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Abstract Traditionally, an 𝑋̄ chart is used to con-
trol the process mean and an 𝑅 chart is used to con-

trol the variance. However, these charts are not sensi-
tive to the small shifts in the processes. The adaptive
charts might be considered if the aim is to detect pro-

cess changes quickly. In this paper, we propose a new
adaptive single control chart which integrates the expo-
nentially weighted moving average (EWMA) procedure

with the generalized likelihood ratio (GLR) test statis-
tics for jointly monitoring both the process mean and
variability. This new chart is effective in detecting the

disturbances that shift the process mean, increase or
decrease the process variance or lead to a combination
of both effects.

Keywords Likelihood Ratio Test ⋅ Adjusted Average
Time to Signal ⋅ Statistical Process Control

1 Introduction

Statistical process control (SPC) refers to some statis-
tical methods used extensively to monitor and improve

the quality of process. In SPC, it is usually necessary to
monitor both the process mean and the process variabil-
ity. Shewhart’s 𝑋̄-𝑅 (or 𝑋̄-𝑆) control charts have been

used widely to detect increasing variance and mean
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shifts in the process, but these charts are not very sensi-
tive to the small shifts in the process and can not detect

the decrease in the variance effectively.

Recently developed adaptive charts have been shown
to give substantially faster detection of most process
shifts. The chart is adaptive if at least one of the pa-

rameters (𝑑, 𝑛, ℎ) is allowed to change in real time based
on the actual sample point, where 𝑑 is the sample inter-
val, 𝑛 is the sample size and ℎ is the control limit. These

adaptive charts include the variable sampling intervals
(VSI) chart, the variable sample size (VSS) chart, vari-
able sample size and sampling intervals (VSSI) and the

variable parameter (VP) chart.

In the operation of adaptive charts, if the current
sample point falls in the central region (i.e., the point
is close to the target), then it is reasonable to relax the

control by waiting more time to take the next sample
(i.e., using the long sampling interval 𝑑1), decreasing
the size of the next sample (i.e., using small sample size

𝑛1) and /or plotting the next sample point on the chart
with wide action limits (i.e., using wide action limit
coefficient ℎ1. On the other hand, if the current sample

point falls in the warning region (i.e., the point is far
away from the target but still within the action limits),
then it is reasonable to tighten the control by waiting

less time to take the next sample (i.e., using the short
sampling interval 𝑑2), increasing the size of the next
sample (i.e., using large sample size 𝑛2), and plotting

the next sample point on the chart with narrow action
limits (i.e., using narrow action limit coefficient ℎ2). If
the sample point falls outside the action (or control)

limits, then the process may be out of control caused
by the assignable cause(s).

The vast majority of the research on the adaptive
charts has dealt with the analysis of control charts with

VSI. Most work on developing VSI control charts focus
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on monitoring the process mean. The pioneering work

of [1] used the 𝑋̄ chart to introduce the idea of varying
the 𝑋̄ chart sampling interval as a function of what is
observed from the process. VSI control charts were also

considered by[2], [3], [4], and [5]. [6] studied the VSI 𝑋̄
chart with an improved switching rule. [7] considered
the statistical adaptive process control for two depen-

dent process steps. The VSI scheme was extended to
cumulative sum (CUSUM) and exponentially weighted
moving average (EWMA) charts (see [8], [9], [10], [11]

and [12]). VSS charts were considered, see [13] [14] and
[15]. Subsequently, [16], [17] [18] and [19] considered
VSSI control charts.

Many innovations have been proposed to monitor
the process mean and variance simultaneously, see [20]-

[28]. Recently, [29] proposed a new chart for monitor-
ing the process mean and variance based on Shiryaev-
Roberts procedure. In the adaptive case, [30] and [31]

studied the joint 𝑋̄ and 𝑅 charts with VP. [32] investi-
gated three joint charts for monitoring the process mean
and variance of a normal quality variable using indi-

vidual observations and VSI. [33] extended their NCS
chart to the adaptive case, where all the parameters
are variable. [34] proposed two new combination charts

which integrate the CUSUM procedure with the GLR
and the Fisher statistics, and it is shown that, in ad-
dition to the simplicity of a single chart rather than

two, the proposed charts have significant performance
advantages over the 𝑋 and 𝑆 chart pair. But the main
disadvantage of the Fisher chart, as they pointed out, is

that the Fisher method is biased for variance decrease
without concomitant shifts in mean.

