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Abstract

Monitoring coefficient of variation is one of the successful approaches to Statistical
Process Control (SPC) when the process mean and standard deviation are not
constants. This paper presents a modified Exponentially Weighted Moving Average
(EWMA) chart in order to further enhance the sensitivity of the EWMA control
chart proposed by Castagliola et al. (2011). Tables are provided for the statistical
properties of the new chart. Some numerical results and comparisons are given and
show that the new chart has an average run length performance that is superior to
some other competing procedures. A real data example from manufacturing shows
that it performs quite well in applications.
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1 Introduction

Ever since Shewhart introduced control charts, it has become a common prac-
tice for practitioners to use various control charts to monitor different pro-
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cesses. When we deal with variable data, the charting technique usually em-
ploys a chart to monitor the process mean and another chart to monitor the
process variance. The Shewhart �̄� and 𝑆 (or 𝑅) charts are industry standards
for quality control applications where the mean 𝜇 and the standard deviation
𝜎 of a process must be statistically controlled at the nominal values 𝜇0 and
𝜎0. The baseline assumption is that the nominal values are fixed constants,
and there are indeed many applications for which this assumption is reason-
able. To this end, it is reasonable to monitor the process mean and variance
simultaneously by a single chart, see Zhang et al. (2010, 2011), Costa et al.
(2013), Du et al. (2013) and Menzefricke (2013a,b). However, control charting
techniques were recently extended to various service sectors such as health,
education, finance (see Sharpe, 1994) and various societal applications. In ad-
dition, it is also adopted in chemical and biological assay quality control to
validate results, where the mean and the standard deviation may not be con-
stants all the time and the process may nevertheless be declared in-control
if their ratio remains stable around a constant value, see Reed et al. (2002).
As stated by Castagliola et al. (2013a,b), there are many opportunities for
SPC monitoring of the coefficient of variation (CV) also in the fields of mate-
rials engineering and manufacturing. Tool cutting life and several properties
of sintered materials are typical examples from this setting, and hence we will
show our proposed scheme performs quite well in applications through a real
data example from sintered materials manufacturing. In this case, the routine
use of the Shewhart charts is dubious, even though statistical control is still
sought. For example, direct proportionality 𝜎 = 𝛾𝜇 is a common relationship
between the mean and standard deviation in some processes. In this less re-
strictive setting, 𝜇 and 𝜎 may vary in the parameter space subject only to
𝛾 = 𝜎

𝜇
, so that only the CV parameter, 𝛾 , is constant. In this case, it is nat-

ural to explore the use of the CV. Several published works have investigated
the distribution of sample CV and its related inferential properties, see Hen-
dricks and Robey (1996), Iglewicz et al. (1968), Mckay (1932), Mahmoudvand
and Hassani (2009), Reh and Scheffler (1996), Tian (2005), Vangel (1996) and
Verrill and Johnson (2007).

Recently, Kang et al. (2007) developed a Shewhart-Type control chart for
monitoring the cyclosporine level in organ-transplantation procedures using
rational subgroups. As stated by Kang et al. (2007), the advantage of adopting
𝛾 as the monitored statistic by a control chart is evident for those chemical or
physical processes for which the variation of a quality characteristic 𝑋 has to
be controlled and the population standard deviation 𝜎 is proportional to the
mean 𝜇. This Shewhart-Type chart is sensitive to large shifts but not sensitive
to small to moderate shifts. The EWMA chart is also a good alternative to the
Shewhart control chart when we are interested in detecting small shifts. The
performance of the EWMA control chart is approximately equivalent to that
of the cumulative sum (CUSUM) control chart, and in some ways it is easier
to set up and operate. To this end, Hong et al. (2008) proposed an EWMA-CV
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control chart in order to improve the Shewhart-type chart proposed by Kang
et al. (2007) and detect small shifts more efficiently.

Castagliola et al. (2011) suggested a new method to monitor the CV by means
of two one-sided EWMA charts of the CV squared. A numerical analysis
demonstrated that this chart almost always performed better than the control
chart proposed by Hong et al. (2008) even if this statistical outperformance is
often rather small. However, the authors did not investigate the simultaneous
monitoring of increasing or decreasing shifts in CV, which is important in real
applications.

Recently, Calzada and Scariano (2013) developed a synthetic control chart for
monitoring the CV. The results showed that the synthetic chart performed
better than that of Kang et al. (2007), but worse than Castagliola et al. (2011)
as long as the increasing shift in the CV is not too large. In addition, Castagli-
ola et al. (2013a) evaluated an adaptive Shewhart control chart implementing
variable sampling interval strategy to monitor the process CV. Castagliola et
al. (2013b) proposed a Shewhart chart with supplementary run rules to moni-
tor the CV. However, as they pointed out, the run rules charts for monitoring
the CV does not outperform more advanced strategies like the chart proposed
by Castagliola et al. (2011) or the synthetic chart proposed by Calzada and
Scariano (2013).

The goal of this paper is to improve the performance of EWMA−𝛾2 chart
based on the preliminary work of Castagliola et al. (2011) by proposing a
new strategy for monitoring the coefficient of variation. The remainder of
this paper is organized as follows. A brief review of the one-sided EWMA−𝛾2

chart of Castagliola et al. (2011) is given in Section 2. Following that, our
modified EWMA chart is presented and the statistical performance of the
new chart is investigated. Sets of optimal design parameters are also provided
for different values of the in-control coefficient of variation, for different sample
sizes, and for a wide range of deterministic shifts, including both decreasing
and increasing cases in this Section. The numerical comparisons with some
other procedures are carried out in Section 3. The application of our proposed
method is illustrated in Section 4 by a real data example from chemical process
control. Several remarks conclude this paper in Section 5.

Now we summarize some abbreviated expressions used in this paper for easy
reference and recapitulation.

