 𝐴(𝑠,𝑚) the average time from 𝑡1
to signal and 𝑓(𝑠′∣𝑠) the transition probability of 𝑆 from 𝑠 ∈ 𝐶 to 𝑠′ ∈ 𝐶, the ATS
satisfies the following integral equation

𝐴𝑇𝑆 = 𝑡1 +

∫
𝑠∈𝐶

𝐴(𝑠,𝑚)𝑓(𝑠∣𝑠0)𝑑𝑠,
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where 𝐴(𝑠,𝑚) satisfies

𝐴(𝑠,𝑚) = 𝑑1 +

∫
𝑠′∈𝐶

𝐴(𝑠′,𝑚+ 1)𝑓(𝑠′∣𝑠)𝑑𝑠′, 𝑠 ∈ 𝑅1, 𝑚 = 0, 1, . . . , 𝜂 − 2.

For 𝑠 ∈ 𝑅1 (the warning region), 𝑚 = 𝜂 − 1 and

𝐴(𝑠, 𝜂 − 1) = 𝑑1 +

∫
𝑠′∈𝐶

𝐴(𝑠′, 0)𝑓(𝑠′∣𝑠)𝑑𝑠′.

For 𝑠 ∈ 𝑅2 (the central region), 𝑚 = 0, 1, . . . , 𝜂 − 1 and

𝐴(𝑠,𝑚) = (𝜂 −𝑚)𝑑1 +

∫
𝑠′∈𝐶

𝐴(𝑠′, 0)𝑓(𝑠′∣𝑠)𝑑𝑠′.

6. Methods for Steady State ARL and Steady State ATS

In the previous sections, the process shift is assumed to occur as soon as the
monitoring begins. However, in most practical cases, it is never known when the
shift occurs. Note that control schemes are used to monitor a process and a shift
often occurs after the process has been operating for some time. The monitoring
statistics may not be zero when the shift occurs; in fact it has a distribution over its
possible values (called its steady state distribution). [69] proposed the concept of
SSARL, i.e. the weighted average of ARLs given the initial values of the monitoring
statistics, using the steady state distribution of monitoring statistics values as the
weights.

6.1. Methods for Steady State ARL and Steady State ATS

[47] derived a computing procedure for SSARL for EWMA control charts. [47]
showed

that an exact steady state probability vector does not exist because the transition
probability matrix is not ergodic. The steady state probability vector that best models
the way control schemes are used is a cyclical steady state probability vector that is
obtained by altering the transition probability matrix so that the control statistic is
reset to state 0 whenever it goes into the OC state; that is

P∗ =

(
R (I−R)1

0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0 0

)
.

This transition probability matrix is ergodic. The steady state probability vector,
p𝑠𝑠, is found by solving p = (P∗)𝑇p subject to 1𝑇p = 1. Then, p𝑠𝑠 = (1𝑇q)−1q,
where q is a vector of length 𝑡 obtained from p by deleting the entry corresponding
to the absorbing state; that is, p𝑠𝑠, is the probability vector obtained from p by
deleting the entry corresponding to the absorbing state and normalizing so that the
probabilities sum to 1.

Then the SSARL can be computed by

𝑆𝑆𝐴𝑅𝐿 = p𝑇𝑠𝑠(I−R)−11.

In computing the SSATS, the following assumptions are usually made ([13]).
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(i) The probability of the shift falling in an interval of a particular length
is proportional to the product of this interval length and the conditional
stationary probability of using this interval given that there is no signal.

(ii) When the shift occurs within an interval, the position of the shift within
the interval is uniformly distributed over the interval.