Recently, [35] proposed a single chart which inte-
grated the EWMA procedure with the generalized like-
lihood ratio (GLR) test statistics (ELR chart) for jointly

monitoring both the process mean and variability. They
showed that their chart was sensitive to various types of
shifts in the process including the decrease in the vari-

ance. As the ELR chart works better than the other
charts when the aim is to detect small shifts in the pro-
cess mean and variance, it seems logical to think that

if the ELR chart is combined with the VSI feature, the
new chart that is obtained will be more efficient at de-
tecting small shifts in the process. This paper devel-

oped a new chart combining the ELR chart with VSI
feature, providing that this is highly efficient in terms
of adjusted average time to signal (AATS). More de-

tailed studies on other adaptive features, such as VSS,
VP, will be left to our future work.

The rest of this paper is organized as follows. In
the next section, our proposed adaptive control chart,
the VSI chart, is presented. In Section 3, the perfor-

mance of the proposed chart is evaluated using a bivari-

ate markov chain model which is compared to another

existing procedure. In Section 4, the paper is concluded
with a conclusion.

2 Description of the ELR chart with VSI

Let x𝑡 = (𝑥𝑡1, ⋅ ⋅ ⋅ , 𝑥𝑡𝑛), 𝑡 = 1, 2, ⋅ ⋅ ⋅ denote a sequence

of samples of size 𝑛 taken on a quality characteristic
𝑋. It is assumed that, for each 𝑡, 𝑥𝑡1, ⋅ ⋅ ⋅𝑥𝑡𝑛 are identi-
cally and independently distributed (i.i.d) observations

and the probability distribution of 𝑥𝑡𝑖 is assumed to be
normal with the mean 𝜇0 and standard deviation 𝜎0.
When a process shift occurs, the process mean and/or

standard deviation will change to be:

𝜇1 = 𝜇0 + 𝛿𝜎0, 𝜎1 = 𝛾𝜎0,

where 𝛿 ∕= 0 and/or 𝛾 ∕= 1. The 𝛿 and 𝛾 are usually
unknown before monitoring. Without loss of generality,

we assume 𝜇0 = 0 and 𝜎0 = 1. Let 𝑥̄𝑡 =
∑𝑛

𝑗=1 𝑥𝑡𝑗/𝑛

and 𝑆2
𝑡 =

∑𝑛
𝑗=1(𝑥𝑡𝑗 − 𝑥̄𝑡)

2/𝑛 be the 𝑡-th sample mean
and sample variance.

2.1 A brief review of the ELR chart

Firstly, we give a brief review of the ELR chart which
has been proposed by [35].

Given a sample x𝑡, consider the following hypothesis

test

𝐻0 : 𝜇 = 0 and 𝜎 = 1←→ 𝐻1 : 𝜇 ∕= 0 or 𝜎 ∕= 1.

It is straightforward to obtain the generalized likelihood
ratio statistic as follows

𝑙𝑡 = 𝑛(𝑥̄2
𝑡 + 𝑆2

𝑡 − ln𝑆2
𝑡 − 1). (1)

It can be easily checked that 𝑙𝑡
ℒ→𝜒2(2) as 𝑛 → ∞.

For simplicity, the coefficient 𝑛 and the constant term

−1 can be ignored, so we have

𝐿𝑅𝑡 = 𝑥̄2
𝑡 + 𝑆2

𝑡 − ln(𝑆2
𝑡 ). (2)

Define:

𝑢𝑡 = 𝜆𝑥̄𝑡 + (1− 𝜆)𝑢𝑡−1, (3)

𝑣𝑡 = 𝜆𝑆∗
𝑡
2 + (1− 𝜆)𝑣𝑡−1, (4)

where 𝑆∗
𝑡
2 =

∑𝑛
𝑗=1(𝑥𝑡𝑗 − 𝑢𝑡)

2/𝑛, 𝑢0 = 0, 𝑣0 = 1, and
𝜆 is the smoothing parameter satisfying 0 < 𝜆 < 1.

In general, a smaller 𝜆 leads to a quicker detection of
smaller shifts ([36]).