∙ EWMA: exponentially weighted moving average; Cusum: cumulative sum.
∙ CV: coefficient of variation;
MCV: modified chart for monitoring CV (this paper proposed);
ECV: EWMA chart for monitoring CV (Castagliola et al. ,2011);
SynCV: synthetic chart for monitoring CV (Calzada and Scariano, 2013);
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SRCV: Shewhart chart with supplementary run rules for monitoring CV
(Castagliola et al., 2013b);

∙ UCL: upper control limit; LCL: lower control limit; UWL: upper warning
limit; LWL: lower warning limit;

∙ IC: in-control; OC: out-of-control;
∙ ARL: average run length; ZS-ARL: zero-state average run length;
SDRL: standard deviation of the run length.

2 Monitoring CV with new modified EWMA chart

Suppose that we observe subgroups 𝑋𝑘1, 𝑋𝑘2, ⋅ ⋅ ⋅ , 𝑋𝑘𝑛 of size n at times 𝑘 =
1, 2, ⋅ ⋅ ⋅. We also assume that there is independence within and between these
subgroups and each random variable 𝑋𝑘𝑗 follows a normal 𝑁(𝜇𝑘, 𝜎𝑘) distribu-
tion, where parameters 𝜇𝑘 and 𝜎𝑘 are constrained by the relation 𝛾𝑘 =

𝜇𝑘

𝜎𝑘
= 𝛾0

when the process is in control. This implies that, from one subgroup to an-
other, the values of 𝜇𝑘 and 𝜎𝑘 may change, but the coefficient of variation
𝛾𝑘 = 𝜇𝑘

𝜎𝑘
must be equal to some predefined in-control value 𝛾0, common to all

the subgroups.

2.1 A brief review of EWMA−𝛾2 chart (Castagliola et al., 2011)

In this subsection, we give a brief review of the EWMA−𝛾2 chart proposed by
Castagliola et al.(2011) (denoted as ECV chart). First, an upward ECV chart
aims to detect an increase in the CV and is defined as

𝑍+
𝑘 = max(𝜇0(𝛾

2), (1− 𝜆+)𝑍+
𝑘−1 + 𝜆+𝛾𝑘

2), (1)

with 𝑍+
0 = 𝜇0(𝛾

2) as the initial value and with the asymptotic corresponding
upper control limit (UCL)

𝑈𝐶𝐿 = 𝜇0(𝛾
2) +𝐾+

√
𝜆+

2− 𝜆+
𝜎0(𝛾2). (2)

Second, a downward ECV chart aims to detect a decrease in the CV and is
defined as

𝑍−
𝑘 = min(𝜇0(𝛾

2), (1− 𝜆−)𝑍−
𝑘−1 + 𝜆−𝛾𝑘

2), (3)

with 𝑍−
0 = 𝜇0(𝛾

2) and with the asymptotic corresponding lower control limit
(LCL)
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𝐿𝐶𝐿 = 𝜇0(𝛾
2) +𝐾−

√
𝜆−

2− 𝜆−𝜎0(𝛾2), (4)

where 𝜇0(�̂�
2) and 𝜎0(�̂�

2) are the mean and standard deviation of 𝛾2 when the
process is in control and 𝜆+(𝜆−) and 𝐾+(𝐾−) are the smoothing constant and
chart coefficient of the upward (downward) ECV chart. Approximations for
𝜇0(�̂�

2) and 𝜎0(�̂�
2) are provided by Breunig (2001) as

𝜇0(𝛾
2) = 𝛾2

0(1−
3𝛾2

0

𝑛
), (5)

and

𝜎0(𝛾
2) = {𝛾4

0(
2

𝑛− 1
+ 𝛾2

0(
4

𝑛
+

20

𝑛(𝑛− 1)
+

75𝛾2
0

𝑛2
))− (𝜇0(�̂�

2)− 𝛾2
0)

2} 1
2 . (6)

The suggested one-sided EWMA charts have many advantages according to
Castagliola et al. (2011). However, it should be noted that, in Equation (1),
when 𝜇0(𝛾

2) > (1− 𝜆+)𝑍+
𝑘−1 + 𝜆+𝛾𝑘

2, then 𝑍+
𝑘 = 𝜇0(𝛾

2). So, in the next time
point, we have

𝑍+
𝑘+1 = max(𝜇0(𝛾

2), (1− 𝜆+)𝜇0(𝛾
2) + 𝜆+𝛾2

𝑘+1). (7)

It is obvious that the samples collected before time 𝑘 + 1 are not used any
longer. However, the advantage of the EWMA chart is that it will use not only
the information of the current sample but also will use the former samples.
To this end, in order to improve the performance of the ECV chart, next, we
propose a modified EWMA chart based on the ECV chart. The comparison
results showed that the new chart performs much better than the ECV chart,
especially for detecting small to moderate shifts in CV.

2.2 Our modified methodology

To further enhance the sensitivity of the ECV chart in monitoring the process
CV, we propose a modified procedure to the construction of 𝑍+

𝑘 and 𝑍−
𝑘 . First,

we define a new upward EWMA chart based on the sample CV (denoted as
upward MCV chart), 𝛾𝑘

2, as follows:

𝑍+
𝑘 = max(𝜇0(𝛾

2), 𝑈+
𝑘 ), (8)

where 𝑈+
𝑘 is defined as
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𝑈+
𝑘 = (1− 𝜆+)𝑈𝑘−1 + 𝜆+𝛾𝑘

2, (9)

where 𝑈+
0 = 𝜇0(𝛾

2) as the initial value. The asymptotic corresponding UCL is
the same as defined in Equation (2). Note that the difference between the MCV
and the ECV charts is that our new chart will use not only the information
of the current sample but also will use all of the former samples. So, it is
expected that the new chart will be more effective than the ECV chart.

Second, a new downward EWMA chart based on the sample CV (denoted as
downward MCV chart), 𝛾𝑘

2, as follows:

𝑍−
𝑘 = max(𝜇0(𝛾

2), 𝑈−
𝑘 ), (10)

where 𝑈−
𝑘 is defined as

𝑈−
𝑘 = (1− 𝜆−)𝑈𝑘−1 + 𝜆−𝛾𝑘

2, (11)

where 𝑈−
0 = 𝜇0(𝛾

2) as the initial value. The asymptotic corresponding LCL is
the same as defined in Equation (4).

