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A self-starting control chart, based on the likelihood ratio test (LRT) and the exponentially
weighted moving average (EWMA) procedure, is proposed for monitoring the process mean
and variance simultaneously when the process parameters are unknown. A table is presented
to assist in the design of the control chart with different parameters. Its in-control (IC) aver-
age run length (ARL) can be evaluated by a two-dimensional Markov chain model. Moreover,
the diagnostic aids of the proposed chart are given. Monte Carlo simulation results compared
with some competing methods in literature show that the proposed approach has quite sat-
isfactory charting performance across a range of possible shifts when the process parameters
are unknown, even including the detection of the decrease in variability. A real data example
from industrial manufacturing is used for demonstrating its implementation.
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1. Introduction

Since Shewhart first developed the statistical process control (SPC) chart concept,
control charts have been an essential statistical tool in industry. It is desirable to
construct a control chart that can not only detect changes in the process mean,
but also is sensitive to the shifts in the process variability. In general, there are
two main methods of developing control schemes for jointly monitoring the mean
and variance of the process. One is to combine two control charts that are designed
for monitoring the mean and variability respectively, such as the combination of
Shewhart X̄ (or X) and R (MR or S) charts (Saniga 1989, Rahim 1989, Costa 1993,
Rahim and Costa 2000) and the combination of EWMA-type charts (Domangue
and Patch 1991, Reynolds and Stumbos 2001). The other one is to use omnibus-
type test statistics to implement a single control scheme for detecting shifts in both
mean and variance (Domangue and Patch 1991, Chen et al. 2001, Wu and Yu 2005,
Zhang et al. 2008).

All of the methods mentioned above assume that the parameters of the process
are known. In most industrial applications, however, the process parameters to be
monitored are unknown and have to be estimated in a special Phase I calibration
exercise. Some authors have recommended using 20-30 samples with four to five
observations each to estimate the process parameters for traditional control charts
(Ryan 2000, Montgomery 2005). Quesenberry (1993) and Jones et al. (2001, 2004)
have investigated the effect of the estimated parameters on the performance of
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traditional control charts. A recent literature review paper by Jensen et al. (2006)
provides a thorough discussion of the effects of parameters estimation on control
chart performance. They conclude that, when the number of reference samples
is small, control charts with estimated parameters produce a large bias in the
in-control (IC) ARL and reduce the sensitivity of the chart in detecting process
changes as measured by the out-of-control (OC) ARL. Moreover, after short runs,
false alarm probabilities from the charts increase drastically (Bischak and Trietsch
2007). A direct solution to this problem is to increase the Phase I sample size to
reduce the variability of the estimates, especially the process variance. In most
cases, however, it may not be possible to wait for the accumulation of sufficiently
large subgroups because the users usually want to monitor the process at the
start-up stages, such as job-shop environment. A different remedy involves using
some self-starting methods, which have been developed accordingly that update
the parameter estimators along with new observations and simultaneously monitor
the process to see whether the process is in control or not (Hawkins 1987, Hawkins
and Olwell 1998, Quesenberry 1991, 1995, Sullivan and Jones 2002). To enhance
the performance of the method of Quesenberry (1995), Li and Wang (2008) propose
an adaptive Cusum of Q chart, which can detect a range of shifts adaptively. In
particular, Hawkins et al. (2003), Hawkins and Zamba (2005a,b) propose a change-
point model based on the likelihood ratio for on-line monitoring that can also be
seen as self-starting methods.

In many applications, as mentioned above, the parameters of the process are
always not known before running a chart. Therefore, it is desirable to find a control
chart that performs well even when the parameters of the process are unknown. The
main objective of this paper is to develop a procedure that will monitor the changes
of process shifts in both the mean and the variance without collecting a sufficient
large sample of IC observations. So a self-starting control chart based on the LRT
and the EWMA procedure (SSELR) is proposed for monitoring the process mean
and variance simultaneously when the process parameters are unknown. Without
these IC observations, we do not have information of the process parameters, so our
SSELR chart is a self-starting control chart when the IC process parameters µ and
σ are unknown. This means that it is not necessary to assemble a large number of
reference samples before the control chart begins, although it is advisable to collect
a few preliminary samples. So it has the advantage that the process parameters do
not have to be known, which may make it useful for short production run situations.
Because our proposed SSELR chart is a single chart, the design and operation of
the monitoring scheme can be greatly simplified compared with the combination-
type charts. The proposed SSELR chart has the following positive features: 1) the
analysis approach is more reliable than Monte Carlo simulation because its IC
ARL can be evaluated by a two-dimensional Markov chain model; 2) due to fully
inheriting the advantages of classical LRT, it is quite robust and sensitive to various
types of shifts; 3) it can effectively detect the decrease in variability; 4) it is able to
handle the case that the sample size is one; 5) it can diagnose when the process has
gone out of control and which parameter or parameters have underwent a shift.

The remainder of this paper is organized as follows. In the next section, our
proposed control chart and the diagnostic aids are presented. The numerical com-
parisons with other competing procedures are shown in Section 3. The implemen-
tation of our proposed method is illustrated in Section 4 by a real data example
from industrial manufacturing. Several remarks conclude this paper in Section 5.
The detailed derivations of the testing statistics are deferred to the Appendix.
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2. SSELR chart for monitoring process mean and variance

2.1 The method of the SSELR chart

Let xt = (xt1, · · · , xtn), t = 1, 2, · · · denote a sequence of samples of size n(≥ 1)
taken on a quality characteristic X. It is assumed that, for each t, xt1, · · ·xtn are
identically and independently distributed (i.i.d) random variables from a normal
N(µ, σ2) distribution. Departures from control may take the form of shifts in µ
and/or σ. These shifts will be thought of as starting at some instant τ , and per-
sisting for some time. The traditional model is given by

xt ∼
{

N(µ, σ2), if t = 1, 2, . . . , τ,
N(µ + δσ, (γσ)2), if t = τ + 1, . . . .

