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Abstract

We propose a new multivariate CUSUM control chart, which is based on self-
adaption of its reference value according to the information of current process readings,
to quickly detect the multivariate process mean shifts. By specifying the minimum
magnitude of the process mean shift in terms of its non-centrality parameter, our pro-
posed control chart can achieve an overall performance for detecting a particular range
of shifts. This adaptive feature of our method is based on two EWMA operators to
estimate the current process mean level and make the detection at each step be ap-
proximately optimal. Moreover, we compare our chart to the conventional multivariate
CUSUM chart. The advantages of our control chart detection for range shifts over the
existing charts are greatly improved. The Markovian chain method, through which the
average run length can be computed, is also presented.

KEY WORDS: Average Run Length; Exponentially Weighted Moving Average;
Multivariate CUSUM; Multivariate Mean; Statistical Process Control.

1 Introduction

We assume that a process consists of p (p > 1) quality characteristics denoted by vector X,
where X ∼ Np(µ, Σ). The process is said to be in-control (IC) if µ = µ0 and Σ = Σ0. We
assume that the mean vector µ0 and the covariance matrix Σ0 are known exactly. In practice,
these parameters are estimated from a sample of measurements on the process. Provided
that this sample was sufficiently large, little harm is done by treating the parameters as
known. To facilitate the later discussion, assume that all components of vector X obtained
over time are mutually independent and have been re-scaled to unit standard deviation, i.e.,
the diagonal elements of Σ0 are all equal to 1. Let the in-control mean vector µ0 be 0. In
this paper, we only focus on the detection of the shifts in the process means, so hereafter, we
assume that the covariance matrix remains Σ0 over time no matter the process is in-control
or out-of-control.
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The average run length (ARL) performance of the multivariate Shewhart chart, which is
also known as a Hotelling T 2 chart, depends on the mean vector µ and covariance matrix
Σ0 only through the non-centrality parameter λ =

√
µ′Σ−1

0 µ, where λ = 0 if and only if the
process is in-control. The multivariate Shewhart chart signals when

Tt =

√
X′

tΣ
−1
0 Xt > Hs,

where Hs is the control limit. Similar to its univariate counterpart, Shewhart X̄ chart is more
sensitive to large mean shifts but less to small and moderate mean shifts. For detecting small
and moderate mean shifts, a natural method to develop a multivariate CUSUM procedure
which has ARL’s dependency only on the non-centrality parameter λ, is a test for any change
in λ suggested by [1], which can be derived as

ct =
√

(St−1 + Xt)′Σ−1
0 (St−1 + Xt),

where

St =

{
0, if ct ≤ k,
(1− k/ct)(St−1 + Xt), if ct > k,

with t = 1, 2, ..., and S0 = 0. This multivariate CUSUM chart, denoted by MCUSUM,
signals when

yt =

√
S
′
tΣ

−1
0 St > Hc, (1)

where Hc > 0 is called the decision interval and k > 0 is the reference value.
It is well known that, in univariate case, CUSUM chart gives the optimal detection for

any particular mean shift δ if one sets the corresponding reference value ([2, 3, 4, 5, 6]).
However, in the multivariate case, the optimal design for any particular mean vector shift in
terms of λ, can not be simply the case. Searching the optimal value of k is too complicated
in that the MCUSUM procedure given by Equation (1) is no longer equivalent to a series of
sequential tests as the univariate one is, so [1] suggested to use the similar form of selecting k
to that of the univariate CUSUM to approximate the optimal performance for that particular
shift λ, i.e., k = λ/2. For more detailed information about MCUSUM, see [1] and [7]. From
the discussion above, we know that the detecting performance of MCUSUM chart greatly
depends on the exact pre-knowledge about the magnitude of process shift λ, but the shift
λ can not be always known in real practice. If the true magnitude of λ is not the same
as expected, the detection performance of MCUSUM chart could be badly destroyed. This
is also true for univariate CUSUM ([8]). For univariate CUSUM, [9] proposed an adaptive
CUSUM control chart (called ACUSUM) when the true magnitude of the future mean shift
is unknown. Moreover, a two-dimensional Markov chain model was developed by [10], which
can greatly simplify the evaluation of the ARL performance of ACUSUM charts instead of
simulation method.
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In this paper, we recommend a more generalized MCUSUM control chart, called Adap-
tive MCUSUM (AMCUSUM) control chart, which does not only operate without any pre-
knowledge about the process shift, but also achieve an overall approximately optimal per-
formance at each point in a broader range of mean shifts.

