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Abstract

Most distribution-free control charts in the literature are used to monitor process location pa-

rameters, such as mean or median, rather than process dispersion parameters. This paper develops

a new distribution-free control chart by integrating a two-sample nonparametric test into the effec-

tive change-point model. Our proposed chart is easy in computation, convenient to use, and very

powerful in detecting process dispersion shifts. As it avoids the need for a lengthy data-gathering

step before charting and it does not require knowledge of the underlying distribution, the proposed

chart is particularly useful in start-up or short-run situations.
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§1. Introduction

Statistical process control (SPC) has been widely used in various industrial

processes. Most SPC applications assume that the quality of a process can be
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adequately represented by the distribution of a quality characteristic and the in-

control (IC) and out-of-control (OC) distributions are the same with only differing

parameters.

While parametric methods are only useful in certain applications, there is often

a lack of enough knowledge about the process distribution. For example, univari-

ate process data are often assumed to have normal distributions, although it is well

recognized that, in many applications, particularly in start-up situations, the under-

lying process distribution is unknown and not normal, so that statistical properties

of commonly used charts, designed to perform best under the normal distribution,

could potentially be (highly) affected. So distribution-free charts are needed in

such situations. A chart is called distribution-free if its IC run-length distribution

is nearly the same for every continuous distribution (Chakraborti et al. (2001)).

In the last several years, distribution-free control charts have attracted much

attention. For example, Bakir and Reynolds (1979) proposed a cumulative sum

(CUSUM) chart for group observations based on the Wilcoxon signed-rank statis-

tic. McDonald (1990) considered a CUSUM procedure for individual observations

based on the statistics called “sequential ranks”. An exponentially weighted moving

average (EWMA) chart for individual observations proposed by Hackl and Ledolter

(1991) is constructed by the “standardized ranks” of observations, which is deter-

mined by IC distributions. If the distribution is not available, they recommended

using the ranks in collected reference data instead. The distribution-free charts

considered by Chakraborti et al. (2004, 2009) are based on the precedence test. Re-

cently, a Shewhart-type chart and a scheme using change-point formulation based on

the Mann-Whitney test statistic were investigated by Chakraborti and Van deWiel

(2008), Zhou et al. (2009) and Hawkins and Deng (2010). Jones et al. (2009) devel-

oped a rank-based distribution-free Phase I control scheme for subgroup location.

Other developments include Albers and Kallenberg (2004) and Bakir (2004, 2006).

Zhou et al. (2008) proposed a robust control chart based on wavelets for preliminary

analysis of individual observations. Wu et al. (2009) proposed a synthetic control

chart based on Cornish-Fisher expansion. A nice overview on the topic of univari-

ate distribution-free control charts was presented by Chakraborti et al. (2001). In

addition, distribution-free control charts in multivariate cases have been discussed
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by Liu (1995), Qiu and Hawkins (2001), and Qiu (2008).

Most of distribution-free charts mentioned above focus on monitoring process

median, but monitoring the process dispersion is also highly desirable. However

there are far fewer distribution-free control charts which can monitor process dis-

persion. Zou and Tsung(2010) proposed a chart which incorporates a powerful

goodness-of-fit (GOF) test (Zhang (2002)) using the nonparametric likelihood ratio

into a EWMA chart. It can detect more general changes than location shifts, and

is also very easy in computation, but leaves a tuning parameter 𝜆 to choose.

This paper develops a new distribution-free control chart by integrating a two-

sample nonparametric test (Mood 1954) into the effective change-point model. Sim-

ulation studies show that the proposed method is superior to other distribution-free

schemes in monitoring dispersion. As it avoids the need for a lengthy data-gathering

step before charting (although it is generally necessary and advisable to have about

at least 19 warm-up samples) and it does not require knowledge of the underlying

distribution, so the proposed chart is particularly useful in start-up or short-run

situations.

The rest of this paper is organized as follows. The test for fixed-size sample

is given in Section 2. Sequentially monitoring for Phase II is derived in Section 3.