(1)

We assume that none of the parameters µ, σ, δ, γ and τ are known a priori. If a
shift occurs, i.e. δ 6= 0 and(or) γ 6= 1, it is important to signal its presence as soon
as possible after it takes place, without undue false alarm.

Write µt = 1
nt

t∑
i=1

n∑
j=1

xij for the mean of the first t process readings and Wt =

t∑
i=1

n∑
j=1

(xij−µt)2 for the sum of squared deviations of the first t readings from their

mean. The sample variance of the first t readings is then given by s2
t = Wt

tn−1 . If the
process is in control, then µt ∼ N(µ, σ2

nt ) and Wt

σ2 ∼ χ2(nt− 1). The calculation of
the running mean and variance are considerably simplified by the fact that they
can be written using the updating formula as follows:

µt = µt−1 +
x̄t − µt−1

t
, (2)

and

Wt = Wt−1 + n(t− 1)(µt − µt−1)2 +
n∑

j=1

(xtj − µt)2, (3)

where x̄t = 1
n

n∑
j=1

xtj (The derivations of Equations (2) and (3) are presented in

the Appendix). Standardizing each reading using the running mean and standard
deviation of the preceding observations gives:

Ttj =
xtj − µt−1

st−1
, j = 1, 2, 3, . . . , n.

We know that

xtj − µt−1 ∼ N(0,
(nt− n + 1)σ2

nt− n
),

(nt− n− 1)s2
t−1

σ2
∼ χ2(nt− n− 1)

Under the normal distribution assumption, Ttj follows a scaled Student’s t dis-
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tribution:
√

nt− n

nt− n + 1
Ttj ∼ tnt−n−1, j = 1, 2, 3, . . . , n.

Define at =
√

nt−n
nt−n+1 . The exact cumulative distribution function (CDF) of Ttj is

then given by

Pr[Ttj < T ] = Tnt−n−1(atT ),

where Tnt−n−1(·) stands for the CDF of the Student’s t distribution with nt−n−1
degrees of freedom. Then the transformation

wtj = Φ−1[Tnt−n−1(atTtj)]

will transform the quantity Ttj into a random variable wtj that has an ex-
act N(0, 1) distribution for all t ≥ 3 when the process is in control. When
an assignable cause occurs after some subgroups, say, τ subgroups, the dis-
tribution of wtj , t = τ + 1, τ + 2, . . ., j = 1, 2, . . . , n, is different from that of
wtj , t = 1, 2, . . . , τ , j = 1, 2, . . . , n. The difference between them will be used in
our method to detect the assignable cause.

Zhang et al. (2008) propose an ELR chart based on the LRT when the parameters
are exactly known a priori. We, however, develop our new chart on the condition
that the process parameters are unknown.

Given a sample xt, t ≥ 3, based on the quantity wtj , consider the following
hypothesis test

H0 : δ = 0 and γ = 1 ←→ H1 : δ 6= 0 or γ 6= 1.

It is straightforward to obtain the generalized likelihood ratio statistic as follows

lt = n(w̄2
t + S2

t − lnS2
t − 1), (4)

where w̄t = 1
n

n∑
j=1

wtj and S2
t = 1

n

n∑
j=1

(wtj − w̄t)2. It can be easily checked that

lt
L→χ2(2) as t →∞ (The derivation of Equation (4) and the asymptotic distribution

are presented in the Appendix). Obviously, a large lt leads to rejecting the null
hypothesis. The terms w̄2

t and S2
t − lnS2

t contribute to the changes of the process
mean and variance, respectively. Note that the function z − ln z is monotonically
increase (decrease) when z > 1 (0 < z < 1) and attains its minimum at z = 1.
Hence, the testing statistics lt will be sensitive to both the increase and decrease in
variance. Unlike some other test statistics in the literature, lt is a likelihood ratio
derived under the setting in which the process mean and variance may change, and
thus naturally adapts to be sensitive to various types of shift combinations. The
comparative study in the next section also verifies this point.

In order to detect small or moderate shifts effectively, we incorporate EWMA
procedure to the construction of lt. Here the EWMA scheme is not to directly
average the lt statistics but rather to get more precise “estimates” of the current
process mean and variance. To be specific, two EWMA statistics based on the
sample mean x̄t and sample variance S2

t are given by

ut = λw̄t + (1− λ)ut−1, (5)
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vt = λS∗t
2 + (1− λ)vt−1, (6)

where S∗t
2 =

∑n
j=1(wtj−ut)2/n, u0 = 0, v0 = 1, and λ is the smoothing parameter

satisfying 0 < λ < 1. In general, a smaller λ leads to a quicker detection of smaller
shifts (Lucas and Saccucci 1990).

Note that the statistic vt in (6) is different from its counterpart used in Chen
et al. (2001). Here, the moving average estimation of process mean ut is used in
the variance estimation to replace w̄t. It would be expected to be more accurate
by using this sequentially updated estimation and thus may improve the ability to
detect the possible process change. Our extensive simulation results demonstrate
this point. In fact, this formulation is essentially equivalent to its multivariate
counterpart used in Huang et al. (2007).