Finally, substitute 𝑢𝑡 and 𝑣𝑡 for 𝑥̄𝑡 and 𝑆2
𝑡 in (2)

and obtain the charting statistics

ELR𝑡 = 𝑢2
𝑡 + 𝑣𝑡 − ln(𝑣𝑡), 𝑡 = 1, 2, ⋅ ⋅ ⋅ ,
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If ELR𝑡 > ℎ, an alarm is trigged, where ℎ > 0 is chosen

to achieve a specified in control ARL (IC ARL), which
is the expected number of samples before the chart pro-
duces a signal. This chart is called the ELR chart and

it still works for the case 𝑛 = 1 due to the definition of
𝑣𝑡.

2.2 The ELR chart with VSI

When the ELR chart proposed by [35] is used for moni-

toring a process, a sample of size 𝑛0 is randomly chosen
every 𝑑0 hours. The adaptive ELR chart is a modifi-
cation of the ELR chart in which the parameter 𝑑 is

assumed to be a function of the most recent process in-
formation. Like other approaches, the scheme discussed
here uses only two different samples alternatively de-

pending on the current process status. When the pro-
cess is likely to be in control, the long sampling interval
𝑑1, i.e., 𝑑1 > 𝑑0 will be used. Conversely, when the pro-

cess seems close to an out of control condition, the short
sampling interval 𝑑2, i.e., 𝑑2 < 𝑑0 is used. Let ℎ repre-
sent the upper control limit for the VSI ELR chart. The

interval (0, ℎ) is partitioned into two distinct regions:
(0, 𝑔) and [𝑔, ℎ), where 𝑔 represents the warning limit
of the VSI ELR chart. The regions defined by (0, 𝑔) and

[𝑔, ℎ) are called the central and the warning region, re-
spectively. The region above ℎ is the action region of
the chart.

The VSI ELR chart policy works as follows:

𝑑(𝑡) =

{
𝑑1, if 0 < ELR𝑡−1 < 𝑔,
𝑑2, if 𝑔 ≤ ELR𝑡−1 < ℎ,

where 𝑡 is the subgroup index; 𝑑(𝑡) is the sampling in-
terval; ELR𝑡−1 is the observation of the (𝑡− 1)th sub-

group. If the sample statistic falls in the caution region,
an investigation should be initiated to verify whether
the process is out of control or whether it is just the

occurrence of a false alarm. If it is a true alarm, then a
corrective action should be undertaken to find out the
assignable cause(s).

2.3 The performance measure and the design of the

adaptive ELR chart

The speed with which a control chart detects process

mean and/or variance shifts measures its statistical effi-
ciency. When the interval between samples is fixed, the
speed can be measured by ARL. If the interval between

samples varied from time to time, the performance can
be measured by AATS which is the expected value of
the time from process shifts to the time when chart sig-

nals. When a process is in control, it is desirable that

the mean time from the beginning of the process until

a signal be long, which guarantees fewer false alarms.
When a process is out of control, it is desirable that the
mean time from the occurrence of the assignable cause

until a signal be short as this guarantees the fast de-
tection of process changes. It is advisable to start the
control with the shorter sampling interval, 𝑑2, so the

first sample is taken quickly after the process is started
in case of start-up problems. During the in-control pe-
riod all samples, including the first one, should have

probability of 𝑝0 of being small and 1-𝑝0 of being large,
where

𝑝0 = 𝑃𝑟[ELR < 𝑔∣ELR < ℎ].

A two dimensional illustration of the partitioning the

central region and the warning region of the VSI ELR
chart is shown in Figure 1.

Insert Fig. 1 about here.

The design parameters of the VSI ELR chart, (𝑑1, 𝑑2)
and (𝑔, ℎ) are chosen, taking into account the constraint
in the following equation:

𝑑1𝑝0 + 𝑑2(1− 𝑝0) = 𝑑0.

Usually, 𝑑1 should be large and 𝑑2 should be as
small as possible. In this paper, we use two dimensional

Markov chain to search for the control limit ℎ and the
warning limit 𝑔 for the adaptive charts. From Figure
1, we can see the illustration of the partitioning the

central region and the warning region of our VSI ELR
chart.