An alarm is triggered as soon as 𝑍+
𝑘 > 𝑈𝐶𝐿 or 𝑍−

𝑘 < 𝐿𝐶𝐿, respectively. A
combination of the two one-sided charts can be implemented to detect both
increase and decrease shifts in CV. The 𝐾 values of the upper and lower
charts for some combinations of 𝜆, 𝛾0 and 𝑛 are presented in Tables 1-2 when
the in control average run length (IC-ARL) is 370. Upon request, Fortran
programs that optimize our new CV chart for other parameter conditions will
be provided.

3 Numerical results and comparison

In this paper, the average run length (ARL) measures the efficiency of a con-
trol chart in detecting a process change. This ARL performance is usually
referred to as the zero-state ARL(ZS-ARL) performance.When the process
is in control, it is desirable that the expected number of samples, in-control
ARL(IC-ARL), taken since the beginning of the monitoring until a signal is
large, to guarantee few false alarms. When the process is out of control, it is
desirable that the expected number of samples, out-of-control ARL(OC-ARL),
taken since the occurrence of the assignable cause until a signal is small, in
order to guarantee fast detection of process changes. A control chart is con-
sidered better than its competitors if it has the smaller OC-ARL value for a
specific shift 𝜏 ∗ in CV when IC-ARL is the same for all the charts. In this
section, the performance of our new chart is compared with some competing
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charts, including the ECV chart, the synthetic CV chart and the Shewhart
chart with supplementary run rules, respectively.

3.1 ARL optimization for the new chart and the comparison with ECV chart

Assume that when the process is in-control, 𝛾 = 𝛾0 and when the process is
out-of-control, 𝛾 = 𝛾1 = 𝜏𝛾0. Values of 0 < 𝜏 < 1 correspond to a decrease
of the nominal coefficient of variation, while values of 𝜏 > 1 correspond to an
increase of the nominal coefficient of variation. An optimization philosophy
will be considered in this study. In the standard optimization procedure, two
special ARL cases merit special attention: the in-control case IC-ARL and
out-of-control case OC-ARL, for specified 𝛾1. Once consideration is given to
the cost of halting a stable process to investigate a false-alarm signal, the
chart designer specifies IC-ARL at an acceptable level. Next, consideration
is given to the magnitude of a shift in the CV, 𝛾 = 𝜏𝛾0, regarded as most
detrimental to process quality, which must be identified and eliminated as
soon as possible. An optimal modified CV chart would minimize the ARL at
this shift, 𝜏 ∗, subject to the chosen in-control ARL constraint. That is, optimal
values (𝜆∗, 𝐾∗) are given by

(𝜆∗, 𝐾∗) = arg min
(𝜆,𝐾)

𝐴𝑅𝐿(𝛾0, 𝛾1, 𝜆,𝐾, 𝑛), (12)

subject to the constraint

𝐴𝑅𝐿(𝛾0, 𝛾0, 𝜆
∗, 𝐾∗, 𝑛) = 𝐴𝑅𝐿0. (13)

Similar to Castagliola et al.(2011), the complete heuristic design procedure is
implemented as follows:

– when the process is functioning at the nominal coefficient of variation 𝛾 = 𝛾0,
then 𝐴𝑅𝐿 = 𝐴𝑅𝐿0, where 𝐴𝑅𝐿0 is some predefined IC-ARL value.

– for a specified value 𝛾 = 𝜏 ∗𝛾0 ∕= 𝛾0, the couple (𝜆∗, 𝐾∗) yields the smallest
possible OC-ARL.

We compare our new chart with ECV chart in terms of the OC-ARL. The
ECV chart introduced by Castagliola et al.(2011) is statistically more efficient
at detecting small process shifts than the regular Shewhart control chart. For
fair comparisons, the values of 𝜆∗ is always kept larger than 0.05 in order to be
consistent with Castagliola et al.(2011). Tables 3 and 4 compare selected OC-
ARLs for the one-sided ECV chart and the new chart, where all charts have
an IC-ARL of 370 and have been optimized to minimize OC-ARLs at shift 𝜏 ∗.
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The optimal couples (𝜆∗, 𝐾∗) for the new charts are presented in the first row
of each block of Tables 3 and 4, for 𝑛 = {5, 7, 10, 15}, 𝛾0 = {0.05, 0.1, 0.15, 0.2},
and 𝜏 ∗ = {0.5, 0.65, 0.8, 0.9} (i.e. decreasing case), 𝜏 ∗ = {1.1, 1.25, 1.5, 2.} (i.e.
increasing case), while the out-of-control ZS-ARLs of the MCV(left side) and
ECV (right side) charts are presented in the second row of each block. In
general, the run length distribution of a control chart can be explored by
integral equations, Markov Chain or by a Monte Carlo simulation (Li et al,
2014). In this study, we used the Monte Carlo simulation approach through
an algorithm developed in FORTRAN.

It can be seen that, whatever the values of 𝑛, 𝛾0 or 𝜏 ∗, the ARLs of the new
chart are smaller than the ARLs of the ECV chart, especially for detecting
small to moderate shifts in CV, clearly demonstrating the outperformance
of the former over the latter. For instance, concerning the increasing case, if
𝑛 = 5, 𝛾0 = 0.1 and the critical shift is 𝜏 ∗ = 1.1, then OC-ARL in this case are
44.5 for the MCV chart and 51.5 for the ECV chart. Concerning the decreasing
case, if 𝑛 = 10, 𝛾0 = 0.2 and the critical shift is 𝜏 ∗ = 0.9 then the OC-ARL is
24.8 for the MCV chart, while, for the ECV chart, the corresponding value of
OC-ARL is 31.7. When the shift size is large (e.g., 𝜏 ∗ = 1, 5, 2.0), these two
charts have similar performance.