Finally, substituting ut and vt for w̄t and S2
t in (4), we can obtain the self-starting

EWMA LRT (SSELR) charting statistics

SSELR∗
t = n(u2

t + vt − ln(vt)− 1), t = 1, 2, . . . . (7)

In practice, we can omit the constants in (7) and plot

SSELRt = u2
t + vt − ln(vt), t = 1, 2, . . . . (8)

A signal is addressed when SSELRt exceeds a given upper control limit h, which
is chosen to obtain the given specified IC ARL. For some given IC ARL and sam-
ple size n = 1(1)15, the control limits for each chart are tabulated in Table 1.
A Fortran program that easily finds the control limits for each chart given a de-
sired overall IC ARL, a smoothing constant λ, is available from the authors. The
smoothing constant λ in Equation (5) and (6) are chosen to be equal to simplify
the computation although we can certainly use different smoothing constants that
lead to quicker detection of different shifts (Lucas and Saccucci 1990).

Insert Table 1 about here.
Since the wtj statistics are exactly i.i.d Normal random variables under IC con-

dition, that is, the IC mean and variance of the process are both known, the
two-dimensional Markov chain model developed in Zhang et al. (2008) can be used
to evaluate the IC ARL of the SSELR chart.

Our SSELR is not the first self-starting proposal. However, there are two major
differences between our proposed scheme and Hawkins (1987): First, our consid-
ered type of data set is rational subgroup of size n ≥ 1, while only the individual
observations are investigated by Hawkins (1987). Another difference is that two
pairs of Cusums are set up in Hawkins (1987): one testing for constancy of lo-
cation of the process, and the other for constancy of the variance. However, we
propose a scheme to monitor the process mean and variance simultaneously by
using one single chart based on the LRT. It is shown that the procedure performs
well in detecting changes in the process. The differences between our SSELR chart
and Hawkins and Zamba (2005b) are shown in the comparative study in the next
section.

2.2 The diagnostic aids of the SSELR chart

In practice, when a special cause produces a change in one or more process pa-
rameters, it is important to detect this change quickly, and it is also significant
to diagnose when the process has gone out of control and which parameter or pa-
rameters have underwent a shift after an OC signal is given. Such a diagnostic aid
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is particularly important in our SSELR chart, which is a single control chart for
monitoring both process mean and variance shifts simultaneously. The diagnostic
aids to locate the change point in the process and to isolate the type of parame-
ter change will help a practitioner to identify and eliminate the special cause of a
problem quickly and easily. Following the idea of Zou et al. (2007), we propose a
diagnostic method based on the maximum likelihood estimator of the change point
τ to assist in the diagnosis of our SSELR chart. In this section, the statistics of wt

are used in our diagnostic aids of the SSELR chart.
Let {wj , j = 1, 2, . . . , k} denote all the historical and collected future samples.

Then the logarithm of the likelihood function is given by

−1
2

k∑

j=1

(log(2πσ2
j ) +

(wj − µj)2

σ2
j

).

If the data are collected under IC conditions, the maximum value of the logarithm
of likelihood function is

l0 = −k

2
log(2π)− k

2
log σ̂2

k −
k

2

where

σ̂2
k =

∑k
j=1(wj − wk)2

k
,wk =

∑k
j=1 wj

k
.

When there is a step shift after the kth
1 sample, the corresponding maximum value

is

l1 = −k

2
log(2π)− k1

2
log σ̂2

1,k1
− k2

2
log σ̂2

2,k1
− k

2

where

σ̂2
1,k1

=

∑k1
j=1(wj − w1,k1)

2

k1
, σ̂2

2,k1
=

∑k
j=k1+1(wj − w2,k1)

2

k2
,

w1,k1 =

∑k1
j=1 wj

k1
, w2,k1 =

∑k
j=k1+1 wj

k2
, k2 = k − k1.

Thus, the classical likelihood ratio statistic is defined by

lr(k1, k) = −2(l0 − l1) = k log(σ̂2
k(σ̂

2
1,k1

)−k1/k(σ̂2
2,k1

)−k2/k).

The estimator of the change point, τ , of a step shift in parameter(s) including
process mean and(or) variance is given by

τ̂ = arg max
2≤k1≤k−2

{lr(k1, k)}.

It is necessary to justify which parameter or parameters have shifted after a
signal occurs. After obtaining the change point estimator , τ̂ , we may consider the
parametric test method as follows:
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• The t−test for the mean change using degrees of freedom k − 2 and test
statistic

tµ =

√
τ̂(k − τ̂)/k(w1,τ̂ − w2,τ̂ )√

(τ̂ σ̂2
1,τ̂ + (k − τ̂)σ̂2

2,τ̂ )/(k − 2)

• The F−test for the variance change using degrees of freedom τ̂ − 1 and
k − τ̂ − 1. The test statistic is

Fσ =
τ̂(k − τ̂ − 1)σ̂2

1,τ̂

(τ̂ − 1)(k − τ̂)σ̂2
2,τ̂

.

3. Performance and Comparisons

In this section, the comparisons among our proposed SSELR chart and the MEW
chart of Chen et al. (2001) (denoted as MEW) and ELR chart of Zhang et al.
(2008) (denoted as ELR) for rational subgroups n = 5 and the chart of Hawkins
and Zamba (2005b) (denoted as CP) based on the change point model for individual
observations are carried out by Monte Carlo simulation based on 10,000 replica-
tions, such that the standard errors of the estimates are less than 2%, enabling
us to draw reasonable conclusions. Note that the method of Chen et al. (2001)
and Zhang et al. (2008) rely on the availability of the values of the IC parameters,
so they are not standard alternatives. It is, however, still interesting to show the
difference of our SSELR chart with IC process parameters unknown. Because it is
known that the performance of self-starting method is affected by the change point
τ , we assesses the OC ARL performance of our chart for different values of τ of IC
samples before a shift occurs.