Table 1 provides the design parameters of several
adaptive ELR charts with 𝜆 = 0.2, 𝑛 = 5 and 𝑑0 = 1.

Here, 𝑔𝐼1 and 𝑔𝐼2 denote the warning limits of the VSI
ELR charts with the sampling interval (1.9, 0.1) and
(1.2, 0.1), respectively.

2.4 Markov chain calibrations the AATS of the VSI
ELR chart

To compute the AATS of the VSI ELR Chart, the bi-

variate Markov chain illustrated in [35] can be applied
as well but with a modification.

The transition probability matrix, P = (𝑝𝑖𝑗→𝑘𝑙) is
given by (

R0 (I−R0)1
0 1

)
,

where the submatrix R0 is the transition probability
matrix for IC states; I is the identity matrix, and 1 is

a column vector of ones. Let 𝑚0, 𝑚1, 𝑚2 and 𝑚3 be
given integers. First, we consider the charting statistic
of the ELR chart, 𝐸𝐿𝑅𝑡. Note that the function 𝑓(𝑧) =

𝑧− ln 𝑧 is monotonically increase (decrease) when 𝑧 > 1
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Table 1 The control limits and warning limits of the VSI ELR charts with 𝜆 = 0.2, 𝑛 = 5

IC ARL
185 370 400 433 500

FP ℎ 1.2089 1.2421 1.2460 1.2495 1.2567

VSI 𝑔𝐼1 1.0313 1.0315 1.0315 1.0316 1.0312
𝑔𝐼2 1.0740 1.0750 1.0750 1.0750 1.0740

(0 < 𝑧 < 1) and attains its minimum at 𝑧 = 1. So, from

the equation 𝑢2 + 𝑣− ln(𝑣) = ℎ, it can be seen that the
domain of 𝑢 is [−√ℎ− 1,

√
ℎ− 1] and the domain of 𝑣

is [𝑧1, 𝑧2], where 𝑧1, 𝑧2 (𝑧1 < 𝑧2) are the real roots of the

equation 𝑧−ln(𝑧) = ℎ. Similarly, 𝑧3, 𝑧4 are the real roots
of the equation 𝑧 − ln(𝑧) = 𝑔, and 𝑧1 < 𝑧3 < 𝑧4 < 𝑧2.
Let the number of states along the axis 𝑢𝑡 over the

interval [−√ℎ− 1,
√
ℎ− 1] be 2𝑚0 + 1, then the width

of each segment is 𝑤 = 2
√
ℎ− 1/(2𝑚0 + 1). Similarly,

the axis 𝑣𝑡 over the interval [𝑧1, 𝑧3) is segmented into
𝑚1 states, such that the width of each segment is 𝛥1 =

(𝑧3−𝑧1)/𝑚1, and over the interval [𝑧3, 𝑧4) is segmented
into𝑚2−𝑚1 states such that the width of each segment
is 𝛥2 = (𝑧4 − 𝑧3)/(𝑚2 − 𝑚1), and over the interval

[𝑧4, 𝑧2] is segmented into 𝑚3 −𝑚2 states such that the
width of each segment is 𝛥3 = (𝑧2−𝑧4)(/𝑚3−𝑚2). The
states along the axis 𝑢𝑡 and 𝑣𝑡 are respectively labeled

by 𝑖 = −𝑚0, −𝑚0+1, ⋅ ⋅ ⋅, 𝑗 = 1, 2, ⋅ ⋅ ⋅, 𝑚1, 𝑚1+1, ⋅ ⋅ ⋅,
𝑚2, ⋅ ⋅ ⋅, 𝑚3, thus the center point of state 𝑖 along the
axis 𝑢𝑡 is 𝑖𝑤, and the center point of state 𝑗 along the

axis 𝑣𝑡 is 𝑧1+(𝑗− 1
2 )𝛥1 for 𝑗 ≤ 𝑚1, and 𝑧3+(𝑗− 1

2 )𝛥2

for 𝑚1 < 𝑗 ≤ 𝑚2, and 𝑧4+(𝑗− 1
2 )𝛥3 for 𝑚2 < 𝑗 ≤ 𝑚3.

