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Abstract

Amultivariate change point control chart based on data depth (CPDP) is considered
for detecting shifts in either the mean vector, the covariance matrix, or both of the
process for Phase I. The proposed chart is preferable from a robustness point of
view, has attractive detection performance and can be especially useful in Phase
I analysis setting where there is limited information about the underlying process.
Comparison results and an illustrative example show that our CPDP chart has
great potential for Phase I analysis of multivariate individual observations. The
application of CPDP chart is illustrated in a real data example.

Key words: False Alarm Probability; Individual Observations; Nonparametric
Test; Robustness.

1 Introduction

In modern statistical process control (SPC) applications, it is common to mon-
itor several correlated quality characteristics of a process simultaneously. This
challenge motivates attempts to extend the univariate Shewhart (Shewhart
, 1931) chart, cumulative sum (CUSUM) chart (Page , 1954) and exponen-
tially weighted moving average (EWMA) (Roberts , 1959) chart to multivari-
ate data, such as Hotelling’s 𝑇 2 chart (Hotelling , 1947), multivariate CUSUM
(MCUSUM) chart (Crosier , 1988) and multivariate EWMA (MEWMA) chart
(Lowry et al. , 1992).
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In the literature, there are Phase I and Phase II control charts that need to
be distinguished. In Phase II, the process distribution is assumed to be com-
pletely known. Most of the classical application of control schemes require the
assumption that the process being inspected follows a multivariate normal dis-
tribution. Bersimis et al. (2007) gave an overview on multivariate SPC charts
before 2007 and some recent work include Huwang et al. (2007), Reynolds
and Stoumbos (2008), Hawkins and Maboudou-Tchao (2008), Hawkins and
Deng (2009) and Zhang et al. (2010). In most applications, the normal-
ity assumption is, however, not valid, especially for multivariate observations.
Stoumbos and Sullivan (2002) studied the robustness of MEWMA control
chart under non-normality. The results showed that if the true distribution is
quite different from the assumed form, the properties of the control procedure
can be considerably different. From another perspective, in most industrial
and service applications, even the process follows multivariate normal distri-
bution, the mean vector and covariance matrix of the process are replaced
with estimates from an in-control reference sample. However, using estimated
parameters usually leads to significantly deteriorated chart performance. In-
terested readers are referred to an excellent literature review paper by Jensen
et al. (2006) and references therein. Under such circumstances, it is pragmatic
to consider a nonparametric control procedure, which is less influenced by the
underlying distribution.

Nonparametric control schemes enjoy the advantage of greater robustness over
parametric control schemes. Chakraborti et al. (2001) gave an overview of
the development of the univariate nonparametric control schemes, where the
statistics used are mostly ranks. Recently, Qiu and Li (2011a,b) proposed non-
parametric control charts from an aspect different from ranks and they con-
structed nonparametric control charts by categorizing and transforming the
observations, respectively. Few nonparametric multivariate control schemes
have been proposed. Liu (1995) proposed three nonparametric control charts
based on simplicial data depth, the r chart, Q chart and S chart. These three
charts can be viewed as simplicial-depth-based multivariate generalizations of
the univariate X, 𝑋 and CUSUM chart. Qiu and Hawkins (2001, 2003) and
Qiu (2008) studied nonparametric CUSUM chart based on anti-ranks. How-
ever, all of these charts need large Phase I sample. Woodall and Montgomery
(1999) and Stoumbos et al. (2000) showed that nonparametric procedure for
multivariate problems is an open area with great potential.

All the literature mentioned above focus on Phase II charts. In Phase I, how-
ever, the presumption is that the process distribution, and by extension process
parameters, is unknown. Therefore, it is necessary to establish that a process
is statistically in control and estimate the process parameters, referred to as
Phase I or retrospective analysis. In Phase I analysis, the finite historical data
are used to decide if the process is statistically in control and to estimate pro-
cess parameters. Sometimes, the nature of the process may suggest rational
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subgroups within which the quality measurements are relatively homogeneous.
On the other hand, there are many situations where it is reasonable to ana-
lyze individual observations, possibly because measurement is automated and
every unit is measured, the rate of production is slow, or for other reasons
(Montgomery , 2005). The Phase I analysis with individual multivariate ob-
servations is the focus of this paper.

In the literature, there are some multivariate control charts used in Phase I
analysis for individual or grouped observations, such as the usual 𝑇 2 control
charts (Wierda , 1994; Lowry , 1995; Mason et al. , 1997), the developed 𝑇 2

control charts (𝑇 2𝐷) (Holmes and Mergen , 1993), the control chart based
on likelihood ratio test (LRT) (Sullivan and Woodall , 2000; Srivastava and
Worsley , 1986). Sullivan and Woodall (2000) pointed out the LRT control
chart is more powerful than the 𝑇 2 and 𝑇 2𝐷 control charts in detecting a shift
in either the mean vector, the covariance matrix, or both for Phase I analysis.
The LRT chart of Srivastava and Worsley (1986) has better properties to
detect shift in mean vector, but it cannot detect the shift of covariance matrix.

Statistical depth functions have become increasingly researched as a useful
tool in nonparametric inference for multivariate data. They can be used as
quality index in quality control schemes. Data depth is one of the efficient
methods dealing with multivariate robustness for Phase I. Several definitions
of data depth are given in the literature, such as Mahalanobis depth (𝑀ℎ𝐷)
(Mahalanobis , 1936), Tukey depth (TD) (Tukey , 1975), simplicial depth (SD)
(Liu , 1990), majority depth (𝑀𝑗𝐷) (Singh , 1991), projection depth (PD) (Zuo
and Serfing , 2000) and spatial rank depth (SRD) (Gao , 2003). Based on data
depth, a change point control chart (called CPDP chart) is proposed in this
paper for detecting shifts in either the mean vector, the covariance matrix, or
both of the process. For comparisons, the LRT-based control chart of Sullivan
and Woodall (2000) is taken as a standard alternative. However, in fact, there
are no standard alternatives because LRT methods rely on the assumption
that the observations follow multivariate normal distribution. Therefore, we
choose some perhaps imperfect comparisons to show the effectiveness of our
approach.