The rest of this paper is organized as follows. In Section 2, our proposed control chart is
presented. Section 3 and Section 4 are devoted to design of our proposed AMCUSUM charts
and performance comparison between AMCUSUM charts and MCUSUM charts, respectively.
In Section 5, we conclude by addressing some relevant issues and discussing some problems.
The Markov-Chain representation of the ARL is deferred to Appendix.

2 The description of our proposed control chart

We now use the MCUSUM chart to introduce the idea of our proposed AMCUSUM chart.
In practice, the magnitude of the future shift λ is often unknown and needs to be estimated.
If λ can be efficiently estimated at time t, say λt, then the estimated value is used to optimize
the MCUSUM statistic in Equation (1) by selecting the reference value kt = λt/2 at time t,
i.e. let

St =

{
0, if ct ≤ kt,
(1− kt/ct)(St−1 + Xt), if ct > kt,

where

ct =
√

(St−1 + Xt)′Σ−1
0 (St−1 + Xt).

The control chart signals if

yt =

√
S′tΣ

−1
0 St > h(kt), (2)

where h(kt) is the control limit at time t. However, just as the univariate case mentioned by
[9], the statistic yt is inconvenient to use in practice because the control limit h(kt) always
changes with changes in kt. Moreover, if one wants to have an equal false alarm rate at
every step, this procedure could be hard to operate in practice because h(kt) is a decreasing
function of kt for a fixed IC ARL (denoted by ARL0, hereafter). Thus, monitoring the
MCUSUM statistic with a fixed threshold implies relatively tight control for small shifts
and relatively loose control for large shifts. Clearly, this results in different sensitivities to
different levels of mean shifts. To balance the detection sensitivity to both small and larger
shifts, a natural idea is to adjust the statistic yt by dividing the corresponding value of h(kt)
to standardize the control limit over time, that is:

y∗t =

√
S
′
tΣ

−1
0 St/h(kt) > H∗, (3)

where H∗ is a threshold to maintain a desired ARL0 and its value is close to 1 but not
exactly due to estimating errors of h(kt), which we will discuss later. Given h(kt), H∗
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can be searched by golden section method or bisection method using the Markov-Chain
representation of ARL derived in the Appendix.

By far, along with its continuously updating its reference value k according to the sample
readings, the conventional MCUSUM is now presented in a form that makes its extension to
a self−adaptive one. Just as mentioned by [9] and [10], in real practice, process products may
perform fairly well for small shifts in the process characteristics. Therefore, there is often a
minimum magnitude of process shifts with high importance for early detection, denoted by
λmin > 0. We wish to design a control procedure to be more efficient at signalling the shifts
λ ≥ λmin, but it may reduce the efficiency in signalling any shifts 0 < λ < λmin. As such, a
more appropriate estimate of the true magnitude of λ, at time t, denoted by λ∗t should be
required as:

λ∗t = max (λmin, λt) . (4)

Therefore, the statistic y∗t in Equation (3) with the restriction (4) reduces the efficiency
for signalling the shifts λ < λmin as compared to the one only in Equation (3) but increases
the efficiency for signalling the shifts λ ≥ λmin.

Different schemes can be used to estimate λ. EWMA is one of the most popular scheme
to most SPC practitioners due to its simplicity and efficiency ([11, 12]). To include the
purpose in Equation (4) for increasing the efficiencies for signalling the shifts larger than
λmin, we prose our AMCUSUM control chart as follows.