Define

𝑣(𝑗) =

⎧⎨⎩
𝑧1 + (𝑗 − 1

2 )𝛥1, if 1 ≤ 𝑗 ≤ 𝑚1,
𝑧3 + (𝑗 − 1

2 )𝛥2, if 𝑚1 < 𝑗 ≤ 𝑚2,

𝑧4 + (𝑗 − 1
2 )𝛥3, if 𝑚2 < 𝑗 ≤ 𝑚3,

𝛥(𝑗) =

⎧⎨⎩
𝛥1/2, if 1 ≤ 𝑗 ≤ 𝑚1,
𝛥2/2, if 𝑚1 < 𝑗 ≤ 𝑚2,
𝛥3/2, if 𝑚2 < 𝑗 ≤ 𝑚3,

and

𝑎(𝑗) =
𝑣(𝑙)− (1− 𝜆)𝑣(𝑗)−𝛥(𝑙)

𝜆
,

𝑏(𝑗) =
𝑣(𝑙)− (1− 𝜆)𝑣(𝑗) +𝛥(𝑙)

𝜆
.

Let 𝑁𝑗 be such an odd number which is determined
by

𝑁𝑗

2
𝜔 <

√
ℎ+ log(𝑣(𝑗)2)− 𝑣(𝑗)2,

(𝑁𝑗 + 1)

2
𝜔 >

√
ℎ+ log(𝑣(𝑗)2)− 𝑣(𝑗)2,

𝑗 = 1, ⋅ ⋅ ⋅ ,𝑚3.

and 𝑁 ′
𝑗 be such an odd number which is determined by

𝑁 ′
𝑗

2
𝜔 <

√
𝑔 + log(𝑣(𝑗)2)− 𝑣(𝑗)2,

(𝑁 ′
𝑗 + 1)

2
𝜔 >

√
𝑔 + log(𝑣(𝑗)2)− 𝑣(𝑗)2,

𝑗 = 𝑚1 + 1, ⋅ ⋅ ⋅ ,𝑚2.

Denote R(𝑖,𝑗)→(𝑘,𝑙) as the transition probability that

(𝑢, 𝑣) goes from (𝑖, 𝑗) to (𝑘, 𝑙). Note that

𝑆∗
𝑡
2 =

1

𝑛

𝑛∑
𝑗=1

(𝑥𝑡𝑗 − 𝑢𝑡)
2 = 𝑆2

𝑡 + (1− 𝜆)2(𝑥̄𝑡 − 𝑢𝑡−1)
2.

Then, when ∣𝑖∣ ≤ 𝑁𝑗−1
2 , ∣𝑘∣ < 𝑁𝑙−1

2 , the transition prob-
ability R(𝑖,𝑗)→(𝑘,𝑙) can be evaluated by

R(𝑖,𝑗)→(𝑘,𝑙)

= 𝑃𝑟{(𝑢𝑡, 𝑣𝑡) = (𝑘, 𝑙)∣(𝑢𝑡−1, 𝑣𝑡−1) = (𝑖, 𝑗)}
= 𝑃𝑟{(𝑘 − (1− 𝜆)𝑖− 1

2
)
𝑤

𝜆
< 𝑥̄𝑡 < (𝑘 − (1− 𝜆)𝑖+

1

2
)
𝑤

𝜆
,

𝑎(𝑗) < 𝑆∗
𝑡
2 < 𝑏(𝑗)}

= 𝑃𝑟{(𝑘 − (1− 𝜆)𝑖− 1

2
)
𝑤

𝜆
< 𝑥̄𝑡 < (𝑘 − (1− 𝜆)𝑖+

1

2
)
𝑤

𝜆
,

𝑎(𝑗)− (1− 𝜆)2(𝑥̄𝑡 − 𝑖𝑤)2 < 𝑆2
𝑡

< 𝑏(𝑗)− (1− 𝜆)2(𝑥̄𝑡 − 𝑖𝑤)2}. (5)

Similarly, when ∣𝑖∣ ≤ 𝑁𝑗−1
2 , 𝑘 = −𝑁𝑙−1

2 , we have

R(𝑖,𝑗)→(𝑘,𝑙)