The performance comparisons with two other distribution-free control charts are

discussed in Section 4. And the conclusion is given in Section 5.

§2. Test for fixed-size sample

We begin by considering the Phase I problem of detecting a change-point in a

fixed-size sequence of observations. We denote the observations by {𝑋1, ⋅ ⋅ ⋅ , 𝑋𝑡},
and the goal is to test whether they have all been generated by the same probability

distribution. We assume that no prior knowledge is available regarding this distri-

bution, other than that it is continuous. Using the language of statistical hypothesis

testing, the null hypothesis is that there is no change-point and all the observations

come from the same distribution, while the alternative hypothesis is that there ex-

ists a single change-point 𝜏 in the sequence which partitions them into two sets, with

𝑋1, ⋅ ⋅ ⋅ , 𝑋𝜏 coming from the pre-change distribution 𝐹0, and 𝑋𝜏+1, ⋅ ⋅ ⋅ , 𝑋𝑡 coming
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from a different post-change distribution 𝐹1:

𝐻0 : 𝑋𝑖 ∼ 𝐹0, for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑡

𝐻1 : 𝑋1, ⋅ ⋅ ⋅ , 𝑋𝜏 ∼ 𝐹0, 𝑋𝜏+1, ⋅ ⋅ ⋅ , 𝑋𝑡 ∼ 𝐹1.

We can test for a change-point immediately following any observation 𝑋𝑘 by parti-

tioning the observations into two samples 𝑆1 = {𝑋1, ⋅ ⋅ ⋅ , 𝑋𝑘} and 𝑆2 = {𝑋𝑘+1, ⋅ ⋅ ⋅ , 𝑋𝑡}
of sizes 𝑛1 = 𝑘 and 𝑛2 = 𝑡 − 𝑘 respectively, and then performing an appropriate

two sample hypothesis test. For example, to detect a change in location parameter

without making assumptions about the distribution, Mann-Whitney statistic would

be an proper test statistic (Hawkins and Deng (2010)). In order to monitor the

process dispersion, we will consider the Mood test.

The Mood test uses a statistic like this:

𝑀 ′
𝑘,𝑡 =

𝑛1∑
𝑗=1

(𝑅1𝑗 − 𝑛1 + 𝑛2 + 1

2
)2

where 𝑅1𝑗 is the rank of the 𝑗th observation 𝑋𝑗 in the pooled sample.

𝑅1𝑗 could be computed as: 𝑅1𝑗 =
𝑛1+𝑛2∑
𝑖=1

𝐼(𝑋𝑖 ≤ 𝑋𝑗), where 𝐼(𝑋𝑖 < 𝑥) is the

indicator function:

𝐼(𝑋𝑖 < 𝑥) =

{
1, if 𝑋𝑖 < 𝑥,

0, otherwise.

The mean and variance of the Mood test statistic are

𝐸𝐻0(𝑀
′
𝑘,𝑡) = 𝑛1((𝑛1 + 𝑛2)

2 − 1)/12

and

𝑉 𝑎𝑟𝐻0(𝑀
′
𝑘,𝑡) = 𝑛1𝑛2(𝑛1 + 𝑛2 + 1)((𝑛1 + 𝑛2)

2 − 4)/180,

respectively.

In fact, we use the absolute value of the standardized Mood test statistic

𝑀𝑘,𝑡 = ∣(𝑀 ′
𝑘,𝑡 − 𝐸𝐻0(𝑀

′
𝑘,𝑡))/

√
𝑉 𝑎𝑟𝐻0(𝑀

′
𝑘,𝑡)∣.