First, we use a vector-type EWMA statistic, denoted by {et}, to cumulate the information
from the sample readings, which is derived by the following recursive form

et = (1− r)et−1 + rXt,

where e0 = 0 and r ∈ (0, 1) is a smoothing parameter. This vector-type EWMA gives a
good estimation of the direction and magnitude of the current mean vector µ, thus, it can be
used to estimate the magnitude of λ by computing the out-of-control mean of its quadratic
form, that is

E
(
e′tΣ

−1
0 et

)
= λ2 [1− (1− r)t]

2
+ [1− (1− r)2t] rp

2−r
. (5)

From Equation (5), we could get an unbiased estimate of the squared value of λ at time t,
denoted by (λt)

2, that is

(λt)
2 = 1

(1−(1−r)t)2
× {

e′tΣ
−1
0 et − [1− (1− r)2t] rp

2−r

}
. (6)

Second, based on Equation (6) and the Equation (4), another EWMA operator {λ∗t} is
used to estimate true mean shift λ with the restriction of only detecting shifts larger than
λmin, that is:

(λ∗t )
2 = max

{
λ2

min, (1− r)(λ∗t−1)
2 + r(λt)

2
}

. (7)
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Finally, our proposed AMCUSUM statistics can be derived as follows

c∗t =
{
(S∗t−1 + Xt)

′Σ−1
0 (S∗t−1 + Xt)

}1/2
,

and

S∗t =

{
0, if c∗t ≤ k∗t ,
(1− k∗t /c

∗
t )(S

∗
t−1 + Xt), if c∗t > k∗t .

where
k∗t = λ∗t /2.

The AMCUSUM chart signals when

y∗t =

√
S∗

′
t Σ−1

0 S∗t /h(k∗t ) > H∗, (8)

where H∗ is the control limit to obtain a pre-defined ARL0.

3 The Design of AMCUSUM chart

3.1 The estimate of h(k)

As mentioned in last section, the value of k varies over time, so the control limit of MCUSUM
statistic needs to be changed to maintain the same ARL0 at every step. Therefore, we give an
operating model of h(k) to standardize the control limit over time for easy implementation.
However, three parameters are related to it, they are: p, k and ARL0. Getting a full form
including all these parameters is not easy, so here, we give a list of h(k, ARL0) with different
values of p by both simulation and regression methods.

Given the value of p, the operating model h(k, ARL0) were established by first estimating
the h(ki, ARLj

0) for 55 different values of {ki} ranging from 0.2 to 3 and 16 different values of
{ARLj

0} ranging from 200 to 1000 using Markov Chain Model, which is given in Appendix
of this paper. Then empirical models were fitted to points (ki, ARLj

0, h(ki, ARLj
0)), for i =

1, 2, ..., 55 and j = 1, 2, ..., 16. Note that this method estimates h(k, ARL0) accurately when
0.2 ≤ k ≤ 3, and extrapolating h(k, ARL0) beyond this range may be inaccurate.

The operating models h(k, ARL0) for the MCUSUM statistic are recorded in Table 1
for p = 2, 3, ..., 10. The results for the cases when (p ≥ 11) are not listed for shorting the
paper. Hereafter, we assume that all the sample readings are obtained under the bivariate
normal case, that is p = 2, and the conclusions for p > 2 are similar. Also note that all
the results are implemented in Fortran 95 program with IMSL package. The multivariate
normal vector X is generated by routine “rnmvn”. Routine “blinf” is used to obtain the
ARL by the expressions in Appendix. For a given λ, we generate multivariate p-dimensional
normal vectors X such that λ =

√
X′Σ−1

0 X in each run. Note that [1] has proved that ARL
depends only on the non-centrality parameter λ (see the Appendix of [1]). So the selection
of normal vectors X is reasonable.

Insert Table 1 here.

5



3.2 The Effect of λmin

As discussed above in Equation (4), the value of λmin improves the detection performance
of AMCUSUM charts for shifts λ ≥ λmin, but reduces the efficiency for shifts λ < λmin.
Table 2 presents the ARL values of AMCUSUMs with different values of λmin by 100,000
simulated runs, where r = 0.1, λ∗0 = λmin and ARL0 is set to 200. We set λ∗0 = λmin here
because we want to study the performance of our AMCUSUM charts under the condition
that λ ≥ λmin, although we can have other alternatives if we have different purposes (see
the last subsection of this section). The numerical results show that the AMCUSUM charts
with λmin = 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 have the minimum ARL values for signalling
shifts of sizes 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50, respectively. For balancing the performance
for both large and small shifts, here, we recommend to chose λmin = 0.5 for practical use.

Insert Table 2 here.