= 𝑃𝑟{(𝑢𝑡, 𝑣𝑡) = (𝑘, 𝑙)∣(𝑢𝑡−1, 𝑣𝑡−1) = (𝑖, 𝑗)}

= 𝑃𝑟{−
√
ℎ+ log(𝑣2(𝑗))− 𝑣2(𝑗)− (1− 𝜆)𝑤

𝜆

< 𝑥̄𝑡 < (1− (1− 𝜆)𝑖− 𝑁𝑙

2
)
𝑤

𝜆
,

𝑎(𝑗)− (1− 𝜆)2(𝑥̄𝑡 − 𝑖𝑤)2 < 𝑆2
𝑡

< 𝑏(𝑗)− (1− 𝜆)2(𝑥̄𝑡 − 𝑖𝑤)2}. (6)

When ∣𝑖∣ ≤ 𝑁𝑗−1
2 , 𝑘 = 𝑁𝑙−1

2 , we have

R(𝑖,𝑗)→(𝑘,𝑙)

= 𝑃𝑟{(𝑢𝑡, 𝑣𝑡) = (𝑘, 𝑙)∣(𝑢𝑡−1, 𝑣𝑡−1) = (𝑖, 𝑗)}
= 𝑃𝑟{(𝑁𝑙

2
− (1− 𝜆)𝑖− 1)

𝑤

𝜆
< 𝑥̄𝑡

<

√
ℎ+ log(𝑣2(𝑗))− 𝑣2(𝑗)− (1− 𝜆)𝑤

𝜆
,

𝑎(𝑗)− (1− 𝜆)2(𝑥̄𝑡 − 𝑖𝑤)2 < 𝑆2
𝑡

< 𝑏(𝑗)− (1− 𝜆)2(𝑥̄𝑡 − 𝑖𝑤)2}. (7)

In other cases, R(𝑖,𝑗)→(𝑘,𝑙) = 0.
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The evaluation of above probabilities involves the

following double integral,∫ 𝑏

𝑎

∫ 𝑑

𝑐

𝜙(𝑥)𝜒(𝑦)𝑑𝑦𝑑𝑥.

Here, in equation (5),

𝑎 = [
√
𝑛(𝑘 − (1− 𝜆)𝑖− 1

2
)]
𝑤

𝜆
,

𝑏 = [
√
𝑛(𝑘 − (1− 𝜆)𝑖+

1

2
)]
𝑤

𝜆
,

𝑐 = 𝑛[
1− (1− 𝜆)𝑣(𝑗)

𝜆
− (1− 𝜆)(

𝑥√
𝑛
− 𝑖𝑤)2],

𝑑 = 𝑛[
1− (1− 𝜆)𝑣(𝑗) + 𝛥2

2

𝜆
− (1− 𝜆)(

𝑥√
𝑛
− 𝑖𝑤)2],

In equation (6) and in equation (7), 𝑐, 𝑑 are the same
as in (5), while in (6),

𝑎 =
√
𝑛(

−
√

ℎ+log(𝑣2(𝑗))−𝑣2(𝑗)−(1−𝜆)𝑤

𝜆 ),

𝑏 =
√
𝑛(1− (1− 𝜆)𝑖− 𝑁𝑙

2
)
𝑤

𝜆
,

and in (7), we have

𝑎 =
√
𝑛(𝑁𝑙

2 − (1− 𝜆)𝑖− 1)𝑤𝜆 ,

𝑏 =
√
𝑛(

√
ℎ+ log(𝑣2(𝑗))− 𝑣2(𝑗)− (1− 𝜆)𝑤

𝜆
),

where 𝜙(⋅) and 𝜒(⋅) are the probability density functions
of the standard normal and chi-square with 𝑛−1 degrees
of freedom distributions, respectively. Let d be a 𝑁 × 1
vector, the 𝑖th element of this vector corresponds to
the interval being taken after the control statistics fall

inside the state, 𝑖. The approach to determine d is as
follows. First, the number of states 𝑁 equals

∑𝑚3

𝑗=1 𝑁𝑗 ,
also the state (𝑖, 𝑗) can be labeled by
𝑗−1∑
𝑘=0

𝑁𝑘 +
(𝑁𝑗 − 1)

2
+ 𝑖+ 1,

where 𝑖 = − (𝑁𝑗−1)
2 , ⋅ ⋅ ⋅ , 0, ⋅ ⋅ ⋅ , (𝑁𝑗−1)