3.1 Comparison with MEW and ELR

For simplicity, we only consider the case of overall IC ARL=370 when n = 5,
λ = 0.2. The control limit is set to be 1.2456 from Table 1. Although the IC ARL
of our SSELR can be evaluated by the Markov chain procedure, in this paper, the
performance when the process is out of control is studied by simulating sequence
of standard normal data. Random samples from a fixed Normal distribution are
generated for τ =10, 25, 50, 100, 250 and 500, after which shifts are in either the
mean or variance or are simultaneous. The process mean and process standard
deviation are changed from 0 to δ and from 1 to γ, respectively. The results are
listed in Table 2.

Insert Table 2 about here.
Table 2 shows that our proposed SSELR chart performs almost equally well for

all values of τ when detecting a large shift. Naturally, the OC ARL will be affected
by the number of reference samples gathered before a shift actually occurs. The
benefit is much more obvious in the case of detecting a small to moderate shift
than in detecting a large shift. Because the SSELR chart updates the parameter
estimation with new samples, the more IC future samples one collects, the more
sensitive the SSELR chart is to a small to moderate shift. Moreover, it can be seen
that the performance of our SSELR with about 25 start-up observations is good
enough, which implies we do not need to gain much more satisfactory performance
at the cost of collecting many more observations. Our SSELR chart has comparable
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performance with the MEW chart and ELR chart, although they are constructed
on the assumption that the IC process parameters are known.

As an anonymous reviewer pointed out, it is interesting to show the optimal
parameters of λ and h for detecting different combinations of shifts (δ, γ). Table 3
presents the (λ∗, h∗, ARL∗) by minimizing the OC ARL under the constraint IC
ARL=370.4 and shift position τ = 10, where λ∗ and h∗ are the optimal parameters
of λ and h and ARL∗ is the minimum ARL. We find the minimum OC ARL
by the standard grid search algorithm, i.e., we compute the OC ARL with λ =
0.02(0.02)1.00 and find the minimum OC ARL for different combinations of shifts
(δ, γ). Although Table 3 only lists the cases n=3 and n=7, other cases show similar
patterns, thus, omitted here.

Insert Table 3 about here.
From Table 3, we can draw some general conclusions. First, for fixed δ, the

optimal λ∗ is large for large deviations of γ, i.e., too small a γ (e.g. γ = 0.2) or too
large a γ (e.g. γ = 1.8). However, this is not always true. For example, when δ ≥ 1.5
and γ > 1.0, the optimal λ∗ is not larger than that when δ ≥ 1.5 and γ = 1.0.
This is not expected and warrants further investigation. Similar conclusions can be
drawn for fixed γ. Second, the optimal ARL∗ when n = 7 is greatly reduced relative
to that when n = 3. For example, when (δ, γ) = (0, 1.4) and (δ, γ) = (0.5, 1.0), the
optimal ARL∗ are 10.705 and 11.622 when n = 7 while the optimal ARL∗ are
175.840 and 124.429 when n = 3. This implies the performance of our SSELR can
be greatly improved if we can collect data with large sample size.

3.2 Comparison with CP

The change point approach is proposed by Hawkins and Zamba (2005b). The sim-
ulation results show this approach is always nearly the best for detecting the mean
shifts and(or) variance shifts. Thus, it makes an appropriate benchmark against
which to compare the SSELR chart.

The SSELR chart and the CP of Hawkins and Zamba (2005b) are compared
when the IC ARL are made to be about 500, such that they are comparable in
the IC condition. When n = 1, λ = 0.2, the control limit is 2.2187 from Table
1. Similarly, we consider different τ . Note that the bolded values in Table 4 are
smaller.

Insert Table 4 about here.
From Table 4, we can draw some conclusions as follows:

• When τ + 1=50, the SSELR chart has worse performance than the CP ap-
proach with mean shift δ < 1. When the mean shift δ > 1, the SSELR chart has
better performance than the CP approach.
• When τ +1=10, the SSELR chart always performs better than CP with mean

shift δ ≤ 1.5, despite the fact that it has a little worse performance when δ = 2.0.
However, the performance gain of our SSELR to CP outweighs the performance
loss.
• When τ + 1=250, the SSELR chart has better performance for most of the

cases considered here.
• When both δ and γ are moderate to large (δ ≥ 1.0 and γ ≥ 1.25), SSELR

performs better than CP.
• It is not necessary to collect more IC samples with more cost to have better

performance.

Although our proposed SSELR chart does not always perform better than the
CP approach, it has its own advantages. First, it is easy to design in practice. All a
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practitioner needs to do is specify a combination of IC ARL, smoothing parameter
λ, sample size n and control limit h, which can be found in Table 1. A Fortran
program is available from the authors upon request. Moreover, the IC ARL of
SSELR chart can be obtained through a two-dimensional Markov chain model.
Once these parameters are chosen, they are not changed during the monitoring
process. This is not the case for the CP approach, in which the critical value hn

has to be changed as each new observation enters the monitoring process. Second,
it is easy to compute the monitoring statistics for SSELR chart. For the change
point approach, because it is needed to calculate the two sample statistic Gk,n for
every possible split point 1 ≤ k < n to find the Gmax,n, the ever-growing storage
requirement for the two samples seems less convenient.

4. A Real Data Example

In this section, our proposed chart will be illustrated by an example of two labo-
ratories carrying out routine indirect(instrumental) assays for precious metals of
batches of a feedstock, which was used in Hawkins (1987). Interested practitioners
in the example and the data from the two laboratories are referred to Table 3 in
Hawkins (1987) for more details, so the data sets are not presented here.