The standard deviation of the run length (denoted as SDRL) is usually used
as another measure to evaluate the performance of control charts. The smaller
the values of SDRL, the better the performance of a control chart. Compu-
tation of SDRLs for both the MCV and ECV charts also demonstrates that
the MCV run-length distribution is always more underdispersed than the one
corresponding to the ECV chart. For instance, concerning the two examples
described above, the SDRL corresponding to the increasing case is 35.9 for the
MCV chart, while it is 41.2 for the ECV chart, and the SDRL corresponding
to the decreasing case is 15.2 for the MCV chart while it is 19.2 for the ECV
chart.

In addition, it is observed from Tables 3-4 that the run length profiles for the
two charts are highly influenced by the sample size but not strongly influenced
by the size of the in-control 𝛾0, an observation also made by Kang et al. (2007).
Under the fixed sample size rational subgrouping model, practitioners of these
charts should choose the largest sample size that resources allow.

As noted by Castagliola et al.(2011), specifying this shift a priori is often too
restrictive because the quality practitioner may not have historical knowledge
of the process, or because shifts are not deterministic but follow some un-
known distribution. If the practitioner pre-specifies a shift 𝜏 ∗, and uses the
corresponding optimal parameters but experiences a different shift in the CV,
then the run length performance of the chart may be seriously undermined.
Castagliola et al.(2011) suggested an alternate optimization procedure in order
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to cope with the random shift-size problem in the design of control charts mon-
itoring the sample CV. Similar approaches have been proposed by Reynolds
and Stoumbos (2004), Wu et al. (2008), and Celano (2009).

From Tables 5-6 of Castagliola et al.(2011), we can see that the optimal value
of 𝜆 is 0.05 when the sample size 𝑛 ≤ 10 and the charts with 𝜆 = 0.1 perform
better for larger sample size. To this end, for simplicity, in this paper, we
will not consider the optimization procedure mentioned above, instead, we
make a comparison between the MCV and ECV charts with 𝜆 = 0.05, 0.1
and 𝛾0 = 0.1, 0.2. The results are summarized in Table 5. From this table it
is observed that the MCV chart always yielded smaller ARL values than the
ECV chart, especially for detecting small to moderate shifts in CV.

3.2 Comparison with the synthetic chart

Very recently, Calzada and Scariano (2013) suggested a synthetic control chart
(SynCV in short) for monitoring the CV. Since the original synthetic chart
to be compared in this section are designed to monitor increases in 𝛾, we
will only compare the upward modified CV chart with the synthetic chart in
this paper. We compared the behavior of the proposed chart for two sizes of
rational groups, 𝑛 = 5 and 𝑛 = 10. These choices are widely recommended
and used in rational group cases. All charts have an IC-ARL of 370.4 and the
synthetic and our new CV charts have been optimized to minimize OC-ARLs
at shift 𝜏 ∗ = 1.25, 1.50 and 2.00, respectively. The results are tabulated in
Tables 6-7. From these two tables we observed the following results:

∙ When the sample size 𝑛 = 5, the new chart outperforms the synthetic
chart in almost all cases except when the shift size is large (e.g., 𝜏 = 2).
For instance, when 𝛾0 = 0.1, 𝜏 = 1.25 and 𝜏 ∗ = 1.25. Calzada and Scariano
(2013) suggested (𝐿∗, 𝐿𝐶𝐿∗, 𝑈𝐶𝐿∗) = (31, 0.02271, 0.19499). Table suggests
(𝜆∗, 𝐾∗) = (0.08, 2.722), the OC-ARL is 24.3 for the synthetic chart, while,
for the new chart, the corresponding value of OC-ARL is 13.7. In addition,
the computation of SDRLs (not shown in the Table) for both the syn-
thetic and the new charts also demonstrates that the new chart run-length
distribution is always more underdispersed than the synthetic chart. For
instance, concerning example described above, the SDRL is 9.3 for the new
chart, while it is 30.6 for the synthetic chart.

∙ When the sample size 𝑛 = 10, the synthetic chart does better when 𝜏 ≥ 1.5,
but the difference is not negligible.

The overall conclusion that can be obtained is that our new chart generally has
the satisfactory detection performance for various changes in CV. This, again,
shows that the new chart is quite a useful tool for practitioners to monitor the

9



CV.

3.3 Comparison with the Shewhart chart with supplementary run rules

Castagliola et al. (2013b) proposed a Shewhart chart with supplementary run
rules (SRCV in short) to monitor the CV. They studied three sensitizing rules
on Shewhart CV chart, 2-out-of-3, 3-out-of-4 and 4-out-of-5. As they stated,
the 4-out-of-5 chart has better performance in most cases, so, we choose this
chart as a benchmark in this comparison. Because the SRCV chart is two-
sided, in order to make a fair comparison between the two charts, we have
computed the OC-ARLs corresponding to two-sided modified CV chart. The
smoothing parameter 𝜆 is set to 0.05 and the IC-ARL of each of the one-sided
chart when used alone is approximately 720 such that the combined chart pro-
duces an IC-ARL of 370. Such chart is designed to protect in balance against
increasing and decreasing shifts in CV. For comparison purposes, the value of
𝛾0 and 𝜏 considered here are the same as those considered in Castagliola et
al. (2013b).

The results of the simulation study are tabulated in Table 8. Concerning the
increasing case, the new chart performs always much better than the SRCV
chart. For instance, when 𝑛 = 10, 𝛾0 = 0.1 and 𝜏 = 1.1 the OC-ARL is
87.7 for the SRCV chart, while, for our new chart, the corresponding value
of OC-ARL is 34.7. Concerning the decreasing case, the OC-ARL values in
Table 8 are more effective than the SRCV chart except in a very small region
where the CV shift is very large. For instance, when 𝑛 = 15, 𝛾0 = 0.2 and
𝜏 = 0.5 the OC-ARL is 4.0 for the SRCV chart, while, for our new chart, the
corresponding value is 4.3.

We also conduct some simulations for other choices of sample size and IC-
ARL, the preceding findings still hold. Generally speaking, the new scheme
provides quite a satisfactory performance for various types of shifts including
the increase and decrease in CV. By taking the consideration of its easy design
and implementation, we think our new proposed scheme is a serious alternative
in practical applications.