6.2. Methods for Control Chart with VSSIFT for Correlated Data

[70] proposed “variable sampling at fixed times” (VSFT), which includes both
VSIFT and VSSFT schemes, using a Markov chain model and integral equations
for the autocorrelated process.
The monitoring statistics in [70] are 𝑋̄𝑘 =

1
𝑛

∑𝑛
𝑖=1𝑋𝑘𝑖, where the 𝑖th observation

at sampling point 𝑡𝑘, 𝑋𝑘𝑖, can be represented as

𝑋𝑘𝑖 = 𝜇𝑘 + 𝜁𝑘𝑖 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,

where 𝜇𝑘 is the random process mean at sampling time 𝑘 and 𝜁𝑘𝑖’s are independent
normal random variables with mean 0 and variance 𝜎2𝜁 . For the case in which
0 < 𝜙 < 1, it is assumed that if the process mean is constant and samples 𝑘 − 1
and 𝑘 are 𝑡 > 0 units apart, then 𝜇𝑘 can be expressed in terms of 𝜇𝑘−1 as

𝜇𝑘 = (1− 𝜙𝑡)𝜉 + 𝜙𝑡𝜇𝑘−1 + 𝛼𝑘 𝑘 = 1, 2, . . . ,

where 𝜉 is the process mean, 𝛼𝑘 is a random shock and assumed to be independent
normal random variable with mean 0 and variance 𝜎2𝛼. It is assumed that the
starting value 𝜇0 follows a normal distribution with mean 𝜉 and variance 𝜎2𝜇 =

𝜎2𝛼/(1− 𝜙2).
In order to construct the VSFT control scheme for the autocorrelated AR(1)

plus error model, 𝑋̄𝑘 is standardized to

𝑍𝑘 =
𝑋̄𝑘 − 𝜉0√

𝜎2𝜇 + 𝜎2𝜁/𝑛(𝑘)
,

where 𝑛(𝑘) is the sample size of the 𝑘th sample and 𝜉0 is the IC process mean.

Denoting 𝜓 =
𝜎2
𝜇

𝜎2
𝜇+

1

𝑛0
𝜎2
𝜁

as a measure index which indicates the proportion of the

variance 𝜎2𝑋 that is due to the AR(1) process, where 𝑛0 is the average IC sample
size. Then 𝑍𝑘 can be rewritten as

𝑍𝑘 =
𝑋̄𝑘 − 𝜉0

𝜎𝜁

√
1
𝑛0

(
𝜓

1−𝜓 + 𝑛0

𝑛(𝑘)

) .
Let 𝑌𝑘 be the state at sample point 𝑘 for 𝑘 = 1, 2, . . . and the state transition

probability

𝑝(𝑗∣𝑖, 𝑣) = 𝑃𝑟(𝑌𝑘+1 = 𝑗∣𝜇𝑘+1 = 𝑣, 𝑌𝑘 = 𝑖).

Table AI of [70] showed the state transition probability 𝑝(𝑗∣𝑖, 𝑣) given 𝜇𝑘+1 = 𝑣
without the elements associated with the absorbing state.
Let 𝜎2𝑖 = 𝜓(1 − 𝜙2𝑙𝑖)𝜎2𝑋 be the variance of 𝛼𝑘+1, where 𝑙𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝜂 is

the interval between 𝑡𝑘 and 𝑡𝑘+1 which is determined by 𝑌𝑘. Define the transition
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density 𝑓(𝑣∣𝑢, 𝑖) at 𝜇𝑘+1 = 𝑣 given that 𝜇𝑘 = 𝑢 and 𝑌𝑘 = 𝑖 as follows

𝑓(𝑣∣𝑢, 𝑖) = 𝑓𝑁

[𝑣 − 𝜉
𝜎𝑖
− 𝜙𝑙𝑖

(𝑢− 𝜉
𝜎𝑖

)] 1

𝜎𝑖
,

where 𝑓𝑁 (⋅) is the standard normal PDF. Then the joint transition density at
𝜇𝑘+1 = 𝑣 and 𝑦𝑘+1 = 𝑗 given that 𝜇𝑘 = 𝑢 and 𝑌𝑘 = 𝑖 can be expressed as
𝑝(𝑗∣𝑖, 𝑣)𝑓(𝑣∣𝑢, 𝑖).
For any given sampling time 𝑡𝑘, let 𝐴(𝑢, 𝑖) be the expected time from 𝑡𝑘 to the

time that the chart signals, given that 𝜇𝑘 = 𝑢 and 𝑌𝑘 = 𝑖, where 𝑖 = 1, 2, . . . , 2𝜂.
It follows that 𝐴(𝑢, 𝑖) satisfies the integral equation

𝐴(𝑢, 𝑖) = 𝑙𝑖 +

2𝜂∑
𝑗=1

∫ ∞

−∞
𝐴(𝑣, 𝑗)𝑝(𝑗∣𝑖, 𝑣)𝑓(𝑣∣𝑢, 𝑖)𝑑𝑣.