We reject the null hypothesis that no change occurs at 𝑘 if 𝑀𝑘,𝑡 > ℎ𝑘,𝑡 for some

appropriately chosen value of ℎ𝑘,𝑡.
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The statistic can be integrated into the change-point model, and is easy to

compute. Now, since we do not know in advance where the change-point is located,

we do not know which value of 𝑘 to use for partitioning. We therefore specify a more

general null hypothesis, that there is no change at any point in the sequence. The

alternative hypothesis is then that there exists a change-point for some unspecified

value of 𝑘. We can perform this test by computing 𝑀𝑘,𝑡 at every value 0 < 𝑘 < 𝑡,

and taking the maximum value. This leads to the maximized test statistic:

𝑀𝑡 = max
𝑘

𝑀𝑘,𝑡, 0 < 𝑘 < 𝑡.

If𝑀𝑡 > ℎ𝑡 for some suitably chosen threshold ℎ𝑡, then the null hypothesis is rejected,

and we conclude that a change occurred at some point in the data. In this case,

the best estimate 𝜏 of the location of the change-point is at the value of 𝑘 which

maximized 𝑀𝑡. If 𝑀𝑡 ≤ ℎ𝑡, then we do not reject the null hypothesis, and hence

conclude that no change has occurred. The choice of this threshold will be discussed

further in the following section.

§3. Sequentially monitoring

Having considered the problem of detecting changes in a fixed-size sample, we

now turn to the task of sequentially Phase II monitoring where new observations

are being received over time. Let 𝑋𝑡 denote the 𝑡th observation where 𝑡 is increasing

over time.

Once a new observation 𝑋𝑡 is received, we then regard {𝑋1, ⋅ ⋅ ⋅ , 𝑋𝑡} to be a

fixed-size sample, and use the method from the above Section to test if a change-

point has occurred. The problem of sequentially monitoring is then reduced to

performing a sequence of fixed-size tests. Suppose it is desired to have an IC average

run length (ARL0) of 𝛾. This can be achieved if we choose the ℎ𝑡 values so that

the probability of incurring a false alarm at the 𝑡th observation equals to 1/𝛾. We

hence require that for all 𝑡:

𝑃 (𝑀1 > ℎ1) = 𝛼

𝑃 (𝑀𝑡 > ℎ𝑡∣𝑀𝑡−1 ≤ ℎ𝑡−1, ⋅ ⋅ ⋅ ,𝑀1 ≤ ℎ1) = 𝛼, 𝑡 > 1.
(3.1)

It is not trivial to find a sequence of ℎ𝑡 values which satisfy this property. The

approach in Hawkins and Deng (2010), is to use Monte-Carlo simulation. We will
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do in the same way. One million realizations of the sequence {𝑋1, ⋅ ⋅ ⋅ , 𝑋1000} were

generated. Because the distribution of 𝑀𝑡 is independent of the distribution of the

𝑋𝑖 observations, these 𝑋𝑖 values can be sampled from any continuous distribution

so long as they are independent and identically distributed. Then for each value of 𝑡,

𝑀𝑡 is computed for each of the million realizations. The values for ℎ𝑡 corresponding

to the desired ARL0 can then be read off from them.

Note that since there are only a finite number of ways to assign ranks to a set

of 𝑡 points, the 𝑀𝑡 statistic can only take a discrete set of values. This creates a

problem for threshold choice when 𝑡 is small, since it may not be possible to find a

value for ℎ𝑡 which gives the exact 𝐴𝑅𝐿0 required, which is a general problem when

dealing with discrete valued test statistics. Therefore we recommend that Phase

II monitoring only begins after the first 19 observations have been received, which

gives sufficient possibilities for rank assignments to make most 𝐴𝑅𝐿0s achievable.

This seems a reasonable compromise, since in practice it would be very difficult to

detect a change that occurred during the first 19 observations. Now we denote our

chart by CPMD, implying change-point model for monitoring process dispersion.

§4. Performance comparisons

We now evaluate the performance of our chart. As is standard in the quality

control literature, we measure performance as the average time taken to detect a

change of magnitude 𝛿, which we denote by ARL1(𝛿). We consider changes which

affect the process dispersion. Three different process distributions are considered:

the standard Normal distribution 𝑁(0, 1), the Student-t distribution with 3 degrees

of freedom 𝑡(3), and the chi-square distribution with 3 degrees of freedom 𝜒2
3. The

latter two correspond to the heavy tailed and skewed distributions respectively.