4 Real data application

In this section, we demonstrate the proposed methodology by a real data
set collected from a sintering process manufacturing mechanical parts. This
example considers actual data from a sintering process, an operation of powder
metallurgy whereby compressed metal powder is heated to a temperature that
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allows bonding of the individual particles. The process manufactures parts
which are required to guarantee a pressure test drop time 𝑇𝑝𝑑 from 2 bar to 1.5
bar larger than 30 sec as a quality characteristic related to the pore shrinkage.
Using molten copper to fill pores during the sintering process allows the drop
time to be significantly extended. In fact, the larger the quantity 𝑄𝐶 of molten
copper absorbed within the sintered compact during cooling, the larger is the
expected pressure drop time 𝑇𝑝𝑑.

A preliminary regression study relating 𝑇𝑝𝑑 to the quantity 𝑄𝐶 of molten
copper has demonstrated the presence of a constant proportionality 𝜎𝑝𝑑 =
𝛾𝑝𝑑 × 𝜇𝑝𝑑 between the standard deviation of the pressure drop time and its
mean. To perform SPC by means of control charts the quality practitioner
decided to monitor the coefficient of variation 𝛾𝑝𝑑 = 𝜎𝑝𝑑/𝜇𝑝𝑑 in order to detect
changes in the process variability. Given the nominal quantity of copper 𝑄𝐶 ,
a Phase I dataset of 𝑚 = 20 sample data, each having sample size 𝑛 = 5, have
been collected; they are listed in Table 7 (top) of Castagliola et al. (2011).
The analysis of the Phase I data resulted in an estimate 𝛾0 = 0.417 based
on a root-mean-square computation and proved that the sintering process is
perfectly in-control.

In order to be consistent with Castagliola et al. (2011), 𝜏 ∗ is set to 1.25.
The parameters of the new chart which is optimal for detecting a shift from
𝛾0 = 0.417 to 𝛾1 = 𝛾0 × 1.25 = 0.521 (i.e. increase of 25%) when 𝑛 = 5
are found by the optimizing algorithm to be (𝜆∗, 𝐾∗) = (0.08, 4.3164). Using
Equations (5) and (6), we have 𝜇0(𝛾

2) = 0.1557, 𝜎0(𝛾
2) = 0.1643, and the

upper control limit is 0.3005. The Phase I chart (not shown in the paper)
seems to confirm that the process is in control.

A second set of data collected during Phase II of the chart implementation are
presented in Table 7 (bottom) of Castagliola et al. (2011). These data consist
of 20 new samples taken from the process after the occurrence of a special
cause increasing process variability. The 𝑍𝑡 and the control limit UCL=0.3005
are plotted in Figure 1(a). For comparison, we also plot the ECV and SRCV
charts in Figure 1(b) and Figure 1(c). From this Figure, it is observed that
the our new chart gives an out-of-control signal at observation 13, which is
consistent with the result of Castagliola et al. (2011). With the same dataset,
the SRCV chart detects an out-of-control signal at the 15𝑡ℎ sample, which is
two points later than the MCV and ECV charts.

5 Summary and conclusion

The CV control chart extends charting capabilities to non-traditional appli-
cations. These include situations where the mean is not constant and/or the
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variance is a function of the mean, so that it may be possible to instead
plot the CV to achieve statistical control of that parameter. In this paper,
a modified EWMA chart is proposed to monitor the CV in order to further
enhance the sensitivity of the EWMA control chart proposed by Castagliola et
al.(2011). It is shown that the newly developed control scheme does not only
dominate most of the existing charts but is also easy to design and implement
as illustrated through an application example of real datasets.

Note that our new chart is based on the assumption that each random variable
follows a normal distribution. However, the underlying process is not normal
in many applications (Qiu and Li, 2011a,b), and as a result the statistical
properties of CV charts can be highly affected in such situations. Hence, it
is necessary to check how the proposed methodology performs when the un-
derlying distribution is violated, which also warrants future research. Future
research include a self-starting version of the new CV chart and a study of its
properties in cases when the IC parameters in the measurement distribution
are unknown (Li et al., 2010). Moreover, our chart is constructed under statis-
tical design and we believe a control chart for monitoring CV under economic
design (Zhang, Xie, Goh and Shamsuzzaman, 2011) warrants future research.
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Table 1
𝐾+ values of the upper MCV chart for the selected combinations of 𝜆, 𝛾0 and n
when IC-ARL=370

n 𝛾0 𝜆 = 0.05 0.1 0.2 0.3 0.5

5 0.05 2.363 2.793 3.254 3.555 3.962
0.10 2.439 2.851 3.311 3.613 4.023
0.15 2.568 2.964 3.408 3.711 4.131
0.20 2.759 3.110 3.555 3.857 4.287

7 0.05 3.322 2.725 3.135 3.398 3.743
0.10 2.390 2.773 3.188 3.447 3.798
0.15 2.509 2.866 3.269 3.525 3.879
0.20 2.666 2.998 3.379 3.633 4.009

10 0.05 2.29 2.666 3.037 3.262 3.555
0.10 2.352 2.715 3.077 3.301 3.599
0.15 2.451 2.791 3.144 3.371 3.667
0.20 2.585 2.901 3.237 3.456 3.766

15 0.05 2.266 2.617 2.949 3.149 3.398
0.10 2.309 2.656 2.983 3.184 3.437
0.15 2.393 2.715 3.042 3.232 3.486
0.20 2.505 2.801 3.110 3.306 3.565

Table 2
𝐾− values of the lower MCV chart for the selected combinations of 𝜆, 𝛾0 and n
when IC-ARL=370

n 𝛾0 𝜆 = 0.05 0.1 0.2 0.3 0.5

5 0.05 1.909 2.024 2.002 1.920 1.736
0.10 1.826 1.963 1.956 1.879 1.703
0.15 1.699 1.865 1.879 1.814 1.648
0.20 1.528 1.732 1.777 1.725 1.575