The rest of this paper is organized as follows. The motivation, description,
design of our proposed control chart and estimate of the change point are given
in Section 2. The performance comparisons with LRT chart are discussed in
Section 3. An illustrative example and a real data example are considered in
Section 4 and Section 5, respectively. In Section 6, some computing aspects
are shown and the conclusion and discussion of the proposed chart are given
in Section 7.
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2 A New Nonparametric Control Chart for Phase I Analysis

2.1 The Effect of Non-Normality on LRT Chart

The design of LRT chart (Sullivan and Woodall , 2000) is based on the assump-
tion that the distribution of the observations is multivariate normal, denoted
as 𝑁𝑝(𝜇,Σ) and as 𝑁𝑝 for short. Stoumbos and Sullivan (2002) studied the ro-
bustness to non-normality of the MEWMA control chart. They mainly studied
the robustness of the MEWMA chart to non-normality when the underlying
distribution is multivariate 𝑡 with 𝜁 degrees of freedom, denoted as 𝑇𝑝,𝜁 and
multivariate gamma with shape parameter 𝜁 and scale parameter 1, denoted
as Γ𝑝,𝜁 . Details on the multivariate t and gamma distributions can be found in
the Appendix to Stoumbos and Sullivan (2002). In addition, the following two
distributions are involved, i.e., measurement components are independent and
identically distributed (i.i.d.) from 𝑡 distributions with 𝜁 degrees of freedom,
denoted as 𝑡𝑝,𝜁 and measurement components are i.i.d. from 𝜒2 distributions
with 𝜁 degrees of freedom, denoted as 𝜒2

𝑝,𝜁 . We will study the robustness to
non-normality of the LRT chart.

Table 1 gives the false alarm probability (FAP) 𝛼 for LRT chart for 𝑇𝑝,𝜁 dis-
tribution, Γ𝑝,𝜁 distribution, 𝑡𝑝,𝜁 distribution and 𝜒2

𝑝,𝜁 distribution, respectively.
Here, for simplicity, only the case when 𝑝 = 2 and 𝜁 = 5 is listed.

Insert Table 1 Here.

From Table 1, we see that the actual FAP is much larger than the calculation
based on a multivariate normal distribution. The difference between the actual
FAP and the FAP for the multivariate normal distribution is particularly
pronounced when the distribution is non-normal. This means that, false signal
will occur much more frequently than expected when the distribution is non-
normal, even when the process is operating properly. For example, when the
observations have multivariate 𝑡 distribution 𝑇2,5, the FAP will be 0.52, which
is almost 10 times as much as 0.05. For the multivariate gamma distribution
Γ2,5, the FAP can even be as large as 0.79. Therefore, a robust multivariate
control chart is highly urgent to be constructed, which motivates our proposed
control chart.

2.2 Design of the proposed scheme

In this section, we propose a Phase I control chart based on data depth, which
is used in detecting the shifts in either the mean vector, the covariance matrix,
or both of the process.
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Suppose we have 𝑛 independent observations from a multivariate distribution
of dimensionality p, i.e.,

𝑥𝑖 ∼ 𝐹(𝑝)(𝜇𝑖,Σ𝑖), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛. (1)

If the process is in control, then 𝜇𝑖 = 𝜇 and Σ𝑖 = Σ for all 𝑖. Assume that
a step shift in the mean or variance or both occurs after 𝜏th observations,
i.e. the mean and variance of the first 𝜏 observations is (𝜇,Σ), and the last
𝑛 − 𝜏 observations have different mean and variance (𝜇∗,Σ∗), where 𝜇∗ ∕= 𝜇
or Σ∗ ∕= Σ. Note that some non-normal distributions may not have a specific
covariance structure, such as 𝑡𝑝,𝜁 distribution and 𝜒2

𝑝,𝜁 distribution mentioned
in the previous subsection. Our proposed control chart may not be applicable
for multivariate non-normal distributions whose covariance is not well defined.

When the dimensionality 𝑝 = 1, a straightforward nonparametric test to detect
a mean change would be to use the Mann-Whitney two-sample test or the
Wilcoxon rank-sum test. For any 1 ≤ 𝑛1 < 𝑛, the Mann-Whitney statistic
for testing whether two samples 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛1 and 𝑥𝑛1+1, ⋅ ⋅ ⋅ , 𝑥𝑛 come from the
same distribution is defined as

𝑀𝑊𝑛1 =
𝑛1∑
𝑖=1

𝑛∑
𝑗=𝑛1+1

𝐼(𝑥𝑗 < 𝑥𝑖), (2)

where

𝐼(𝑥𝑗 < 𝑥𝑖) =

⎧⎨⎩
1, 𝑥𝑖 > 𝑥𝑗,

0, 𝑥𝑖 ≤ 𝑥𝑗.

The exact distributions of these statistics for different 𝑛1, 𝑛 are tabulated,
and the asymptotic distribution are known (Lehmann , 1975; Hettmansperger
, 1984).

In the high dimension (𝑝 > 1), we will propose a new test statistic, which can
be regarded as a generalized Mann-Whitney statistic. Consider a p-variate
quality vector, whose distribution is 𝐹(𝑝) given by equation (1) when the pro-
cess is in control. Assume that an assignable cause occurs, then any resulting
change in the process will be reflected by a location change and/or a scale
increase and characterized as a departure from 𝐹(𝑝)(𝜇,Σ) to an out-of-control
distribution 𝐹(𝑝)(𝜇

∗,Σ∗), and the departure will be reflected by a change in
the data depth of the observations.
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We define the statistic

𝑄(𝑛1) =
𝑛∑

𝑗=𝑛1+1

𝑅𝑛1(𝑗)

where

𝑅𝑛1(𝑗) =#{𝑥𝑖∣𝐷𝐹𝑛1
(𝑥𝑖) < 𝐷𝐹𝑛1

(𝑥𝑗), 𝑖 = 1, 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝑛1}
+

1

2
#{𝑥𝑖∣𝐷𝐹𝑛1

(𝑥𝑖) = 𝐷𝐹𝑛1
(𝑥𝑗), 𝑖 = 1, 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝑛1}

and 𝐷𝐹𝑛1
(𝑥𝑖) denotes the data depth of 𝑥𝑖 according to the empirical distri-

bution of 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛1 .