Although in the previous section, the comparisons among our proposed SSELR
chart and some competing methods are carried out, we incorporate some results
in Hawkins (1987) to better illustrate the efficiency of our method. As discussed
before, the parameters of our proposed SSELR chart are n = 1, λ = 0.2. For this
SSELR chart the control limit is h = 1.8818 and the IC ARL is about 100, which is
the same as the self-starting Cusum chart employed by Hawkins (1987), in which
the control limit is h = 6 and the reference value is k = 0.25.

The results of our method are tabulated in Table 5 and Table 6 for Laboratory 1
data and Laboratory 2 data, respectively. Note that the columns labelled “Pt” and
“PF ” are the P-values of the statistics “tµ” and “Fσ”. To give a clear picture of the
performance our SSELR chart, the SSELR readings and control limit h = 1.8818
are further shown in Figure 1.

Insert Figure 1 about here.
Insert Table 5 and Table 6 about here.

From Table 5, we can see that the SSELR chart signals a shift at the 30th
sample (i.e., t=30) for Laboratory 1. Because two data samples are required to get
the estimators of initial mean and standard deviation to get the first transformed
statistic wt, and two readings of wt are required to get the standard deviation of
the transformation data, we can diagnose from the fourth data with our proposed
diagnostic aids. Then by looking at the values of lr(kt, k) for Laboratory 1 (t =
4, 5, . . . , 28) in Table 5, we can find that its maximum occurs at t = 15 with
lr(15, 30) = 9.8594. Note from model (1) the process undergoes a shift after τ
samples. This maximum indicates the same change-point location, τ , of the shift
with Hawkins (1987). From the P-values “Pt = .001598” and “PF = .715973”,
we can conclude the process mean has underwent a significant shift if we choose a
significant level α, say, 0.05 or even less. Moreover, by computing the test statistics,
tµ and Fσ, we obtain tµ = −3.2481 and Fσ = 1.3703. For the significant level,
α = 0.05, it follows that |tµ| = 3.2481 > 2.0484 = |T (0.025; 28)|, and Fσ =
1.3703 < 2.4244 = F (0.95; 14; 15), where T (0.025; 28) and F (0.95; 14; 15) are the
lower percentiles of the Student-t distribution with 28 degrees of freedom and of
the F-distribution with 14 and 15 degrees of freedom. Hence, our SSELR indicates
the same time when there is a shift and the same parameter which undergoes a
shift with Hawkins (1987). Similar analysis is conducted for Laboratory 2, and



April 30, 2009 9:14 International Journal of Production Research tPRSguide

10 Taylor & Francis and I.T. Consultant

the results are shown in Table 6. The SSELR chart signals a shift at the 29th
sample (i.e., t=29), which is 2 samples earlier than Hawkins (1987). The maximum
occurs at t = 22 with lr(22, 29) = 9.2102 and tµ = −2.9803, and Fσ = 0.4973.
The P-values “Pt = .003165” and “PF = .114379” strongly indicate the process
mean has a significant shift. For α = 0.05, it follows that |tµ| = 2.9803 > 2.0518 =
|T (0.025; 27)|, and Fσ = 0.4973 < 3.8649 = F (0.95; 21; 6). Hence, our SSELR
concludes that there is a shift in the process mean after sample 22, which is the
same with Hawkins (1987), but signals 2 samples earlier.

5. Conclusions and Considerations

Based on the LRT and the EWMA procedure, we proposed an SSELR chart to
detect the process mean and variance simultaneously when the process parameters
are unknown. The IC ARL of our SSELR chart can be analyzed through a two
dimensional Markov chain method and it performs well in the case when process
parameters are unknown but some historical samples are available. We also give a
useful tool based on the maximum likelihood ratio to diagnose the position of shift.
In practical applications, if one wants to get information about which parameter
or parameters have been changed, two parameter tests can then be applied to aid
the proposed chart.

Usually a decrease in the variance corresponds to an improvement in the mea-
surement process as long as other parameters do not change. The simulation results
show that our new chart can detect various types of shift in the process includ-
ing the decrease of the variance. Considering the easy computation and powerful
performance of our SSELR chart, we believe it is useful for practitioners in practice.

In this paper, the univariate data samples of sample size n ≥ 1 are considered.
Sullivan and Jones (2002) propose a self-starting control chart for multivariate in-
dividual observations. Due to the complexity of the multivariate data, generalizing
the idea of this paper to multivariate case is still challenging. This is under research
of the authors.
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Appendix

The derivation of Equation (2):

µt =
1
tn

t∑

i=1

n∑

j=1

xij

=
1
tn

(
t−1∑

i=1

n∑

j=1

xij +
n∑

j=1

xtj)

=
1
tn

((t− 1)nµt−1 + nx̄t)

= µt−1 +
x̄t − µt−1

t

The derivation of Equation (3):

Wt =
t∑

i=1

n∑

j=1

(xij − µt)2

=
t−1∑

i=1

n∑

j=1

(xij − µt)2 +
n∑

j=1

(xtj − µt)2

=
t−1∑

i=1

n∑

j=1

(xij − µt−1 + µt−1 − µt)2 +
n∑

j=1

(xtj − µt)2

=
t−1∑

i=1

n∑

j=1

(xij − µt−1)2 + n(t− 1)(µt − µt−1)2 +
n∑

j=1

(xtj − µt)2

= Wt−1 + n(t− 1)(µt − µt−1)2 +
n∑

j=1

(xtj − µt)2

The derivation of Equation (4):
As

wtj ∼ N(0, 1), j = 1, 2, · · · , n,

then the Log likelihood function under H0 is

l0 = −n

2
log 2π −

n∑
j=1

w2
tj

2

When we get n samples, the MLE of the parameters are

µ̂ = w̄t, σ̂2 = S2
t ,

respectively, then the Log likelihood function under H1 is
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l1 = −n

2
log 2πσ̂2

t −
n

2

Then we have the LRt statistics as follows:

−2(l0 − l1) = n(w̄2
t + S2

t − log S2
t − 1).