7 0.05 1.950 2.092 2.102 2.043 1.892
0.10 1.875 2.036 2.062 2.006 1.861
0.15 1.767 1.951 1.992 1.949 1.813
0.20 1.616 1.834 1.904 1.873 1.747

10 0.05 1.982 2.148 2.189 2.148 2.029
0.10 1.924 2.105 2.153 2.119 2.002
0.15 1.826 2.026 2.095 2.068 1.960
0.20 1.697 1.924 2.016 2.002 1.902

15 0.05 2.016 2.197 2.266 2.248 2.158
0.10 1.965 2.158 2.236 2.221 2.136
0.15 1.885 2.097 2.192 2.180 2.099
0.20 1.775 2.012 2.122 2.121 2.049
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Table 3
Optimal couples(𝜆∗,𝐾∗) and zero-state OC-ARLs of the MCV and ECV charts
when IC-ARL=370

𝜏∗ 𝛾0 = 0.05 𝛾0 = 0.1 𝛾0 = 0.15 𝛾0 = 0.2

n=5
0.50 (0.35, 1.875) (0.33,1.853) (0.39, 1.741) (0.43, 1.629 )

(4.5, 4.8) (4.5, 4.8) (4.4, 4.8) (4.4, 4.8)
0.65 (0.21, 1.995) (0.19, 1.961) (0.18, 1.885) (0.16, 1.781)

(7.9, 8.7) (7.9, 8.8) (7.9, 8.8) (7.8, 8.8)
0.80 (0.07, 1.982) (0.05, 1.828) (0.05, 1.699) (0.05, 1.528)

(17.8, 20.6) (17.6, 20.6) (17.2, 20.7) (16.3, 20.9)
0.90 (0.05, 1.914) (0.05, 1.831) (0.05, 1.699) (0.05, 1.523)

(43.9, 52.8) (43.4, 54.1) (42.5, 54.3) (41.1, 55.4)
1.10 (0.05, 2.363) (0.05, 2.439) (0.05, 2.578) (0.05, 2.759 )

(44.1, 51.2 ) (44.5, 51.5) (46.3, 51.9) (48.5, 52.4)
1.25 (0.08, 2.656) (0.08, 2.722) (0.07, 2.759) (0.09, 3.056)

(13.5, 15) (13.7, 15.2) (14.2,15.4) (14.8, 15.9)
1.50 (0.15, 3.051) (0.15, 3.115) (0.16, 3.256) (0.14, 3.305)

(5.3, 5.7) (5.4, 5.8) (5.6, 5.9) (5.8, 6.1)
2.00 (0.31, 3.579) (0.31, 3.637) (0.23, 3.510) (0.2, 3.545)

(2.3, 2.4) (2.3, 2.4) (2.4, 2.5) (2.5, 2.6)

n=7
0.50 (0.45, 1.931) (0.55, 1.821) (0.46, 1.841) (0.45, 1.779)

(3.3, 3.4) (3.3, 3.4) (3.3, 3.5) (3.3, 3.5)
0.65 (0.29, 2.049) (0.24, 2.043) (0.22, 1.987) (0.21, 1.901)

(5.8, 6.4) (5.9, 6.4) (5.9, 6.4) (5.9, 6.5)
0.80 (0.11, 2.102) (0.09, 2.023) (0.09, 2.021) (0.05, 13.0)

(13.5, 15.3) (13.4, 15.4) (13.4, 15.5) (13.0, 15.6)
0.90 (0.05, 1.953) (0.05, 1.882) (0.05, 1.767) (0.05, 1.614)

(33.9, 40.3) (33.4, 40.7) (32.7, 41.0) (32.0, 41.6)
1.10 (0.05, 2.324) (0.05, 2.392) (0.05, 2.509) (0.05, 2.666)

(34.0, 39.2 ) (34.6, 39.4) (35.8, 40.3) (37.5, 41.0)
1.25 (0.11, 2.773) (0.08, 2.656) (0.11, 2.92) (0.12, 3.086)

(10.2, 11.3) (10.5, 11.4) (10.7, 11.7) (11.1, 12)
1.50 (0.21, 3.164) (0.13, 2.930) (0.17, 3.164) (0.15, 3.213)

(4.0, 4.3) (4.2, 4.3) (4.2, 4.4) (4.4, 4.6)
2.00 (0.25, 3.277) (0.35, 3.555) (0.55, 3.945) (0.35, 3.75)

(1.8, 1.8) (1.8, 1.8) (1.8, 1.9) (1.9, 2.0)
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Table 4
Optimal couples(𝜆∗,𝐾∗) and zero-state OC-ARLs of the MCV and ECV charts
when IC-ARL=370

𝜏∗ 𝛾0 = 0.05 𝛾0 = 0.1 𝛾0 = 0.15 𝛾0 = 0.2

n=10
0.50 (0.53, 2.009) (0.55, 1.971) (0.55,1.931) (0.58, 1.854)

(2.4, 2.5) (2.4, 2.5) (2.4, 2.5) (2.4, 2.5)
0.65 (0.35, 2.124) (0.34, 2.099) (0.35, 2.046) (0.28, 2.006)

(4.3, 4.6) (4.3, 4.6) (4.3, 4.7) (4.4, 4.7)
0.80 (0.13, 2.177) (0.14, 2.138) (0.12, 2.058) (0.12, 1.963)

(10.1, 11.3) (10.1, 11.4) (10.1, 11.5) (10.0, 11.6)
0.90 (0.05, 1.982) (0.05, 1.926) (0.05, 1.828) (0.05, 1.697)

(25.6,30.6) (25.6, 30.9) (25.2, 31) (24.8, 31.7)
1.10 (0.05, 2.295) (0.05, 2.353) (0.05, 2.451) (0.06, 2.656)

(26.0, 30.2) (26.5, 30.4) (27.5, 31.0) (28.7, 31.4)
1.25 (0.12, 2.764) (0.14, 2.885) (0.16, 3.022) (0.12, 2.983)

(7.7, 8.4) (7.8, 8.5) (8.0, 8.7) (8.4, 9.0)
1.50 (0.25, 3.160) (0.21, 3.107) (0.19, 3.116) (0.21, 3.261)