Although our 𝑄(𝑛1) is the generation of 𝑀𝑊𝑛1 to multivariate distribu-
tions, there is difference. In the definition of 𝑅𝑛1(𝑗), we consider the case
𝐷𝐹𝑛1

(𝑥𝑖) = 𝐷𝐹𝑛1
(𝑥𝑗), while the case 𝑥𝑖 = 𝑥𝑗 is not involved in the definition

of 𝐼(𝑥𝑗 < 𝑥𝑖). Qiu and Hawkins (2001) pointed out when all or 𝑝 − 1 mea-
surements are continuous, the chance of ties in 𝑝 measurements is negligible
for all practical purposes. When two or more measurements are discrete and
these discrete measurements can take the same values, however, ties among
the 𝑝 measurements are possible. We overcome the difficulty caused by ties by
allocating probability 1/2 to each two observations that share the same data
depth. By using this definition, no information about the data depth is lost.
One may also define

𝑅
′
𝑛1
(𝑗) = #{𝑥𝑖∣𝐷𝐹𝑛1

(𝑥𝑖) ≤ 𝐷𝐹𝑛1
(𝑥𝑗), 𝑖 = 1, 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝑛1}

to consider the ties. However, under this definition, in the two extreme cases,
i.e., if any two of the observations have different depth, the expectation of
𝑅

′
𝑛1
(𝑗) will be 𝑛1

2
and if all the observations have the same depth, the expec-

tation of 𝑅
′
𝑛1
(𝑗) will be 𝑛1, which seems unreasonable. But the expectation of

𝑅𝑛1(𝑗) under our definition will be 𝑛1

2
for these two extreme cases.

Note that when 𝑛1 is small, the information on which 𝑄(𝑛1) is constructed is
relatively scare. Take 𝑛1 = 1 for example, the data depths of observations 2
to 𝑛 are calculated based on the empirical distribution of just one observation
𝑥1. An immediate alternative method is to construct 𝑄(𝑛1) only when 𝑛1 is
relatively large (Loader , 1996). However, it is advisable to start the control
with small 𝑛1, so that the first sample is immediately considered after the
process is started.

The standardized statistic 𝑄(𝑛1) is defined by

𝑆𝑄(𝑛1) =
E(𝑄(𝑛1))−𝑄(𝑛1)√

Var(𝑄(𝑛1))
, (3)
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where

𝐸(𝑄(𝑛1)) =
𝑛1(𝑛− 𝑛1)

2
and Var(𝑄(𝑛1)) =

𝑛1(𝑛− 𝑛1)(𝑛+ 1)

12

are the mean and variance of 𝑄(𝑛1), respectively, when the process is in con-
trol. Note that we use E(𝑄(𝑛1)) − 𝑄(𝑛1) rather than 𝑄(𝑛1) − E(𝑄(𝑛1)) for
the reason that if there exist some shifts in the observations, the depth of
these observations will become smaller so that E(𝑄(𝑛1))−𝑄(𝑛1) will be pos-
itive with high probability. We prefer monitoring statistics getting larger if
the process is out-of-control. One may also use ∣𝑄(𝑛1)− E(𝑄(𝑛1))∣, which we
donot recommend because ∣𝑄(𝑛1) − E(𝑄(𝑛1))∣ are always non-negative even
all the observations are from the same distribution.

So, in the rest of this paper, the standardized likelihood ratio is defined by

𝑆𝑄(𝑛1) =
𝑛1(𝑛−𝑛1)

2
−𝑄(𝑛1)√

𝑛1(𝑛−𝑛1)(𝑛+1)
12

. (4)

Our proposed change point control chart based on data depth (CPDP) is
constructed by plotting the statistics 𝑆𝑄(𝑖) versus 𝑖 (1 ≤ 𝑖 < 𝑛). An out-of-
control signal is triggered if max1≤𝑖<𝑛 𝑆𝑄(𝑖) exceeds the given decision interval
(or control limit) ℎ𝑛,𝛼, which depends on the desired in-control FAP. Note that
we start plotting from 𝑖 = 1, although 𝑆𝑄(1) will always be 0. One might as
well start from 𝑖 = 2, which has no effect on the performance of the CPDP
chart.

It can be shown that, for fixed 𝑝,

𝑆𝑄(𝑛1)
𝒟−→𝑁(0, 1), as 𝑛1 → ∞, 𝑛− 𝑛1 → ∞. (5)

However, for a given sample size 𝑛, our proposed CPDP chart calls for calcu-
lating 𝑄(𝑛1) as 𝑛1 varies from small number to 𝑛−1. That is, regardless of how
big 𝑛 might be, one still has to calculate 𝑆𝑄(𝑛1) for small 𝑛1 values. Moreover,
even if equation (5) holds, the charting statistic max1≤𝑖<𝑛 𝑆𝑄(𝑖) does not con-
verge to 𝑁(0, 1). The distribution of max1≤𝑖<𝑛 𝑆𝑄(𝑖), which essentially is the
maximum of 𝑛−1 dependent random variables, is very difficult to derive even
in asymptotic sense. We do not recommend to use the asymptotic distribution
𝑁(0, 1) in practice to find the decision interval ℎ𝑛,𝛼. Instead, we search for the
ℎ𝑛,𝛼 through simulation.

For given 𝑝 = 2 and various combinations of FAP 𝛼 and 𝑛, the ℎ𝑛,𝛼 for our
CPDP chart based on 10,000 Monte Carlo simulations are shown in Table 2.
In the simulations, the observations are generated from standard multivariate
normal distribution and the simplicial depth of Liu (1990) is used. However,
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the ℎ𝑛,𝛼 can also be used for other multivariate distributions and data depth
and the reasons are discussed below.

Insert Table 2 Here.

From Table 2, we observe that ℎ𝑛,𝛼 generally increases as 𝑛 increases and
nearly stabilized when 𝑛 is large. We also listed the upper 𝛼 percentile of
𝑁(0, 1) in the bottom row of Table 2. We can see that the simulated ℎ𝑛,𝛼 are
lager than the corresponding percentile of 𝑁(0, 1), which, again, indicates that
the convergence in equation (5) does not hold well because small 𝑛1 values are
involved.