3.3 The Effect of r

It can be seen that the EWMA operator affects the adaptive feature of AMCUSUM statistic
only through its smoothing parameter r. As most literature focusing on the EWMA operator,
larger values of r could improve the efficiency of control chart for large shifts, and vice
versa. Table 3 gives the numerical results of the ARL performance of AMCUSUM charts
with different values of r = 0.05, 0.1, 0.2, 0.3 and 0.5, where all these charts are mainly
focused on detecting the range shifts (0.5, 4.0), and the initial value of EWMA operator
λ∗0 = λmin = 0.5. Conclusions are similar for other ranges of detection interests.

Insert Table 3 here.
Theoretically, once λmin and λ∗0 are fixed, r can be tuned to minimize the out-of-control

ARL for any particular shift. However, choosing r to satisfy some optimal criterion for
one or two shifts is not acceptable when the main purpose is to achieve an overall efficient
performance over a particular range of shifts ([13]). This is because the optimal value of r,
which optimize the ARL performance at some specified magnitude of mean shift, decrease
the sensitivity to other shifts. From Table 3, it is shown that with different choice of r, our
proposed control chart performs differently over the range shifts. The larger values of r, the
more sensitive to larger shifts. However, these differences are very minor. Therefore, we
recommend that one chooses r = 0.2 to balance the performance for both small and large
shifts, as usually suggested in [14].

3.4 The Effect of the initial values of EWMA operator λ∗0
Suppose (λmin, λmax) is the range of potential shift for future detection. To investigate
effects of the initial value of λ∗0, five models are carried out for choosing λ∗0: (a) the A1
design, λ∗0 = λmin; (b) the A2 design, λ∗0 is set at the lower quarter of the range (λmin, λmax);
(c) the A3 design, λ∗0 is set in the middle point of the range (λmin, λmax); (d) the A4 design,
λ∗0 is set at the upper quarter of the range (λmin, λmax); (e) the A5 design, λ∗0 = λmax.
Numerical results of ARL performances for all these 5 design models are given in Table 4,
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where the detecting range is (0.5, 4.0), r = 0.2. Therefore, the corresponding values of λ∗0
for these 5 models are 0.5, 1.375, 2.25, 3.125, 4.0, respectively.

Insert Table 4 here.
From Table 4, it can be seen that the larger the value of λ∗0, the more sensitive our

proposed control chart to larger shifts. For example, the A1 design, outperforms other
design schemes in detecting the small shifts ranging from 0.5 to 1.0. On the other side, the
A5 schemes, performs the best for shifts larger than 3.0. Among these five designs, the A3
design, can be viewed as a overall balanced design over other four designs, therefore, we
recommend to use A3 for practical use, i.e λ∗0 = (λmin + λmax)/2.

3.5 The Guideline for designing AMCUSUM chart

Based on the discussion above about the properties of our AMCUSUM control chart, we sug-
gest the following guidelines to design our AMCUSUM chart to achieve an overall efficiency
for any specified range shifts, not only at some particular magnitude of process shifts.

(a). Select the detecting range of interest (λmin, λmax) based on preliminary investigation.

(b). Choose λ∗0 = (λmin + λmax)/2 to balance the performance of the AMCUSUM control
chart at all points in the range (λmin, λmax).

(c). Choose r ∈ (0.05, 0.25) based on the rule-of-thumb. Here, in practice, we recommend
to use r = 0.2.

(d). Select an appropriate control limit H∗ to achieve the desired ARL0.

(e). Run the AMCUSUM control chart. If y∗t > H∗, then a signal is issued.

4 Performance Comparisons

In this section, we compare the ARL performance of AMCUSUM chart with that of the
conventional MCUSUM chart over serval specified range shifts. For a fair comparison, here,
we use the criterion proposed by [15], called “IRARL”, which is defined as

IRARL(C) = E

[
ARLc(δ)

ARLop(δ)

]
=

∫
ARLc(δ)

ARLop

dF (δ), (9)

where C is the signature of any compared control chart, ARLc(δ) represents the OC ARL
of control chart C under the mean shift δ, ARLop(δ) represents the OC ARL of MCUSUM
chart with k = δ/2 under the mean shift δ and F (δ) is the cumulative distribution function
(CDF) of shifts δ. If we have no prior information of the mean shift, the CDF of uniform
distribution U [ δmin, δmax ] can be used as F (δ), as we employed in this paper. For easy
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computation, the discrete form of Equation (9) is used to approximate the value of IRARL,
which is given by