(3.0, 3.2) (3.1, 3.2) (3.2, 3.3) (3.3, 3.4)
2.00 (0.32, 3.301) (0.37, 3.427) (0.25, 3.266) (0.36, 3.569)

(1.4, 1.4) (1.4, 1.4) (1.5, 1.5) (1.5, 1.5)

n=15
0.50 (0.75, 2.031) (0.75, 2.009) (0.75, 1.977) (0.75, 1.931)

(1.6, 1.6) (1.7, 1.7) (1.7, 1.7) (1.7, 1.7)
0.65 (0.4, 2.209) (0.41, 2.180) (0.36, 2.163) (0.35, 2.109)

(3.1, 3.3) (3.1, 3.3) (3.2, 3.3) (3.2, 3.3)
0.80 (0.22, 2.266) (0.16, 2.227) (0.16, 2.173) (0.13, 2.071)

(7.3, 8.1) (7.4, 8.1) (7.4, 8.2) (7.5, 8.3)
0.90 (0.05, 2.012) (0.05, 1.963) (0.05, 1.885) (0.05, 1.777)

(19.4, 22.7) (19.4, 22.8) (19.2, 23) (18.9, 23.4)
1.10 (0.05, 2.266) (0.06, 2.402) (0.06, 2.481) (0.06, 2.583)

(19.6, 22.4) (20.0, 22.7) (20.5, 23.2) (21.4, 23.7)
1.25 (0.19, 2.929) (0.19, 2.961) (0.19, 2.901) (0.17, 3.037)

(5.6, 6.1) (5.7, 6.2) (5.9, 6.3) (6.1, 6.5)
1.50 (0.33, 3.201) (0.25, 3.086) (0.31, 3.252) (0.3, 3.305)

(2.2, 2.3) (2.3, 2.3) (2.3, 2.4) (2.4, 2.5)
2.00 (0.65, 3.525) (0.25, 3.086) (0.31, 3.252) (0.4, 3.451)

(1.1, 1.1) (1.2, 1.2) (1.2, 1.2) (1.2, 1.2)
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Table 5
OC-ARLs of the MCV and ECV charts when IC-ARL=370

n=5 n=7 n=10 n=15
𝜆 𝛾0 𝜏 MCV ECV MCV ECV MCV ECV MCV ECV

0.05 0.1 1.00 370 370 370 370 370 370 370 370
1.05 98.6 113.6 80.2 93.2 63.6 74.3 48.5 56.8
1.10 44.8 51.2 34.5 39.8 26.7 30.3 20.0 22.7
1.15 26.7 30.2 20.4 23.3 15.9 17.8 12.0 13.5
1.20 18.5 20.8 14.3 16.0 11.1 12.4 8.5 9.6
1.25 13.9 15.6 10.8 12.1 8.5 9.5 6.6 7.3
1.50 6.1 6.7 4.8 5.3 3.9 4.3 3.1 3.4
2.00 2.8 3.1 2.3 2.5 1.9 2.1 1.6 1.7

0.2 1.00 370 370 370 370 370 370 370 370
1.05 103.9 113.6 84.6 93.6 67.8 75.6 51.7 58.3
1.10 48.1 52.3 37.2 40.9 28.8 31.7 21.7 23.7
1.15 29.1 31.2 22.4 24.2 17.3 18.7 13.1 14.3
1.20 20.3 21.7 15.6 16.9 12.1 13.1 9.3 10.1
1.25 15.3 16.3 11.9 12.8 9.3 10.0 7.2 7.8
1.50 6.7 7.1 5.3 5.7 4.2 4.5 3.3 3.6
2.00 3.1 3.3 2.5 2.7 2.1 2.2 1.7 1.8

0.1 0.1 1.00 370 370 370 370 370 370 370 370
1.05 112.6 127.0 91.6 105.7 72.8 84.6 55.9 64.3
1.10 50.1 57.4 37.9 43.7 28.4 32.7 20.8 23.4
1.15 28.4 32.5 21.2 24.1 15.9 17.8 11.7 12.9
1.20 18.9 21.2 14.1 15.7 10.7 11.8 7.9 8.7
1.25 13.4 15.2 10.4 11.4 7.9 8.7 6.0 6.5
1.50 5.6 6.0 4.4 4.7 3.4 3.7 2.7 2.9
2.00 2.6 2.7 2.1 2.2 1.7 1.8 1.4 1.5

0.2 1.00 370 370 370 370 370 370 370 370
1.05 117.3 129.4 96.6 106.5 77.3 86.6 58.0 66.2
1.10 52.9 58.6 40.4 44.8 30.4 34.1 21.9 24.3
1.15 30.2 33.5 22.7 24.8 17.0 18.6 12.4 13.5
1.20 20.2 21.8 15.2 16.4 11.5 12.4 8.5 9.1
1.25 14.8 16.0 11.2 12.0 8.6 9.2 6.4 6.9
1.50 6.0 6.4 4.7 4.9 3.7 3.9 2.9 3.1
2.00 2.8 2.9 2.1 2.3 1.8 1.9 1.5 1.5
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Table 6
OC-ARLs of the MCV and SynCV charts when IC-ARL=370 and n=5

𝜏∗=1.25 𝜏∗=1.50 𝜏∗=2
𝜏 MCV SynCV MCV SynCV MCV SynCV

𝛾0 = 0.05
1.00 370 370 370 370 370 370
1.05 107.8 220.2 122.7 228.9 146.9 239.2
1.10 47.5 118.9 54.8 128.3 70.7 141.1
1.15 27.5 65.0 30.6 71.5 39.4 82.0
1.20 18.4 37.9 19.8 41.7 24.8 49.1
1.25 13.5 24.0 14.1 25.9 16.8 30.8
1.30 10.7 16.5 10.8 17.2 12.4 20.4
1.50 5.6 6.3 5.4 5.8 5.5 6.3
2.00 2.6 2.2 2.4 2.1 2.3 2.0