The data depth 𝐷𝐹𝑛1
(𝑥𝑖) can be any kind of sample data depth introduced

in the Introduction. Suppose that, given a sample of 𝑛 observations from a
multivariate distribution, one wants to calculate the data depth of a new ob-
servation with respect to this sample. If the new observation comes from the
same distribution, then the distribution of the data depth is approximately
𝑈(0, 1). This conclusion holds regardless of the underlying multivariate distri-
bution (under very mild restrictions) and the type of data depth used. This
proposition is particularly useful in determining the control limit, ℎ𝑛,𝛼, be-
cause, for any multivariate distribution, it is the same as achieving the desired
in-control FAP.

Note also that if the new observation comes from a different distribution,
the result of a change in mean or covariance matrix or both of the original
distribution, then the distribution of the data depth is not 𝑈(0, 1) any more.
The problem of detecting changes from a distribution to another different
distribution is interesting and warrants further research.

2.3 Estimate of the Change Point

In Phase I analysis, when a special cause produces a change in one or more
process parameters, it is important to detect this change quickly, and it is also
necessary to give an estimate for the position of shift if the process param-
eters have been shifted. Such an estimate of the change point is particularly
important for our CPDP chart, which is used for Phase I analysis where the
information we can obtain is not so much and data must be made “clean” for
Phase II analysis. The estimate of the change point in the process will help
one to identify and eliminate the special cause of a problem quickly and easily.

We propose an estimate of the change point based on the maximum likelihood
estimator of the change point 𝜏 , i.e., the change occurs at the time 𝜏 + 1. For
our proposed CPDP chart, the estimate of the position of shift, under the
assumption that there is only one sustained shift in the process parameter(s),
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is given by

𝜏 = 𝑎𝑟𝑔
1≤𝑡<𝑛

max{𝑆𝑄(𝑡)}, (6)

which is consistent with Pettitt (1979). If there are multiple sustained shifts in
the process parameter(s), we can use the binary segmentation method recur-
sively, i.e., split the sample into two sets, 𝑥1, ⋅ ⋅ ⋅ , 𝑥�̂� and 𝑥�̂�+1, ⋅ ⋅ ⋅ , 𝑥𝑛, and find
possible change points from these two separate sets until there is no evidence
for change points (Yao , 1988; Zou et al. , 2008).

3 Performance Comparisons

As Sullivan and Woodall (1996) pointed out, the average run length (ARL)
can not be used as the criterion of performance in Phase I analysis. Therefore,
as Sullivan and Woodall (1996) and Koning and Does (2000), the FAP and
the true signal probability (TSP) are used to compare the performance of
control charts for Phase I analysis. A control chart is said to be better than
another one if its TSP is larger than the other’s when the process is out of
control, while they have the same FAP when the process is in control.

In this section, we compared our proposed CPDP chart with the LRT chart of
Sullivan and Woodall (2000) only, because there is no corresponding nonpara-
metric multivariate detecting scheme in Phase I analysis as far as we know
and the LRT chart has shown to be quite competitive among all the exist-
ing control charts for location change and/or a scale increase in parametric
settings. Note that the LRT chart of Sullivan and Woodall (2000) is con-
structed under the assumption that the observations are from multivariate
normal distribution.

Following the robustness analysis in Stoumbos and Sullivan (2002), we con-
sider multivariate normal distribution (𝑁𝑝), multivariate 𝑡 distribution with
𝜁 degrees of freedom (𝑇𝑝,𝜁), multivariate gamma distribution with shape pa-
rameter 𝜁 and scale parameter 1 (Γ𝑝,𝜁), measurement components i.i.d. from
𝑡 distributions with 𝜁 degrees of freedom (𝑡𝑝,𝜁) and measurement components
i.i.d. from 𝜒2 distributions with 𝜁 degrees of freedom (𝜒2

𝑝,𝜁). For simplicity, the
case for 30 observations, 𝑝 = 2, 𝜁 = 5 and 𝐹𝐴𝑃 = 0.05 is presented only in
this paper. The results in this section are evaluated by 10,000 simulations.

Table 3 compares the TSP when the mean vector is shifted after 15 of 30
observations. The squared length of the difference in the mean vectors 𝛿∗ =
(𝜇∗−𝜇)𝑇Σ−1(𝜇∗−𝜇) is shown in the top row. As an anonymous referee pointed
out, although the LRT chart is developed specifically for multivariate normal
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distribution, it is possible, as Jones-Farmer et al. (2009), to adjust the control
limit of the LRT chart, so that it will have the desired 𝐹𝐴𝑃 = 0.05 under a
multivariate non-normal distribution, and then compare the chart performance
of the CPDP chart against the LRT chart under this multivariate non-normal
distribution. Therefore, we adjusted the control limit of the LRT chart such
that the FAP is maintained at 0.05 for all distributions considered.

From Table 3, we can have the following conclusions. First, when the process is
multivariate normal 𝑁2, the LRT chart performs much better for 𝛿∗ ≤ 3, (e.g.,
the TSP could be twice that of the CPDP chart for 𝛿∗ = 1.5), slightly better
or almost the same for 𝛿∗ ≥ 4.5. Second, when the process is multivariate 𝑡
distribution 𝑇2,5, the LRT chart has scarcely detection power for 𝛿∗ ≤ 4.5,
while our CPDP chart has much better performance (e.g., the TSP of CPDP
chart is nearly 8 times that of the LRT chart for 𝛿∗ = 4.5). Although the
detection ability of LRT chart gets better as the shift 𝛿∗ gets larger, it still has
quite lower TSP than our CPDP chart. Third, when the process is multivariate
gamma distribution Γ2,5, the LRT chart has scarcely detection power for all
the shift considered here (e.g., even for 𝛿∗ = 12.0, the TSP of the LRT chart
is only as 0.12). Compared with LRT chart, our CPDP chart has quite sat-
isfactory performance. Fourth, for the measurement components non-normal
distributions 𝑡2,5 and 𝜒2

2,5, our CPDP chart is uniformly much better than the
LRT chart.

Insert Table 3 Here.