Thus, the ATS is

ATS = 𝑡1 +

2𝜂∑
𝑗=1

∫ ∞

−∞
𝐴(𝑣, 𝑗)𝑝(𝑗∣1, 𝑣)𝑓1(𝑣)𝑑𝑣,

where 𝑓1(𝑣) is the marginal density of 𝜇1.

7. Conclusions and Extensions

Control charts are widely used in industries to monitor a process for quality im-
provement and play an important role in the area of SPC. An inevitable problem
for a practitioner is to choose one from many possible control charts. In the liter-
ature, ARL and ATS are the key indexes for comparing the performance of static
and adaptive control charts, respectively.
In this paper, we review the Markov chain and integral equation methods for

computing ARL, ATS and the run length distribution for CUSUM, EWMA, and
combined control charts, respectively. [30] compared Markov chain approach and
integral equation approach and showed that these two methods are actually equiv-
alent when used with conventional CUSUM and EWMA. Some references have
been given in this paper that should be helpful to those interested in control charts
or in their practical applications.
From the review in this paper, it seems that the state space of the monitoring

statistics should be partitioned into intervals ([2]), rectangles ([31]) or concentric
spherical shells ([71]), it is, however, not necessarily so. Interested readers are re-
ferred to [72, 73].
Although this paper is the result of an extensive literature review of the most

recent developments in the area of computation of ARL, ATS and related indexes,
there are still some aspects not involved. First, we only consider computation of
ATS, AATS and ANSS for adaptive control charts. Other comparison indicators,
such as average number of switches (ANSW) proposed in [74], are not reviewed
due to the limited application. Second, besides Markov chain approach and in-
tegral equation approach, there are some numerical methods ([26, 75]), which we
believe are still effective complements to Markov chain approach and integral equa-
tion approach. Third, we focus on univariate process monitoring, [76–78], however,
pointed out that multivariate control charts are one of the most rapidly devel-
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oping areas of SPC and suggested that basic and applied research is needed on
methods for monitoring multiple parameters that arise in models for the cases of
single or multiple process variables. For the IC situation, [79] approximated the
multivariate CUSUM (MCUSUM) ([80]) by using a discrete Markov chain model.
[71] extended the advantages of the Markov chain approximation to multivariate
EWMA (MEWMA) ([81]) and showed that this analysis can be applied whenever
the multivariate control statistic can be modeled as a Markov chain and the run
length performance depends on the off-target mean only through the noncentrality
parameter.
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Appendix A. Gaussian Quadrature Method for Numerical Computation of
Integral Equation

For integral equations as in Eq. (4), the Gaussian quadrature method can be used
to obtain numerical solutions. Supposing the Gaussian roots being 𝑧1, . . . , 𝑧𝑚, and
corresponding weights being 𝑐1, . . . , 𝑐𝑚, Eq. (4) can be approximately written as,

𝐿(𝜇) = 1 + 𝐿(0)𝐹 (𝑘 − 𝜇) +
𝑚∑
𝑖=1

𝑐𝑖𝐿(𝑧𝑖)𝑓(𝑧𝑖 + 𝑘 − 𝜇). (A1)

Let

𝛿2 = (𝐹 (𝑘 − 𝑧1), . . . , 𝐹 (𝑘 − 𝑧𝑚))′,
Ω = (𝜔𝑖𝑗), 𝜔𝑖𝑗 = 𝑐𝑗𝑓(𝑧𝑗 + 𝑘 − 𝑧𝑖),
A = (𝛿2∣Ω− I) ,

L′ = (𝐿(0), 𝐿(𝑧1), . . . , 𝐿(𝑧𝑚)),

c =

⎛⎜⎜⎝
−1
−1
⋅ ⋅ ⋅
−1

⎞⎟⎟⎠ .
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If 𝜇 in Eq. (A1) are set 𝜇 = 𝑧1, . . . , 𝑧𝑚, respectively, we can have

𝐴L = c.