𝛾0 = 0.10
1.05 108.0 220.5 24.7 229.3 148.9 239.7
1.10 48.2 119.4 55.7 129.0 71.8 141.8
1.15 27.6 65.5 31.2 72.2 40.0 82.7
1.20 18.7 38.3 20.2 42.2 25.1 49.6
1.25 13.7 24.3 14.5 26.2 17.3 31.2
1.30 10.9 16.7 10.9 17.4 12.6 20.7
1.50 5.8 6.4 5.4 5.9 5.6 6.4
2.00 2.7 2.3 2.5 2.1 2.3 2.0

𝛾0 = 0.15
1.05 107.3 219.1 128.5 230.5 139.7 240.7
1.10 48.2 118.7 58.3 130.4 65.9 143.2
1.15 28.3 65.3 32.5 73.3 36.6 84.0
1.20 19.2 38.4 21.0 43.0 23.1 50.6
1.25 14.2 24.9 14.9 26.8 16.0 32.0
1.30 11.3 16.9 11.3 17.9 11.9 21.3
1.50 6.0 6.6 5.6 6.0 5.6 6.6
2.00 2.8 2.4 2.5 2.2 2.4 2.1
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Table 7
OC-ARLs of the MCV and SynCV charts when IC-ARL=370 and n=10

𝜏∗=1.25 𝜏∗=1.50 𝜏∗=2
𝜏 MCV SynCV MCV SynCV MCV SynCV

𝛾0 = 0.05
1.00 370 370 370 370 370 370
1.05 76.3 195.6 96.2 208.2 104.9 218.8
1.10 29.2 84.4 36.8 95.9 41.5 106.7
1.15 15.9 38.0 18.7 44.5 20.7 51.6
1.20 10.5 19.5 11.6 22.6 12.4 26.8
1.25 7.8 11.5 8.0 12.8 8.5 15.3
1.30 6.1 7.6 6.1 8.1 6.3 9.5
1.50 3.3 3.0 3.0 2.7 3.0 2.9
2.00 1.6 1.3 1.5 1.3 1.4 1.2

𝛾0 = 0.10
1.05 80.3 196.2 91.5 209.4 112.3 219.7
1.10 30.5 85.3 35.0 97.1 44.9 107.8
1.15 16.5 38.6 18.1 45.3 22.7 52.4
1.20 10.7 19.8 11.3 23.1 13.5 27.3
1.25 7.9 11.7 8.0 13.1 9.1 15.6
1.30 6.1 7.8 6.1 8.3 6.6 9.8
1.50 3.3 3.0 3.1 2.8 3.1 3.0
2.00 1.6 1.3 1.5 1.3 1.4 1.2

𝛾0 = 0.15
1.05 85.0 197.3 90.3 210.6 99.2 221.2
1.10 32.6 86.5 34.6 98.7 38.3 109.7
1.15 17.2 39.4 18.0 46.4 19.6 53.8
1.20 11.1 20.4 11.4 23.8 12.1 28.2
1.25 8.1 12.1 8.1 13.6 8.4 16.2
1.30 6.3 8.1 6.3 8.6 6.4 10.1
1.50 3.3 3.1 3.2 2.9 3.2 3.1
2.00 1.6 1.4 1.6 1.3 1.5 1.3
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Table 8
OC-ARLs of the MCV and SRCV charts when IC-ARL=370 and 𝜆 = 0.05

𝛾0 = 0.05 𝛾0 = 0.1 𝛾0 = 0.15 𝛾0 = 0.2
n 𝜏 MCV SRCV MCV SRCV MCV SRCV MCV SRCV

5 0.5 8.4 6.2 8.2 6.2 7.9 6.3 7.5 6.3
0.6 10.2 11.8 10.0 11.8 9.7 12.0 9.1 12.2
0.7 13.7 28.4 13.4 28.6 13.0 29.0 12.3 29.5
0.8 22.3 80.0 21.9 80.6 21.4 81.6 20.5 83.0
0.9 60.8 236.5 60.3 237.5 59.8 239.3 58.8 241.6
1.1 61.5 144.5 62.7 145.3 64.4 146.6 67.2 148.4
1.2 22.7 54.4 23.2 54.9 23.9 55.8 25.3 57.0
1.5 7.0 11.8 7.1 12.0 7.4 12.2 7.8 12.6
2.0 3.1 5.6 3.2 5.7 3.3 5.7 3.5 5.9

10 0.5 5.6 4.1 5.5 4.1 5.4 4.1 5.2 4.1
0.6 6.7 5.0 6.6 5.0 6.5 5.0 6.2 5.1
0.7 8.7 8.9 8.6 9.0 8.4 9.1 8.1 9.3
0.8 13.4 26.1 13.3 26.4 13.1 26.9 12.7 27.6
0.9 33.2 119.1 33.1 120.3 32.9 122.1 32.5 124.6
1.1 34.0 86.9 34.7 87.7 35.6 89.2 37.3 91.2
1.2 13.1 25.6 13.4 26.0 13.9 26.6 14.6 27.5
1.5 4.4 6.2 4.4 6.3 4.6 6.4 4.8 6.6
2.0 2.1 4.2 2.1 4.3 2.2 4.3 2.3 4.3

15 0.5 4.6 4.0 4.5 4.0 4.4 4.0 4.3 4.0
0.6 5.4 4.2 5.3 4.2 5.2 4.2 5.1 4.2
0.7 6.9 5.8 6.8 5.8 6.7 5.9 6.6 6.0
0.8 10.4 14.4 10.3 14.6 10.2 14.9 10.0 15.3
0.9 24.5 75.3 24.4 76.2 24.2 77.6 24.0 79.6
1.1 24.7 60.9 25.3 61.6 26.1 62.9 27.2 64.7
1.2 9.9 16.6 10.1 16.8 10.5 17.3 11.0 17.9
1.5 3.4 4.9 3.5 5.0 3.6 5.0 3.8 5.1
2.0 1.7 4.1 1.7 4.1 1.8 4.1 1.9 4.1
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Fig. 1. The MCV, ECV and SRCV charts applied to the sintering process.
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