IRARL ≈ 1

m + 1

m∑
i=0

ARLc(δi)

ARLop(δi)
, (10)

where m is a given integer, and δi = δmin + i
m

(δmax − δmin).
Apparently, a control chart with a smaller IRARL value for any specialized range is

considered to be more effective and robust to detect the shifts over that range, and vice
versa. Here, we choose three range shifts with different width: (0.5, 4.0), (1.0, 4.0) and
(0.75, 1.5), which represents large, moderate and narrow width, respectively. Also, three
MCUSUMs with different reference values are used for comparison: the M1 MCUSUM, with
k = λmin/2, aims to perform better near the left side of the range; the M2 MCUSUM, with
k = (λmin + λmax)/4, to balance the performance over the range; the M3 MCUSUM, with
k = λmax/2, to perform better near the right side of the range. For a fair comparison, the
ARL0 of these charts are maintained to 200, and our proposed AMCUSUM chart is designed
by the guidelines in the previous section. The numerical results are shown in Table 5. Note
that H∗ and H are the control limits of AMCUSUM and MCUSUM charts, respectively.

From Table 5, it is easy to see that a single MCUSUM chart can only signal either small
or large shift quickly once the corresponding reference value k is chosen appropriately to
that shift. On the other hand, IRARL of the AMCUSUM chart for any of the three range
shifts are smaller than those of three MCUSUM charts, which means that the AMCUSUM
chart has either the shortest or nearly the shortest ARL for every shift magnitude within the
specified range, and performs more robustly than MCUSUM chart for range shifts. Similar
conclusions can be made for AMCUSUM charts designed for other moderate and small ranges
of process shifts.

Insert Table 5 here.

5 Concluding remarks and extensions

The MCUSUM chart ([1]) is mainly designed with the assumption that the magnitude of
the future mean shift is available in a prior. Its detecting performance may be substantially
different from what is expected when the actual magnitude of the process shift is different
from the pre-specified one. However, based on the dynamically adjustment on the reference
value according to the current sample readings, our proposed AMCUSUM control chart can
be more efficient and robust than MCUSUM chart in detecting a broader range of process
mean shifts.

Other interesting issues can be pursued in future works. For example, we only consider
AMCUSUM chart with known in-control parameters. If the process parameters (mean vec-
tor and covariance matrix) are estimated from a number of preliminary training samples,
the performance of the AMCUSUM chart will be affected. Another important issue is the
interpretation of the signal. With the EWMA operator added in the AMCUSUM statistic,
its one-step ahead forecasting property could help to give additional information about the
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current process mean shift when the chart signals.
Finally, we give two suggestions to further improve the detection ability of our chart:

1. Superimposing a Shewhart control limit; 2. Using a Markovian-type mean estimator. A
Markovian-type mean estimator is given by (λ∗t )

2 = (λ∗t−1)
2+φ(at)

2, where at = (λt)
2−(λ∗t−1)

2

is the prediction error and φ(·) is a monotone function. This type of EWMA mean estimator
was first proposed by [16] and was suggested by [13] for process monitoring. Based on the
Huber’s score function ([17]), [18] suggested using a new Markovian-type EWMA operator
to estimate the process mean level, and φ(·) is given by

φη(a) =





a + (1− r)η, a < −η,
ηa, |a| ≤ η,
e− (1− r)η, a > η,

where η is a constant. Note that when η →∞, this EWMA operator reduces to the regular
EWMA statistic without restriction of Equation (4).
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Appendix: Markov-Chain Representation

For the in-control situation, the ARL of MCUSUM charts can be approximated by using a
discrete Markov chain model. Following [19], the possible values of yt in Equation (1) can be
represented by m+1 states, where one state is an absorbing state referring to the range yt > h.
The m transient states are numbered 1,2,...,m and represent values of yt between 0 and h.
It is reasonable to think of the Markov chain model in terms of a discrete random variable
which takes on values 0, w, 2w,..., mw, where w = 2h/(2m−1). The transition probabilities
among the transient states are needed to find the ARL. The transition probabilities are:

Pr (yt = jw | yt−1 = iw) , i, j ∈ {1, 2, ..., m}.