Because our chart can be treated as a self-starting chart, the number of obser-

vations available before the change may have a large impact on its performance.

We will consider changes which occur after both 50 and 100 observations, i.e.

𝜏 ∈ [50, 100]. We compare our CPMD chart to two other change-point detec-

tion algorithms. The first is the method described in Hawkins and Deng (2010) for

location shifts, which we will denote by CPML. It uses a similar change-point model
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Table 1 𝐴𝑅𝐿1(𝛿) for dispersion shifts in the 𝑁(0, 1), 𝑡(3) and 𝜒2
3 distributions, for

several values of the change time 𝜏 .

𝑁(0, 𝛿2) 𝑡(3)/
√
3× 𝛿 (𝜒2

3 − 3)/
√
6× 𝛿

𝜏 𝛿 CPML cpmd EWMAZ CPML cpmd EWMAZ CPML cpmd EWMAZ

50 2.0 228 18.3 25.8 278 50.7 80.2 149 14.4 19.7
3.0 141 7.9 12.6 179 12.5 25.0 78.7 6.9 11.6
0.5 707 38.8 408.9 707 79.8 386.8 624 29.1 303.2
0.33 769 17.1 223.7 769 22.6 312.8 595 14.6 110.0

300 2.0 73.0 10.1 10.6 104 18.6 25.3 43.3 8.3 7.6
3.0 37.3 5.0 5.4 52.3 8.4 10.5 24.8 5.1 5.0
0.5 1285 22.8 213.8 1144 32.1 307.9 476 21.0 63.7
0.33 728 15.2 36.9 728 19.0 72.7 229 14.3 30.0

to ours, but there test statistic is the Mann-Whitney statistic. Second, we compare

our CPMD chart to Zou and Tsung (2010), which integrates the nonparametric

likelihood ratio test framework into the change-point model. We notice that their

chart contains a tuning parameter 𝜆 used in the EWMA scheme. Large values of

𝜆 produce a chart which is more efficient to large changes, while small values of

𝜆 produce a chart which is sensitive to small changes. We choose to use 𝜆 = 0.1

which is a value considered in their paper, and we denote their chart by EWMAZ.

To allow fair comparisons we set the ARL0 of every chart to 500. Similar results

hold for other values of ARL0, but we omit them for space reasons.

For each of the three distributions, 10000 sequences were generated, and the

change consists of multiplying 𝛿 to all post-change observations respectively. The

average time taken to detect the change is then recorded for each chart.

Table 1 shows the average time required to detect shifts in dispersion, from

which we can get the following conclusions.

∙ Our chart is much better than the CPML at all cases of dispersion shifts.

∙ Our chart is much better than the EWMAZ at most cases of dispersion shifts.

So we can conclude that: when we want to monitor dispersion shifts, our chart

is the best choice since it gives excellent performance across all magnitudes of shifts
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considered based on comparisons above.

§5. Conclusions

We proposed a new distribution-free and self-starting control chart to detect

dispersion shifts by integrating a two-sample nonparametric test (Mood 1954) into

the effective change-point model.

Our chart is much better than some other nonparametric methods at most cases

for shifts in dispersion. As it avoids the need for a lengthy data-gathering step before

charting (although it is generally necessary and advisable to have several warm-up

samples) and it does not require knowledge of the underlying distribution, so the

proposed chart is particularly useful in start-up or short-run situations.
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文献中绝大部分与分布无关的控制图用于监控过程位置参数，如均值或中位数，而非过程方差。该文开

发了一个新的与分布无关的控制图，通过整合一个两样本非参数检验和有效的变点模型。所提出的控制图容

易计算，方便应用，并且对于探测过程方差的漂移非常有效。因为它避免了在监控之前的一个很长时间的收

集数据的阶段，并且它不需要潜在的过程分布的知识，因此，所提出的控制图在开始阶段或者短程运行情况

下特别有用。
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