Note, when 𝑝 = 1, that the LRT chart is designed under the condition that
the process variance is stable. In this case, the LRT chart is equivalent to the
well known two-sample 𝑡 test between the left and right part of the sequence,
maximized across all possible change-points (Hawkins et al. , 2003). The two-
sample 𝑡 test is a direct competitor to the Mann-Whitney test. Remarkably,
even when the underlying distributions are normal, the Mann-Whitney test is
about 0.96 as efficient (Gibbons , 2003) as two-sample 𝑡 test for moderately
large sample sizes, and yet, unlike the two-sample 𝑡 test, it does not require
normality to be valid. Moreover, for some skewed or heavy-tailed distributions,
the Mann-Whitney test is known to be more efficient than the two-sample 𝑡
test.

Table 4 shows the TSP when the covariance matrix shifts after 15 of 30 obser-
vations. The shifted covariance matrix is a scalar multiple of the first element
and the scalar multiple 𝜎∗ appears in the top row. Note that there is no specific
covariance structure for the 𝑡𝑝,𝜁 and 𝜒2

𝑝,𝜁 distributions, therefore, covariance
shift is not considered for these two distributions. From Table 4, when the
process is multivariate normal, the LRT chart is better than the CPDP chart,
except for 𝜎∗ = 2.5 and 3.0. When the process is multivariate non-normal, our
CPDP chart is uniformly much better than the LRT chart, especially for 𝑇2,5.
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Insert Table 4 Here.

From Tables 3 and 4, for multivariate normal distribution, the chart perfor-
mance of the LRT chart, as expected, is generally better than our proposed
CPDP chart, even when the process shift is small. As the shift size grows,
the performance of our CPDP chart gets better and is comparable with LRT
chart. Therefore, our CPDP chart does not lose much efficiency even though
the underlying distribution is normal. Our CPDP chart can be used for any
multivariate distributions, while maintaining the same FAP. This is one ad-
vantage of our CPDP chart compared with LRT chart, which can only be used
for multivariate normal distributions. When the process is multivariate non-
normal, our CPDP chart is uniformly much better than the LRT chart. This is
another advantage of our CPDP chart. Moreover, from the simulation results,
it seems that our CPDP chart is more effective for symmetric distributions
with heavy tails than skewed distributions.

4 Illustrative Example

In this section, an illustrative example is given to introduce the implementa-
tion of CPDP control chart.

The observations of the example are total 𝑛 = 30 observations, which are
normally distributed with mean vector 𝜇 and covariance matrix 𝐼2. Note that
the mean vector 𝜇 has been shifted from (0, 0)

′
to (1.5, 1.5)

′
after sample 20.

As the LRT chart of Sullivan and Woodall (2000) is constructed under the
assumption that the observations are from multivariate normal distribution,
we also incorporated the monitoring statistics of LRT chart for this example.

Table 5 presents the observations 𝑥𝑖,1, 𝑥𝑖,2, the expectation and variance of
𝑄(𝑖), the statistic 𝑄(𝑖) and the standardized statistic 𝑆𝑄(𝑖) based on 𝑆𝐷 of
Liu (1990), and the monitoring statistics of 𝐿𝑅𝑇 (𝑖), respectively. Given FAP
𝛼 = 0.05, the control limit for our CPDP chart is 2.280 from Table 2. It can be
clearly seen from Table 5 that our CPDP control chart can detect the change.
Moreover, note that the maximum value of 𝑆𝑄(𝑖) in column 7 is 𝑆𝑄(20), which
indicates exactly the shift after observation 20. At the same time, noting the
control limit for LRT chart is 1, the maximum value of 𝐿𝑅𝑇 (𝑖) in the last
column is 𝐿𝑅𝑇 (20) and also indicates exactly the shift. From Table 5, for
multivariate distribution and step mean vector shift, our CPDP chart has as
good as performance of LRT chart.

Insert Table 5 Here.

As an anonymous referee pointed out, for any Phase I control charting scheme,

11



it is typically assessed against three possible out-of-control scenarios, (i) a step-
change in the process; (ii) the presence of out-of-control observations at fixed
or random sampling periods, and (iii) a gradual shift in the process. A Phase
I control chart is not expected to perform well under all three out-of-control
scenarios. However, it will provide better understanding of our proposed CPDP
chart if its performance can also be evaluated under scenarios (ii) and (iii).

We assumed a mean shift of 3 for the original samples 20, 25 and 30 and a
gradual mean increase of 1.5 × 𝑖−20

10
for the original samples 𝑖, 20 ≤ 𝑖 ≤ 30 of

this illustrative example, to study the performance of our CPDP chart under
scenarios (ii) and (iii), and the results are shown in Tables 6 and 7, respectively.
From Table 6, we can see that our CPDP chart can not detect out-of-control
observations at fixed or random sampling periods, even the mean shift of these
out-of-control observations is as much as 3. Although in this case, the LRT
chart can give an out-of-control signal, the maximum value of LRT chart is
𝐿𝑅𝑇 (28) = 1.72, which can not divide these observations into two groups as
the LRT chart can not be constructed for samples 29 and 30. From Table 7, we
can see that our CPDP chart can detect gradual shift. Note that the gradual
shift begins at sample 21 and our CPDP chart gives a signal at sample 23. The
2-sample-delay may be caused by the fact that the mean shift is still small
for the initial stage of gradual shift. The LRT chart, however, can not give an
out-of-control signal in this case. From Tables 5-7, we believe our CPDP chart
is a good alternative of LRT chart when the observations are from multivariate
normal distributions.

Insert Table 6 Here.

Insert Table 7 Here.

Note that our proposed CPDP chart is aimed at location change and/or a scale
increase. In practice, the process mean and variability can vary simultaneously
during the monitoring period and it may be desirable to construct a control
chart that not only can detect changes in the process variability but also is
insensitive to shifts in the process mean. Huwang et al. (2007) proposed a
control chart that can serve the purpose above by subtracting an estimate of
the mean. At first thought, for our CPDP chart, if the first 𝑛1 and the last
𝑛2 = 𝑛 − 𝑛1 observations were each centered first by subtracting the mean
before calculating the 𝑄(𝑛1) and thus 𝑆𝑄(𝑛1), an out-of-control signal seems
more likely to indicate a change in the process covariance matrix. However,
this is not true based on our simulation results below.