2 , 𝑗 = 1, ⋅ ⋅ ⋅ ,𝑚3

and 𝑁0 = 0. When 𝑚1 < 𝑗 ≤ 𝑚2 and ∣𝑖∣ ≤ 𝑁 ′
𝑗−1

2 ,

or when ∣𝑖∣ = 𝑁 ′
𝑗+1

2 and (𝑖𝑤)2 + 𝑣2(𝑗)− log(𝑣2(𝑗)) < 𝑔,
which means that the current sample falls in the cen-

tral region, the corresponding element of d is 𝑑1. The
other elements of d is 𝑑2, which means that the current
sample falls in the warning region. Denote 𝜋 to be the

normalized eigenvector subject to 𝜋′𝑅0 = 𝜋′.
Suppose that 𝛼 is the vector of starting probabili-

ties, then it can be expressed in matrix notation, 𝛼′ =
𝜋′D
𝜋′d

, where D is a diagonal matrix with d on the diag-

onal. Then the AATS can be expressed as

AATS = 𝛼′[(I−R)−1 − 1

2
I]d,

where R is a 𝑁×𝑁 dimension matrix when the process

is out of control.

3 Performance comparisons

First, we give a brief review of the NCS chart. When
the NCS chart proposed by [23] is used for monitoring a
process, a sample of size 𝑛0 is randomly chosen every 𝑑0
hours. Then, the values of 𝑌 from each sample plotted
on the NCS chart with an upper control limit given by
𝜃𝜎2

0 ,

𝑌 =

𝑛∑
𝑗=1

(𝑋𝑗 − 𝜇0 + 𝜉𝜎0)
2.

The design parameter 𝜉 is a function of the sample

mean. If 𝑋 > 𝜇0, 𝜉 = 𝜏 , otherwise 𝜉 = −𝜏 , where
𝜏 is a positive constant. In general, larger values of 𝜏
are better for detecting shifts in 𝜇 with 𝜎 = 𝜎0, and
worse for detecting increases in 𝜎 with 𝜇 = 𝜇0. A signal

is given if 𝑌 > 𝜃𝜎2
0 . In this paper, we assumed that

𝜇0 = 0 and 𝜎0 = 1.

AATS results are given for one symmetric and one

asymmetric sampling intervals in Table 2. We can see
that the more widely spaced intervals yield smaller val-
ues of the AATS. The results presented here are fairly

consistent with previous research on univariate VSI con-
trol charts. In general, the interval 𝑑2 should be as
small as possible for better statistical performance ([8]);

therefor, it usually depends on how soon it is feasible to
sample again after the current sample was obtained. On
the other hand, the sampling interval 𝑑1 should be cho-

sen to be long so that the resulting control chart would
have an acceptable average sampling rate. Similar con-
clusions can be obtained for other types of changes as

well.

Table 3 provides the AATS values for the NCS and
the ELR charts with fixed and variable parameters,
𝑑1 = 1.2, 𝑑2 = 0.1, and it also provides the percent-

age reduction in detection time (denoted by PR1 and
PR2) of the ELR and VSI ELR charts relative to the
NCS and VSI NCS charts respectively, where the ex-

pressions for PR𝑖, 𝑖 = 1, 2, are given by

PR𝑖 = [
AATSCi/NCS −AATSCi/ELR

AATSCi/NCS
], 𝑖 = 1, 2

and where C1 = FP and C2 = VSI.

From Table 3 we can see that the ELR chart almost
always significantly performs better than the NCS chart
with or without the VSI feature. Obviously, adding the

VSI feature can provide quite substantial reductions in
the time required to detect small and moderate shifts.
For example, when 𝛿 = 0.4 and 𝛾 = 1.2, the AATS val-

ues for the NCS and the ELR charts are respectively
21.0 and 10.5; for the same shift, the AATS values for
the VSI schemes for both charts are 15.1 and 6.2, re-

spectively.
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Table 2 AATS for the VSI ELR charts for different intervals when 𝑛 = 5, 𝜆 = 0.2 and IC ARL=433

𝛾
𝛿 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00 (1.9, 0.1) 1.5 2.0 5.7 433 12.5 2.8 1.5 1.1