To find the transition probabilities, note that yt = max (0, ct − k), which implies the tran-
sition probabilities are conditional probabilities. Further note that yt−1 can be regarded as
the Mahalanobis distance of the vector St−1. With a fixed distance yt−1, the vector St−1 is
not fixed, but it is some constant rather than a random variable. So the variance of St−1 is 0.
Therefore, for the in-control situation, E(St−1 +Xt) = St−1 and Var(St−1 +Xt) = Σ0. Under
the assumption of a multivariate normal distribution for {Xt}, ct has a χ2 distribution with

non-centrality parameter
√

S′t−1Σ
−1
0 St−1 = yt−1, therefore
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Pr (yt = 0 | yt−1 = iw) = Pr (ct ≤ k + w/2) ,

Pr (yt = jw | yt−1 = iw) = Pr (k + (j − 0.5)w < ct ≤ k + (j + 0.5)w) , j > 0

where ct has a chi distribution with non-centrality parameter iw.
For given ARL0, p and k, the threshold value H∗ can be searched by golden section

method or bisection method in a range [0, UH ] using the Markov-Chain representation of
ARL, where UH is an upper bound satisfying the condition that the IC ARL of our scheme
is larger than the prespecified ARL0 when H∗ = UH . In the ith iteration, H∗ is searched in
the range [L

(i)
H , U

(i)
H ] with L

(1)
H = 0 and U

(1)
H = UH . The IC ARL value ARL

(i)
0 is computed

by the Markov-Chain representation derived above with H∗ = H∗(i) = (L
(i)
H + U

(i)
H )/2. If

|ARLi
0 − ARL0| < ε1, where ε1 > 0 is a prespecified threshold value, then the searching

procedure stops, and the searched valued of H∗ is H∗(i). Otherwise, define,

{
L

(i+1)
H = H∗(i) and U

(i+1)
H = U

(i)
H , if ARL

(i)
0 < ARL0,

L
(i+1)
H = L

(i)
H and U

(i+1)
H = H∗(i), if ARL

(i)
0 > ARL0,

and
H∗(i+1) = (L

(i+1)
H + U

(i+1)
H )/2.

If |H∗(i+1) − H∗(i)| < ε2, where ε2 > 0 is another prespecified threshold value, then the
searching procedure stops, and the searched valued of H∗ is H∗(i). In such a case, a message
should be printed to remind the user of the actual IC ARL. If |H∗(i+1) − H∗(i)| ≥ ε2, the
searching procedure executes the next iteration.
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Table 1: The operating model h(k, ARL0) = ea+ln(ARL0)b