For this example, we simulated mean shift (𝜇∗ = 𝜇 + 1.5,Σ∗ = Σ), variance
shift (𝜇∗ = 𝜇,Σ∗ = 2Σ) and simultaneous shift (𝜇∗ = 𝜇+1.5,Σ∗ = 2Σ) for the
original samples 20–30 and the 𝑆𝑄(𝑖) values are listed in Table 8. From Table
8, it is expected our CPDP chart can not give a signal if the observations were
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each centered and there is only mean shift. Although our CPDP chart can
give a signal when there is only variance shift or simultaneous shift, even if
the observations were each centered first, the signal points are before the true
change point, which means the signals are false. If the observations were not
each centered first, our CPDP chart can give out-of-control signals and indicate
the exact change point when there is only mean shift or simultaneous shift
and 1-sample-delay when there is only variance shift. For the unsatisfactory
performance of our CPDP chart with observations centered first, a possible
explanation is that the estimates of mean for the first 𝑛1 and the last 𝑛2

observations are far from the true mean if 𝑛1 is far from the true change
point.

Insert Table 8 Here.

We also compared the results calculated using both 𝑆𝐷 of Liu (1990) and
𝑀𝑗𝐷 of Singh (1991). Judging from the results, they both produced nearly
the same results. Therefore, the results based on 𝑀𝑗𝐷 of Singh (1991) are
not listed here, but available from the authors upon request.

5 Real Data Example

In this section, the application of our proposed CPDP chart chart is illus-
trated in a real data example, i.e., the gravel data, which was also used by
Sullivan and Woodall (2000) to show the implementation of their LRT chart
for change-point detection of mean vector or covariance matrix shifts. The
data set contains 56 individual observations from a European plant producing
grit, or gravel, giving the percent of the particles (by weight) that are large
and medium in size and is shown in Table 2 of Sullivan and Woodall (2000),
thus omitted here. Interested readers are referred to Sullivan and Woodall
(2000) for deeper background.

In Sullivan and Woodall (2000), the FAP 𝛼 is set to 0.05. Although we have
made a comparative study with LRT chart in Sections 3 and 4, we set the
same FAP 𝛼 with Sullivan and Woodall (2000) to show the application of our
CPDP chart more clearly. Note that, for our chart, the decision interval ℎ56,0.05

is about 2.519 by linear interpolation of ℎ50,0.05 = 2.463 and ℎ60,0.05 = 2.557
from Table 2. Figure 1 (a) shows the 𝑆𝑄(𝑖) values (solid curve connecting the
dots) along with ℎ56,0.05 = 2.519 (the horizontal dashed line). From Figure 1
(a), we see that our CPDP chart gives an out-of-control signal at observation
24, identifying the first 24 observations as group 1 and the rest as group 2,
which is consistent with the result of Sullivan and Woodall (2000).

Insert Figure 1 Here.
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Having divided the observations into two groups, it is generally useful to see
if there is evidence of other shifts within these groups. With the binary seg-
mentation method in Section 2.3, the first group shows no evidence of a shift
within it, based on analysis not shown here. The analysis of the second group
is shown in Figure 1 (b) and ℎ32,0.05 = 2.306 also obtained by interpolation.
From Figure 1 (b), we see that our CPDP chart gives another out-of-control
signal at observation 42, which is a little different from the result of Sullivan
and Woodall (2000), while the LRT chart of Sullivan and Woodall (2000)
gives an out-of-control signal at observation 43.

Holmes and Mergen (1993) also analyzed the gravel data, also concluding
that there was evidence of special causes of variation, associated specially
with observations 26 and 45. Compared with the analysis results of Sullivan
and Woodall (2000) and Holmes and Mergen (1993), our CPDP chart gives
reasonable analysis for the gravel data, which shows that our CPDP chart is
quite a useful tool for practitioners.

6 Computing the Depth

Kim et al. (2003) described an optimal algorithm which computes all bivariate
depth contours in 𝑂(𝑛2) time and space, using topological sweep of the dual
arrangement of lines. Once these contours are known, the location depth of
any point can be computed in 𝑂(log2 𝑛) time with no additional preprocessing
or in 𝑂(log 𝑛) time after 𝑂(𝑛2) preprocessing. We implement this algorithm to
compute TD (Tukey , 1975), SD (Liu , 1990), 𝑀𝑗𝐷 (Singh , 1991), PD (Zuo
and Serfing , 2000) and SRD (Gao , 2003) of a point. We compared the per-
formance of the control charts using these kinds of values and our simulation
results show that there is negligible difference between the simulated values.

Rousseeuw and Ruts (1992) developed a highly efficient Fortran algorithm to
compute the data depth of a point in a bivariate distribution. It requires only
𝑂(𝑛 log 𝑛) times instead of 𝑂(𝑛4) as required by direct computation based on
solving systems of equations. As to higher dimensions, Rousseeuw and Struyg
(1998) gave an algorithm for the computation of the location depth.

7 Conclusions and Considerations

Based on the Mann-Whitney test and data depth, a new Phase I change point
control chart (denoted as CPDP) was introduced to detect location change
and/or scale increase in Phase I analysis. The simulation results show that
our proposed CPDP chart can match the performance of the LRT chart in
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the normal distribution setting and give much better performance in non-
normal setting, as it has much greater robustness of good performance. The
major advantage of our multivariate CPDP control charts is their attractive
applicability when there is little information about the underlying distribution.
Therefore, our proposed CPDP chart seems to offer an attractive alternative
to the normal-based charts for cases where normality can not reasonably be
assumed.

As shown in this paper, there exist many algorithms for computing the depth
in the literature. However, the effort in computation the depth is still high,
especially when the dimension is high. We believe that finding more efficient
algorithms is quite an interesting topic. The problem of detecting changes from
a distribution to another different distribution is also interesting and warrants
further research.
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Table 1
Simulated FAP 𝛼 for LRT chart.

Dist. 𝑁2 𝑇2,5 Γ2,5 𝑡2,5 𝜒2
2,5

𝛼 0.05 0.52 0.79 0.53 0.33

Table 2
Simulated control limit ℎ𝑛,𝛼 for CPDP chart.