(1.2, 0.1) 1.9 2.6 8.5 433 15.3 3.6 1.8 1.3

0.25 (1.9, 0.1) 1.5 1.9 4.0 22.2 7.0 2.5 1.5 1.1
(1.2, 0.1) 1.9 2.5 5.6 28.1 8.8 3.2 1.7 1.2

0.50 (1.9, 0.1) 1.4 1.7 2.5 3.8 3.1 2.0 1.3 1.0
(1.2, 0.1) 1.8 2.3 3.3 5.0 4.0 2.4 1.6 1.0

0.75 (1.9, 0.1) 1.4 1.5 1.7 2.0 1.8 1.5 1.1 0.9

(1.2, 0.1) 1.7 1.9 2.2 2.5 2.3 1.7 1.3 1.0

1.00 (1.9, 0.1) 1.2 1.2 1.3 1.3 1.2 1.1 1.0 0.8
(1.2, 0.1) 1.5 1.5 1.6 1.7 1.5 1.3 1.1 0.9

1.50 (1.9, 0.1) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6
(1.2, 0.1) 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.7

2.00 (1.9, 0.1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
(1.2, 0.1) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Table 3 ARL, AATS and PRi for the FP and adaptive NCS charts and the FP and adaptive ELR charts

𝑛 = 5 FP VSI
𝛿 𝛾 NCS ELR PR1(%) NCS ELR PR2(%)

0.0 1.0 433 433 0.0 433 433 0.0
1.2 52.6 32.7 37.8 42.8 25.8 39.7

1.4 14.7 8.6 41.5 9.6 5.4 43.7
1.6 6.5 4.4 32.3 3.5 2.6 25.7
1.8 3.8 2.8 26.3 1.8 1.7 5.5

0.2 1.0 225 64.9 71.2 217 48.1 81.5
1.2 39.0 20.9 46.3 30.7 14.7 52.1
1.4 12.7 7.7 39.3 8.1 4.7 42.0
1.6 6.0 4.2 30.0 3.2 2.5 21.9

1.8 3.6 2.7 25.0 1.8 1.6 11.1
0.4 1.0 76.4 15.5 79.7 65.4 8.3 87.3

1.2 21.0 10.5 50.0 15.1 6.2 58.9
1.4 9.0 5.8 35.5 5.4 3.4 37.0

1.6 5.0 3.6 28.0 2.6 2.2 15.4
1.8 3.3 2.5 24.2 1.6 1.5 6.2

0.6 1.0 28.2 7.6 73.0 19.9 3.6 81.9
1.2 11.1 6.1 45.0 6.9 3.3 52.1

1.4 6.0 4.3 28.3 3.3 2.5 24.2
1.6 3.9 3.1 20.5 2.0 1.8 10.0
1.8 2.8 2.2 21.4 1.3 1.3 0.0

0.8 1.0 12.0 4.7 60.8 6.6 2.2 66.7
1.2 6.3 4.1 34.9 3.3 2.1 36.4
1.4 4.1 3.2 22.0 2.1 1.8 14.3
1.6 3.0 2.5 16.7 1.5 1.5 0.0

1.8 2.4 2.0 16.7 1.1 1.2 -9.0
1.0 1.0 5.9 3.3 44.1 2.6 1.6 38.5

1.2 3.9 3.0 23.1 1.8 1.6 11.1
1.4 2.9 2.5 13.8 1.4 1.4 0.0

1.6 2.4 2.0 16.7 1.1 1.2 -10.0
1.8 2.0 1.7 15.0 1.0 1.0 0.0

4 Conclusions and considerations

In this paper, we have proposed and studied a single
chart for the surveillance of both the process mean

and/or variance with VSI procedure. The new chart
can be easily designed and constructed and it is very
effective for diverse cases, including the detection of the

decrease in the variance which is also very important in

many practical applications. The VSI ELR charts and

the FP ELR chart were compared to the VSI and FP
NCS charts. The conclusion is that the adaptive ELR
chart can always detect process disturbance much faster

than the NCS charts in detecting small to moderate
shifts.

In using VSI ELR chart, we recommend using the

shorter sampling interval in the first few samples since
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the effect of using small sampling intervals is useful at

start-up and has more advantages than the fast initial
response (FIR) feature ([37]) which can result in short
IC ARL (and AATS) values.
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