According to the results of Silvey (1970), n(S2
t − log S2

t −1) L→χ2(1). Also note that
nw̄2

t ∼ χ2(1) and n(S2
t − log S2

t − 1) and nw̄2
t are independent. So lt

L→χ2(2) as
t →∞.
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Table 1. The control limits of SSELR chart when λ = 0.2

IC ARL
n 100 200 300 370 400 500
1 1.8818 2.0332 2.1211 2.1558 2.1797 2.2187
2 1.4531 1.5303 1.5768 1.5996 1.6045 1.6328
3 1.3059 1.3555 1.3857 1.4033 1.4092 1.4297
4 1.2305 1.2725 1.2924 1.3071 1.3085 1.3239
5 1.1855 1.2165 1.2363 1.2456 1.2481 1.2603
6 1.1553 1.1816 1.1960 1.2053 1.2070 1.2168
7 1.1318 1.1556 1.1680 1.1761 1.1785 1.1865
8 1.1162 1.1368 1.1482 1.1553 1.1562 1.1633
9 1.1035 1.1210 1.1328 1.1372 1.1397 1.1450
10 1.0930 1.1091 1.1172 1.1232 1.1250 1.1308
11 1.0850 1.0999 1.1078 1.1125 1.1135 1.1189
12 1.0777 1.0916 1.0992 1.1030 1.1047 1.1095
13 1.0717 1.0842 1.0919 1.0952 1.0964 1.1007
14 1.0664 1.0783 1.0848 1.0879 1.0900 1.0940
15 1.0625 1.0732 1.0793 1.0823 1.0834 1.0877

Table 2. OC ARLs of SSELR (with different τ) and ELR, MEW chart with true parameters

τ
δ γ 10 25 50 100 250 500 ELR MEW
0 0.2 4.864 4.805 4.876 4.825 4.835 4.825 3.82 2.48

0.6 29.753 9.409 9.088 8.446 8.508 8.363 7.36 8.99
1.0 368.063 368.339 378.359 375.032 370.285 374.596 370.2 370.1
1.4 179.177 51.912 17.803 11.419 10.423 10.029 8.48 9.36
1.8 16.581 4.756 4.584 4.196 4.299 4.172 3.17 3.85

0.50 0.2 4.733 4.760 4.668 4.729 4.744 4.675 3.71 2.47
0.6 8.276 6.817 6.573 6.397 6.330 6.312 5.35 7.12
1.0 128.614 44.336 16.425 11.926 10.965 10.928 9.43 9.21
1.4 69.485 10.530 7.108 6.590 6.226 6.333 5.14 5.98
1.8 8.096 4.346 3.978 3.783 3.844 3.829 2.80 3.48

1.00 0.2 4.189 4.160 4.048 4.115 4.082 4.045 3.06 2.36
0.6 4.654 4.488 4.402 4.359 4.327 4.308 3.31 3.23
1.0 6.945 4.806 4.528 4.454 4.338 4.408 3.40 3.38
1.4 5.996 4.187 4.044 3.945 3.899 3.819 2.83 3.28
1.8 3.849 3.442 3.284 3.194 3.204 3.238 2.14 2.69

1.50 0.2 3.383 3.272 3.235 3.193 3.213 3.171 2.19 1.96
0.6 3.410 3.251 3.214 3.216 3.198 3.172 2.18 2.14
1.0 3.342 3.246 3.137 3.132 3.107 3.071 2.08 2.19
1.4 3.223 3.008 2.961 2.940 2.945 2.912 1.88 2.21
1.8 2.984 2.800 2.727 2.734 2.719 2.684 1.66 2.10

2.00 0.2 2.719 2.679 2.639 2.648 2.629 2.663 1.66 1.66
0.6 2.700 2.625 2.616 2.577 2.561 2.587 1.58 1.69
1.0 2.605 2.575 2.523 2.490 2.528 2.493 1.50 1.70
1.4 2.615 2.490 2.473 2.458 2.455 2.420 1.42 1.72
1.8 2.470 2.406 2.434 2.396 2.376 2.381 1.36 1.69

2.50 0.2 2.199 2.155 2.108 2.081 2.083 2.076 1.08 1.35
0.6 2.215 2.150 2.156 2.126 2.142 2.124 1.13 1.38
1.0 2.260 2.175 2.171 2.182 2.198 2.166 1.16 1.39
1.4 2.239 2.199 2.187 2.167 2.161 2.199 1.17 1.41
1.8 2.265 2.209 2.197 2.188 2.201 2.176 1.16 1.42

3.00 0.2 2.028 1.998 1.998 1.997 1.996 1.998 1.00 1.12
0.6 2.019 2.009 2.004 1.998 2.003 2.006 1.00 1.14
1.0 2.051 2.042 2.025 2.030 2.024 2.022 1.02 1.18
1.4 2.093 2.060 2.052 2.047 2.047 2.047 1.05 1.21
1.8 2.091 2.079 2.065 2.070 2.048 2.060 1.06 1.23

Figure caption list:

• Figure 1. The SSELR statistics for Laboratory 1 and 2.
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Table 3. Optimal parameters (λ∗, h∗, ARL∗) of SSELR when IC