𝛼 0.10 0.05 0.03 0.02 0.01

30 2.058 2.280 2.406 2.532 2.679

40 2.175 2.413 2.557 2.637 2.818

50 2.218 2.463 2.652 2.779 2.980

60 2.305 2.557 2.697 2.844 3.057

n 70 2.326 2.588 2.754 2.881 3.084

80 2.387 2.658 2.835 2.966 3.150

90 2.391 2.671 2.848 2.980 3.196

100 2.408 2.680 2.850 2.989 3.202

𝑁(0, 1) 1.282 1.645 1.881 2.054 2.326

Table 3
Simulated TSP for mean shift.

𝛿∗ 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0

𝑁2 LRT 0.05 0.53 0.60 0.72 0.84 0.92 0.97 0.99 0.99

CPDP 0.05 0.22 0.47 0.69 0.83 0.91 0.95 0.98 0.99

𝑇2,5 LRT 0.05 0.06 0.07 0.08 0.11 0.15 0.20 0.27 0.35

CPDP 0.05 0.24 0.44 0.62 0.75 0.83 0.89 0.92 0.94

Γ2,5 LRT 0.05 0.06 0.06 0.06 0.07 0.07 0.08 0.10 0.12

CPDP 0.05 0.10 0.30 0.52 0.68 0.80 0.87 0.91 0.94

𝑡2,5 LRT 0.05 0.06 0.07 0.08 0.09 0.13 0.17 0.24 0.31

CPDP 0.05 0.23 0.42 0.60 0.74 0.82 0.88 0.92 0.95

𝜒2
2,5 LRT 0.05 0.06 0.08 0.10 0.16 0.25 0.36 0.47 0.59

CPDP 0.05 0.11 0.32 0.54 0.70 0.82 0.88 0.92 0.94
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Table 4
Simulated TSP for covariance shift.

𝜎∗ 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

𝑁2 LRT 0.05 0.50 0.51 0.53 0.80 1.00 1.00 1.00 1.00

CPDP 0.05 0.22 0.47 0.69 0.83 0.91 0.95 0.98 0.99

𝑇2,5 LRT 0.05 0.05 0.06 0.07 0.08 0.10 0.13 0.16 0.21

CPDP 0.05 0.24 0.44 0.62 0.75 0.83 0.89 0.92 0.94

Γ2,5 LRT 0.05 0.05 0.07 0.11 0.19 0.32 0.47 0.61 0.73

CPDP 0.05 0.10 0.30 0.52 0.68 0.80 0.87 0.91 0.94
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Table 5
Data for illustrative example with a step shift in the mean.
𝑖 𝑥𝑖,1 𝑥𝑖,2 𝐸(𝑄(𝑖)) Var(Q(i)) 𝑄(𝑖) 𝑆𝑄(𝑖) 𝐿𝑅𝑇 (𝑖)

1 -0.09 -1.32 14.50 8.66 14.50 0.00 na
2 1.84 0.58 28.00 12.03 28.00 0.00 na
3 0.58 0.71 40.50 14.47 43.00 -0.17 0.10
4 -0.36 -0.97 52.00 16.39 53.50 -0.09 0.23
5 0.86 -0.65 62.50 17.97 64.00 -0.08 0.35
6 -0.42 0.12 72.00 19.29 72.00 0.00 0.34
7 1.15 0.54 80.50 20.39 68.00 0.61 0.42
8 -1.81 -0.74 88.00 21.32 74.50 0.63 0.43
9 0.62 -0.38 94.50 22.10 66.50 1.27 0.55
10 -0.94 0.89 100.00 22.73 82.50 0.77 0.47
11 -0.50 -0.41 104.50 23.24 72.50 1.38 0.62
12 0.18 0.51 108.00 23.62 67.00 1.74 0.69
13 2.62 1.82 110.50 23.89 78.50 1.34 0.50
14 -0.64 0.12 112.00 24.06 72.50 1.64 0.61
15 0.75 -1.61 112.50 24.11 68.00 1.85 0.58
16 -1.16 0.05 112.00 24.06 63.00 2.04 0.73
17 1.43 0.98 110.50 23.89 56.00 2.28 0.70
18 1.75 -1.08 108.00 23.62 63.00 1.91 0.71
19 -1.64 0.67 104.50 23.24 62.50 1.81 0.90
20 -0.51 -0.27 100.00 22.73 45.50 2.40 1.33
21 1.74 1.69 94.50 22.10 45.50 2.22 1.10
22 1.13 2.11 88.00 21.32 47.50 1.90 0.90
23 2.12 1.40 80.50 20.39 38.00 2.08 0.76
24 3.12 1.14 72.00 19.29 39.00 1.71 0.73
25 1.87 3.43 62.50 17.97 50.00 0.70 0.42
26 0.85 -0.26 52.00 16.39 31.00 1.28 0.72
27 1.13 2.42 40.50 14.47 22.00 1.28 0.42
28 2.54 0.17 28.00 12.03 21.50 0.54 0.48
29 1.40 1.93 14.50 8.66 3.50 1.27 na
30 1.12 3.48 na na na na na
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Table 6
Data for illustrative example with 3 increase for samples 20, 25 and 30.
𝑖 𝑥𝑖,1 𝑥𝑖,2 𝐸(𝑄(𝑖)) Var(Q(i)) 𝑄(𝑖) 𝑆𝑄(𝑖) 𝐿𝑅𝑇 (𝑖)