p = 2 a = 1.7888− 2.9212k + 1.8454k2 − 0.5062k3

b = 0.1855 + 0.0582k − 0.1245k2 + 0.0482k3

p = 3 a = 1.8599− 2.0014k + 0.9288k2 − 0.2384k3

b = 0.2033− 0.0657k − 0.0037k2 + 0.0131k3

p = 4 a = 2.0109− 1.7037k + 0.6312k2 − 0.1482k3

b = 0.2027− 0.1019k + 0.0321k2 + 0.0021k3

p = 5 a = 2.1453− 1.5338k + 0.4724k2 − 0.1014k3

b = 0.2011− 0.1227k + 0.0515k2 − 0.0037k3

p = 6 a = 2.2636− 1.4244k + 0.3780k2 − 0.0744k3

b = 0.1996− 0.1372k + 0.0642k2 − 0.0073k3

p = 7 a = 2.3618− 1.3507k + 0.3242k2 − 0.0595k3

b = 0.1999− 0.1487k + 0.0726k2 − 0.0096k3

p = 8 a = 2.3665− 1.1107k + 0.1777k2 − 0.0296k3

b = 0.2124− 0.1857k + 0.0957k2 − 0.0143k3

p = 9 a = 2.5175− 1.1996k + 0.2273k2 − 0.0363k3

b = 0.2024− 0.1748k + 0.0904k2 − 0.0136k3

p = 10 a = 2.6380− 1.2711k + 0.2743k2 − 0.0436k3

b = 0.1954− 0.1654k + 0.0847k2 − 0.0128k3

Table 2: The ARL of AMCUSUM chart with r = 0.1, λ∗0 = λmin

λmin

shift 0.25 0.5 0.75 1.0 1.25 1.5
0.00 200.00 200.00 200.00 200.00 200.00 200.00
0.25 62.94 64.45 73.59 82.80 92.62 105.10
0.50 27.33 25.54 26.83 29.25 32.75 38.11
0.75 15.86 14.51 14.33 14.90 15.79 17.48
1.00 10.55 9.72 9.65 5.54 9.68 10.12
1.25 7.73 7.13 7.02 6.96 6.86 6.94
1.50 6.03 5.57 5.48 5.33 5.27 5.25
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Table 3: The ARL of AMCUSUM chart with different values of r.

r
shift 0.05 0.10 0.20 0.30 0.50
0.00 200.00 200.00 200.00 200.00 200.00
0.50 26.07 25.54 26.83 27.23 28.42
1.00 10.18 9.72 10.03 10.36 11.07
1.50 6.03 5.57 5.54 5.71 6.23
2.00 4.25 3.83 3.74 3.78 4.08
2.50 3.29 2.92 2.81 2.80 2.95
3.00 2.69 2.37 2.26 2.23 2.30
3.50 2.29 2.02 1.91 1.87 1.88
4.00 2.02 1.76 1.65 1.60 1.59

Table 4: The ARL of AMCUSUM chart with different initial values of λ∗0.

shift A1 A2 A3 A4 A5
0.00 200.00 200.00 200.00 200.00 200.00
0.50 26.70 28.08 30.45 32.31 34.21
1.00 10.05 10.63 11.56 12.67 14.08
1.50 5.54 5.60 5.75 6.24 7.04
2.00 3.70 3.61 3.55 3.67 4.05
2.50 2.77 2.65 2.52 2.49 2.64
3.00 2.23 2.10 1.96 1.89 1.91
3.50 1.87 1.75 1.61 1.51 1.49
4.00 1.60 1.50 1.37 1.29 1.26
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Table 5: The ARL comparisons between AMCUSUM and MCUSUM charts

AMCUSUM M1 M2 M3 OP
r = 0.2 k = λmin/2 k = (λmin + λmax)/4 k = λmax/2

range shifts (0.5, 4.0)
shift H∗ = 1.058 Hc = 8.659 Hc = 2.672 Hc = 1.288 -
0.00 200.00 200.00 200.00 200.00 200.00
0.50 30.45 26.50 57.55 99.86 26.50
1.00 11.56 11.44 13.24 30.36 9.80
1.50 5.75 7.30 5.57 10.32 5.18
2.00 3.55 5.41 3.37 4.57 3.38
2.50 2.52 4.33 2.44 2.64 2.39
3.00 1.96 3.63 1.93 1.84 1.80
3.50 1.61 3.16 1.62 1.43 1.43
4.00 1.37 2.82 1.38 1.21 1.21

IRARL 1.11 1.69 1.25 1.79 -
range shifts (1.0, 4.0)

shift H∗ = 0.973 Hc = 5.485 Hc = 2.388 Hc = 1.288 -
0.00 200.00 200.00 200.00 200.00 200.00
1.00 10.63 9.88 15.00 30.36 9.80
1.50 5.37 5.76 5.90 10.32 5.18
2.00 3.31 4.12 3.41 4.57 3.38
2.50 2.35 3.23 2.40 2.64 2.39
3.00 1.81 2.69 1.87 1.84 1.80
3.50 1.49 2.33 1.54 1.43 1.43
4.00 1.28 2.09 1.32 1.21 1.21

IRARL 1.03 1.36 1.13 1.51 -
range shifts (0.75, 1.5)

shift H∗ = 0.987 H = 6.762 H = 5.019 H = 3.936 -
0.00 200.00 200.00 200.00 200.00 200.00
0.75 14.80 15.18 15.44 17.45 15.09
1.00 9.61 10.36 9.80 10.17 9.80
1.25 6.90 7.85 7.09 6.98 7.04
1.50 5.24 6.33 5.58 5.18 5.18

IRARL 0.99 1.10 1.03 1.05 -
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