ARL=370.4 and τ = 10

n=3 n=7
δ γ λ∗ h∗ ARL∗ λ∗ h∗ ARL∗
0 0.2 0.62 2.7357 4.489 1.00 2.9859 2.188

0.6 0.04 1.0566 37.610 0.06 1.0410 9.604
1.0 ALL ALL 370.4 ALL ALL 370.4
1.4 0.02 1.0235 175.840 0.06 1.0410 10.705
1.8 0.04 1.0566 32.326 0.42 1.4424 4.438

0.50 0.2 0.66 2.9082 4.144 1.00 2.9859 2.066
0.6 0.08 1.1338 14.746 0.44 1.4687 5.170
1.0 0.02 1.0235 124.249 0.06 1.0410 11.622
1.4 0.02 1.0235 85.572 0.06 1.0410 6.746
1.8 0.04 1.0566 20.175 0.42 1.4424 3.518

1.00 0.2 0.76 3.4297 3.454 0.98 2.8320 1.997
0.6 0.30 1.6601 6.074 0.66 1.8359 3.035
1.0 0.06 1.0954 13.230 0.42 1.4424 3.779
1.4 0.04 1.0566 12.862 0.42 1.4424 3.402
1.8 0.06 1.0954 8.311 0.52 1.5906 2.762

1.50 0.2 0.92 4.6601 2.713 0.90 2.4555 1.996
0.6 0.52 2.3455 3.810 0.90 2.4555 2.091
1.0 0.24 1.5059 4.762 0.78 2.1043 2.390
1.4 0.18 1.3565 4.554 0.64 1.7978 2.327
1.8 0.14 1.2617 4.303 0.78 2.1043 2.305

2.00 0.2 0.96 5.2137 2.092 0.98 2.8320 1.996
0.6 0.74 3.3081 2.689 0.96 2.7141 1.997
1.0 0.44 2.0786 3.080 0.90 2.4555 2.035
1.4 0.32 1.7153 2.979 0.86 2.3276 2.028
1.8 0.34 1.7739 2.888 0.80 2.1583 2.021

2.50 0.2 0.96 5.2137 1.998 0.90 2.4555 1.995
0.6 0.86 4.1055 2.123 0.86 2.3276 1.995
1.0 0.68 3.0048 2.372 0.86 2.3276 1.997
1.4 0.54 2.4222 2.312 0.90 2.4555 1.996
1.8 0.56 2.4948 2.222 0.90 2.4555 1.995

3.00 0.2 0.84 3.9570 1.996 0.88 2.3906 1.994
0.6 0.88 4.2812 2.008 0.84 2.2735 1.995
1.0 0.82 3.8108 2.187 0.54 1.6222 1.995
1.4 0.78 3.5509 2.178 0.84 2.2735 1.995
1.8 0.70 3.1045 2.145 0.88 2.3906 1.994
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Table 4. OC ARLs of SSELR and CP with different τ

τ+1 10 50 250
δ γ CP SSELR CP SSELR CP SSELR

0.0 0.51 287.6 275.9 32.3 58.5 23.2 25.6
0.64 415.9 409.4 123.2 249.0 44.6 81.3
0.80 480.4 474.9 393.1 431.7 186.6 359.5
1.00 496.6 495.9 498.4 505.8 491.1 502.2
1.25 508.7 478.7 458.1 382.0 204.0 203.9
1.56 500.0 433.8 205.4 195.8 34.2 33.2
1.95 471.9 365.1 30.5 56.3 14.2 12.5

0.5 0.51 180.0 175.0 20.2 23.0 16.8 17.7
0.64 321.1 304.6 39.3 84.3 25.2 28.1
0.80 422.3 403.2 123.1 216.2 41.4 57.7
1.00 473.7 429.1 265.1 273.0 63.7 81.1
1.25 492.7 427.6 250.4 209.8 47.6 47.0
1.56 477.7 410.1 105.4 107.7 23.3 19.8
1.95 448.1 326.3 22.8 34.0 12.4 10.3

1.0 0.51 47.2 41.9 11.0 11.6 10.0 10.4
0.64 120.5 114.3 13.9 14.6 12.0 11.7
0.80 228.3 207.1 18.8 21.0 14.3 12.8
1.00 355.0 294.8 25.0 34.8 16.2 13.5
1.25 410.6 327.2 28.6 37.4 15.7 12.8
1.56 419.0 308.5 22.1 22.0 12.8 10.3
1.95 407.2 263.5 13.6 11.9 9.2 7.6

1.5 0.51 12.3 12.2 7.0 7.8 6.5 7.2
0.64 21.0 21.0 8.0 8.0 7.1 7.2
0.80 55.2 53.6 9.0 8.4 7.8 7.2
1.00 132.7 117.2 10.1 8.7 8.2 7.2
1.25 230.9 178.8 10.7 8.7 8.2 7.0
1.56 298.6 186.8 10.4 8.1 7.7 6.5
1.95 316.9 176.8 8.8 6.8 6.7 5.7

2.0 0.51 7.2 8.8 5.0 5.7 4.6 5.1
0.64 8.8 10.2 5.4 5.7 4.9 5.1
0.80 13.6 15.4 5.8 5.7 5.2 5.1
1.00 26.9 29.7 6.3 5.6 5.4 5.0
1.25 65.8 65.1 6.6 5.6 5.4 4.9
1.56 132.2 95.0 6.5 5.4 5.3 4.8
1.95 178.9 92.7 6.1 5.1 5.0 4.6