1 -0.09 -1.32 14.50 8.66 14.50 0.00 na
2 1.84 0.58 28.00 12.03 28.00 0.00 na
3 0.58 0.71 40.50 14.47 44.00 -0.24 0.13
4 -0.36 -0.97 52.00 16.39 55.50 -0.21 0.25
5 0.86 -0.65 62.50 17.97 65.00 -0.14 0.40
6 -0.42 0.12 72.00 19.29 75.00 -0.16 0.41
7 1.15 0.54 80.50 20.39 72.00 0.42 0.52
8 -1.81 -0.74 88.00 21.32 75.00 0.61 0.51
9 0.62 -0.38 94.50 22.10 68.00 1.20 0.65
10 -0.94 0.89 100.00 22.73 93.50 0.29 0.60
11 -0.50 -0.41 104.50 23.24 85.50 0.82 0.74
12 0.18 0.51 108.00 23.62 80.00 1.19 0.85
13 2.62 1.82 110.50 23.89 89.00 0.90 0.68
14 -0.64 0.12 112.00 24.06 85.50 1.10 0.80
15 0.75 -1.61 112.50 24.11 82.00 1.27 0.73
16 -1.16 0.05 112.00 24.06 80.50 1.31 0.85
17 1.43 0.98 110.50 23.89 75.50 1.46 0.88
18 1.75 -1.08 108.00 23.62 87.00 0.89 0.93
19 -1.64 0.67 104.50 23.24 97.50 0.30 1.09
20 2.49 2.73 100.00 22.73 102.50 -0.11 0.77
21 0.24 0.19 94.50 22.10 82.50 0.54 0.85
22 -0.37 0.61 88.00 21.32 72.50 0.73 0.96
23 0.62 -0.10 80.50 20.39 52.50 1.37 1.03
24 1.62 -0.36 72.00 19.29 43.50 1.48 1.09
25 4.87 6.43 62.50 17.97 42.50 1.11 0.21
26 -0.65 -1.76 52.00 16.39 41.00 0.67 0.20
27 -0.37 0.92 40.50 14.47 33.00 0.52 0.20
28 1.04 -1.33 28.00 12.03 27.00 0.08 1.72
29 -0.10 0.43 14.50 8.66 3.00 1.33 na
30 4.12 6.48 na na na na na
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Table 7
Data for illustrative example with gradual increase 1.5× 𝑖−20

10 for sample 𝑖, 20 ≤ 𝑖 ≤
30.
𝑖 𝑥𝑖,1 𝑥𝑖,2 𝐸(𝑄(𝑖)) Var(Q(i)) 𝑄(𝑖) 𝑆𝑄(𝑖) 𝐿𝑅𝑇 (𝑖)

1 -0.09 -1.32 14.50 8.66 14.50 0.00 na
2 1.84 0.58 28.00 12.03 28.00 0.00 na
3 0.58 0.71 40.50 14.47 44.00 -0.24 0.09
4 -0.36 -0.97 52.00 16.39 57.50 -0.34 0.19
5 0.86 -0.65 62.50 17.97 68.50 -0.33 0.30
6 -0.42 0.12 72.00 19.29 78.00 -0.31 0.26
7 1.15 0.54 80.50 20.39 76.00 0.22 0.34
8 -1.81 -0.74 88.00 21.32 80.50 0.35 0.31
9 0.62 -0.38 94.50 22.10 72.50 1.00 0.41
10 -0.94 0.89 100.00 22.73 89.00 0.48 0.29
11 -0.50 -0.41 104.50 23.24 80.00 1.05 0.40
12 0.18 0.51 108.00 23.62 75.00 1.40 0.45
13 2.62 1.82 110.50 23.89 87.00 0.98 0.31
14 -0.64 0.12 112.00 24.06 80.50 1.31 0.38
15 0.75 -1.61 112.50 24.11 79.00 1.39 0.30
16 -1.16 0.05 112.00 24.06 75.50 1.52 0.36
17 1.43 0.98 110.50 23.89 70.00 1.69 0.35
18 1.75 -1.08 108.00 23.62 77.50 1.29 0.34
19 -1.64 0.67 104.50 23.24 76.50 1.21 0.38
20 -2.01 -1.77 100.00 22.73 77.50 0.99 0.68
21 0.39 0.34 94.50 22.10 57.50 1.67 0.71
22 -0.07 0.91 88.00 21.32 48.00 1.88 0.78
23 1.07 0.35 80.50 20.39 31.00 2.43 0.75
24 2.22 0.24 72.00 19.29 31.00 2.13 0.72
25 1.12 2.68 62.50 17.97 44.00 1.03 0.39
26 0.25 -0.86 52.00 16.39 28.50 1.43 0.60
27 0.68 1.97 40.50 14.47 17.00 1.62 0.46
28 2.24 -0.13 28.00 12.03 16.00 1.00 0.56
29 1.25 1.78 14.50 8.66 3.00 1.33 na
30 1.12 3.48 na na na na na
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Table 8
Data for illustrative example with mean shift, variance shift and simultaneous shift.

with subtracting mean without subtracting mean
i mean variance simultaneous mean variance simultaneous

1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
3 0.07 -0.07 0.03 -0.17 -0.07 -0.03
4 0.12 -0.12 0.46 -0.09 -0.03 0.12
5 0.17 -0.14 0.58 -0.08 0.03 0.19
6 0.08 -0.29 0.52 0.00 0.16 0.29
7 0.69 0.25 0.98 0.61 0.76 0.93
8 0.63 0.19 1.20 0.63 0.89 0.96
9 0.97 0.52 1.52 1.27 1.52 1.58
10 1.28 0.97 1.89 0.77 1.19 1.23
11 1.48 1.40 2.35 1.38 1.74 1.83
12 1.88 1.88 2.48 1.74 2.14 2.24
13 1.30 1.49 2.51 1.34 1.76 2.05
14 1.31 2.02 2.72 1.64 2.04 2.41
15 1.47 2.22 3.24 1.85 2.24 2.74
16 1.33 2.22 3.26 2.04 2.35 2.97
17 1.80 2.66 2.99 2.28 2.57 2.80
18 1.10 2.16 2.52 1.91 2.24 2.92
19 0.30 2.00 2.00 1.81 1.98 2.80
20 -0.20 1.25 1.28 2.40 1.96 3.12
21 0.36 1.95 1.97 2.22 2.72 3.05
22 0.26 2.11 2.11 1.90 2.44 2.84
23 1.10 2.35 2.28 2.08 2.65 2.65
24 0.52 1.37 1.53 1.71 2.51 2.20
25 0.47 1.61 1.59 0.70 1.89 1.28
26 -0.21 0.18 0.37 1.28 1.56 1.56
27 0.52 0.69 1.00 1.28 1.11 1.38
28 -1.16 0.21 -0.50 0.54 0.50 0.75
29 -1.68 -1.68 -1.56 1.27 1.33 1.33
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Fig. 1. 𝑆𝑄(𝑖) values for the gravel data.
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