Note that 𝐴 and c are both given, then L can be obtained as well as the ARL 𝐿(𝜇)
with the obtained L.
As is known, this Gaussian quadrature method greatly depends on the number

of Gaussian roots and the specific selection of these Gaussian roots and weights.
[82] used this method to compute ARL and the run length distribution when

observations follow the normal distribution.

Appendix B. Gauss-Legendre Method for Numerical Computation of Integral
Equation

For the distribution of ARL of upper-sided CUSUM control chart defined by Eq.
(5) and Eq. (6), [46] gave out the following Gauss-Legendre approximation.
Let

𝛿1 = (1− 𝐹 (ℎ+ 𝑘 − 𝑧1), . . . , 1− 𝐹 (ℎ+ 𝑘 − 𝑧𝑚))′,
𝛿2 = (𝐹 (𝑘 − 𝑧1), . . . , 𝐹 (𝑘 − 𝑧𝑚))′,
p𝑛 = (𝑝(𝑛, 𝑧1), . . . , 𝑝(𝑛, 𝑧𝑚))

′,

w = (𝑐1𝑓(𝑧1 + 𝑘), . . . , 𝑐𝑚𝑓(𝑧𝑚 + 𝑘))′,

Ω = (𝜔𝑖𝑗), 𝜔𝑖𝑗 = 𝑐𝑗𝑓(𝑧𝑗 + 𝑘 − 𝑧𝑖).

Eq. (5) and Eq. (6) can be approximately written as{
p𝑛 = 𝑝(𝑛− 1, 0)𝛿2 +Ωpn−1,
p1 = 𝛿1.

(B1)

When initial value is 0, we note that{
𝑝(1, 0) = 1− 𝐹 (ℎ+ 𝑘),
𝑝(𝑛, 0) = 𝑝(𝑛− 1, 0)𝐹 (𝑘) +w′p𝑛−1.

(B2)

Due to the recursive form of Eq. (B2), substituting p𝑛 with Eq. (B1), we can
have

𝑝(𝑛, 0)

= 𝐹 (𝑘)𝑝(𝑛− 1, 0) +w′[𝑝(𝑛− 2, 0)𝛿2 +w′p𝑛−2]

= 𝐹 (𝑘)𝑝(𝑛− 1, 0) +w′Ω0𝛿2𝑝(𝑛− 2, 0) + ⋅ ⋅ ⋅+w′Ω𝑛−3𝛿2𝑝(1, 0) +w′Ω𝑛−2𝛿1

= 𝐹 (𝑘)𝑝(𝑛− 1, 0) +

𝑛−3∑
𝑗=0

𝐾2𝑗𝑝(𝑛− 2− 𝑗, 0) +𝐾1 𝑛−2, (B3)

where 𝐾1𝑗 = w′Ω𝑗𝛿1,𝐾2𝑗 = w′Ω𝑗𝛿2, 𝑗 = 0, 1, 2, . . ..
If all the absolute values of the eigenvalues of Ω are less than 1, for sufficiently

large 𝑛, we can find a positive integer 𝑁 large enough such that (B3) can be
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approximately written as

𝑝(𝑛, 0) = 𝐹 (𝑘)𝑝(𝑛− 1, 0) +
𝑁∑
𝑗=0

𝐾2𝑗𝑝(𝑛− 2− 𝑗, 0) +𝐾1 𝑛−2. (B4)

The ARL with initial value 0 can be computed by Eq. (B3) and Eq. (B4) and
the ARL with non-zero initial value by Eq. (B1) and Eq. (B4). [46], moreover, gave
out the following numerical expression to compute ARL,

𝐴𝑅𝐿(𝑧𝑗) = 𝑟1𝑗 + 𝑟2𝑗𝐴𝑅𝐿(0), (B5)

where r𝑖 = (𝑟𝑖1, . . . , 𝑟𝑖𝑚)
′, 𝑖 = 1, 2 satisfies integral equations

(I−Ω)r1 = 1, (I−Ω)r2 = 𝛿2.

Note that the computing speed of the approximation in Eq. (B5) is more fast
because all of the values of Ω, 𝛿1, 𝛿2,w are independent of 𝑛 so as to need to be
computed and only computed for one time.