Table 5. The results of the diagnosis for Laboratory 1

t xt wt SSELRt lr(kt, k) tµ Fσ Pt PF

1 0.82 *** *** *** *** *** *** ***
2 0.40 *** *** *** *** *** *** ***
3 -2.02 -1.709 1.130 *** *** *** *** ***
4 -0.02 0.123 1.062 2.5708 -1.5806 2.0067 .063025 .831058
5 -2.18 -1.139 1.191 5.2949 -2.3076 1.1228 .014618 .658129
6 -0.64 -0.024 1.168 4.7449 -2.1591 0.9640 .020125 .573460
7 -0.39 0.152 1.166 4.1427 -1.9807 0.8598 .029150 .496739
8 -0.51 0.051 1.230 4.1793 -1.9223 0.7219 .032796 .385606
9 1.17 1.381 1.067 1.5458 -1.2141 1.1407 .117818 .624527
10 0.49 0.680 1.161 0.9560 -0.9468 1.0337 .176229 .559340
11 -1.77 -1.179 1.042 2.4749 -1.5429 1.1593 .067465 .625919
12 -0.64 -0.176 1.117 2.8947 -1.6802 0.9964 .052453 .521699
13 -2.30 -1.504 1.169 6.3404 -2.5013 1.3955 .009501 .733557
14 -1.55 -0.768 1.296 8.8755 -3.0213 1.4662 .002794 .758715
15 -0.90 -0.202 1.349 9.8594 -3.2481 1.3703 .001598 .715973
16 0.03 0.592 1.209 8.5212 -2.9987 1.2737 .002952 .665441
17 0.50 0.968 1.118 6.5499 -2.5734 1.2555 .008062 .649940
18 0.60 1.000 1.169 4.8673 -2.1825 1.2128 .019150 .620220
19 -0.65 -0.136 1.227 5.6765 -2.3988 1.1271 .011958 .563751
20 0.19 0.623 1.349 4.9196 -2.2334 0.9931 .017172 .471266
21 -0.38 0.081 1.466 5.5050 -2.3747 0.8904 .012613 .394190
22 -0.72 -0.242 1.522 7.1451 -2.7488 0.8979 .005365 .394622
23 -0.21 0.257 1.686 7.7550 -2.8740 0.8086 .003987 .329623
24 -0.50 -0.035 1.833 9.6926 -3.2792 0.8567 .001479 .357847
25 0.95 1.406 1.500 6.7064 -2.6487 0.7634 .006777 .297180
26 1.59 1.910 1.573 3.0331 -1.7228 0.8326 .048401 .331541
27 0.68 0.943 1.741 2.2315 -1.4425 0.5514 .080546 .184692
28 -0.34 -0.043 1.561 3.9881 -1.9950 0.5208 .028312 .178080
29 0.30 0.571 1.689 *** *** *** *** ***
30 2.23 2.321 1.917 *** *** *** *** ***
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Table 6. The results of the diagnosis for Laboratory 2

t xt wt SSELRt lr(kt, k) tµ Fσ Pt PF

1 0.30 *** *** *** *** *** *** ***
2 0.18 *** *** *** *** *** *** ***
3 -1.61 -2.100 1.230 *** *** *** *** ***
4 -0.38 -0.002 1.119 2.0125 -1.3787 1.5774 .090097 .778782
5 0.18 0.513 1.028 0.8758 -0.9030 1.3211 .187582 .713651
6 -0.38 -0.123 1.051 1.0563 -0.8839 0.8716 .192598 .529288
7 0.45 0.870 1.035 0.4634 -0.4782 0.8503 .318316 .490587
8 -0.53 -0.440 1.087 1.0649 -0.6404 0.6621 .263863 .343681
9 -0.65 -0.574 1.173 1.9136 -0.8425 0.5443 .203758 .231782
10 -0.29 -0.027 1.276 2.6750 -0.8419 0.4466 .203917 .140358
11 1.50 2.313 1.135 0.1013 -0.0652 0.8862 .474255 .452212
12 -0.74 -0.738 1.021 0.3359 -0.3241 0.7988 .374277 .376871
13 -1.10 -1.110 1.013 0.7636 -0.6974 0.7825 .245991 .354401
14 0.33 0.678 1.007 0.7179 -0.4953 0.7014 .312342 .280506
15 -0.26 -0.080 1.045 1.2048 -0.5399 0.5987 .297028 .191364
16 -0.20 0.000 1.122 1.8154 -0.5620 0.5111 .289572 .122168
17 -0.47 -0.361 1.211 2.6342 -0.7030 0.4442 .244272 .077412
18 -1.22 -1.347 1.210 3.1825 -1.1836 0.4739 .123848 .092801
19 -0.47 -0.267 1.306 4.1972 -1.3244 0.4096 .098678 .057248
20 -0.68 -0.549 1.454 5.4725 -1.5901 0.3661 .062193 .038832
21 -1.07 -1.069 1.596 6.9613 -2.1198 0.3759 .022065 .044635
22 -1.37 -1.416 1.763 9.2102 -2.9803 0.4973 .003165 .114379
23 1.44 2.342 1.100 4.1922 -1.9911 0.6497 .028755 .222653
24 -0.50 -0.239 1.030 5.5144 -2.3183 0.5948 .014453 .191864
25 -0.83 -0.647 1.047 8.6340 -3.0649 0.8774 .002582 .354929
26 0.15 0.616 1.009 9.0232 -3.1810 0.8432 .001946 .323457
27 0.84 1.463 1.064 7.0366 -2.7277 0.4958 .005747 .168408
28 0.54 1.018 1.173 *** *** *** *** ***
29 2.51 3.160 2.073 *** *** *** *** ***


