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Recently, adaptive control charts (that is, with variable sample sizes and/or sampling in-
tervals) for the univariate or multivariate quality characteristics have received considerable
attention in Phase II analysis in the literature. Due to the scarcity of enough sample to have a
good knowledge of the parameters in start-up process, adding adaptive feature to self-starting
control charts remains an open problem. In this paper, we propose an adaptive Cusum of Q
chart with variable sampling intervals for monitoring the process mean of normally distributed
variables. A Fortran program is available to assist in the design of the control chart with dif-
ferent parameters. The effect of the control chart parameters on the performance is studied in
detail. The control chart is further enhanced by finding adaptive reference values. Due to the
powerful properties of the proposed control chart, the Monte Carlo simulation results show
that it provides quite satisfactory performance in various cases. The proposed control chart
is applied to a real life data example to illustrate its implementation.

Keywords: Self-starting; Variable Sampling Interval; SPC; Quality Control; Reliability
Engineering.

1. Introduction

Statistical process control (SPC) charts are widely used in industry for monitoring
the quality of manufactured products. In Phase II analysis, the process parameters
are usually assumed known. However, in practice the process parameters are usually
unknown in the early stages of process improvement, and they are usually estimated
by using in-control (IC) historical samples (or by the Phase I study). When the
number of historical samples is small, control charts with estimated parameters
generally produce a large bias in the IC average run length (ARL), and reduce the
sensitivity of the chart in detecting the process changes measured by the out-of-
control (OC) ARL. Moreover, after short runs, Bischak and Trietsch (2007) show
that the false alarm probabilities from the charts increase drastically. This is the
so-called “control charts with estimated parameters” problem.

In light of the deterioration of control chart performance that results from es-
timated parameters, practitioners should collect a sample of data large enough to
ensure that parameter estimates are sufficiently close to the true parameters. It
may not be realistic because the users usually want to monitor and adjust the
process in the start-up stages. To tackle this problem, self-starting method is an
efficient choice. Hawkins (1987) uses the running mean and standard deviation of
all observations made on the process since start-up as substitutes for the unknown
true values of the process mean and standard deviation. In particular, Hawkins
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et al. (2003) and Hawkins and Zamba (2005a,b) propose a change-point model
based on the likelihood ratio for on-line monitoring which can also be seen as a
self-starting method. Moreover, for start-up process and short or long runs, Que-
senberry (1991) presents the important formulas so that charts for both the process
mean and variance can be maintained from the start of production, whether or not
prior information for estimation the parameters is available. Quesenberry (1995)
studies the properties of Q charts for variables and the sensitivity of specially
designed exponentially weighted moving average (EWMA) and cumulative sum
(Cusum) of Q charts.

Extensive research in recent years has developed Variable Sample Rate (VSR)
control charts that vary the sampling rate as a function of current and prior sample
results. The advantage of using a VSR chart instead of a Fixed Sampling Rate
(FSR) chart is that a VSR chart provides much faster detection of small and
moderate process changes, for a given IC ARL and a given IC average sampling
rate. There are several approaches that can be used to vary the sampling rate. One
approach is a Variable Sampling Intervals (VSI) chart that varies the sampling
intervals as a function of the sample results from the process. Another approach
to varying the sample rate is a Variable Sample Size (VSS) chart that varies the
sample size as a function of the sample results from the process. The VSI and VSS
features can be combined to give a Variable Sample Sizes and Sampling Intervals
(VSSI) control chart that allows the sample size and sampling interval to vary.
There have been lots of research on conventional control chart using VSR features
in literature, for X control chart, see Costa (1998), Lin and Chou (2005a) and
Chen and Chiou (2005); for Cusum control chart, see Reynolds et al (1990), Zhang
and Wu (2007) and Wu et al (2007); for EWMA control chart, see Saccucci et al
(1992), Reynolds (1996) and Reynolds and Arnold (2001); for acceptance control
chart, see Wu (1998); for non-central chi-square statistic chart, see Costa and De
Magalhães (2007); for multivariate control chart, see Aparisi (1996) and Aparisi
and Haro (2001).

Montgomery (2007) shows that one important area of SPC research continues to
be the use of adaptive control chart, i.e., with variable sample sizes and/or sampling
intervals. Although control chart using VSR features in Phase II analysis has been
extensively investigated in the literature, there is little work on adaptive control
schemes in Phase I study except Jensen et al. (2008), who consider the impact of
parameter estimation on adaptive control chart performance. Jensen et al. (2008)
show that adaptive control charts should only be used for mature processes, where a
sufficient amount of Phase I data have been obtained to ensure that the estimated
control limits are accurate. The objective of this paper is to fulfill this gap by
performing a detailed investigation of Cusum of Q chart with variable sampling
intervals (VSICQ) for monitoring process mean shift in which it is desirable to
determine the sampling interval for the next sample before sampling is started for
this sample. As Zantek (2006) points out, the expected values of the Q statistics are
smaller than those of the statistics accumulated in the classic Cusum procedure
following a shift, which suggests that smaller reference values being used in the
Cusum of Q. That is, the magnitude of the Q statistics is masked to some extent,
which greatly hampers the detection ability of the Cusum of Q chart. As there is
little work on how much the magnitude of the Q statistics is masked exactly, the
design of VSICQ is not at all trivial. We overcome this difficulty by finding the
empirical distribution of the Cusum of Q statistics through Monte Carlo simulation.
Inheriting the advantage from the Cusum of Q chart that the process parameters
do not have to be known, our proposed VSICQ does not suffer the problem of
Jensen et al. (2008). The proposed chart has the following good features: 1) it can
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be used in the start up of a process; 2) it does not take much effort in designing;
3) it is quite sensitive to a range of shifts.

Now we summarize some abbreviated expressions used in this paper for easy
reference and recapitulation.

• CDF: cumulative distribution function; RMI: relative mean index.
• IC: in-control; OC: out-of-control.
• ARL: average run length; ATS: average time to signal; AATS: the adjusted

average time to signal; SSATS: steady-state average time to signal.
• EWMA: exponentially weighted moving average; Cusum: cumulative sum.
• VSR: variable sample rate; FSR: fixed sampling rate; VSI: variable sampling

intervals; VSS: Variable Sample Size; VSSI: variable sample sizes and sampling
intervals.
• VSICQ: Cusum of Q chart with variable sampling intervals; VSIACQ: adap-

tive Cusum of Q chart with variable sampling intervals.

The remainder of this paper is organized as follows. In the next section, our
proposed VSICQ and its designing strategies are presented. An enhancement of
VSICQ with adaptive reference values is also provided. The numerical comparisons
with the improved Cusum of Q scheme of Zantek (2006) and the enhanced VSICQ
are carried out in Section 3. A real data example from two laboratories carrying
out routine indirect assays for precious metals of batches of a feedstock is used
to illustrate the application of VSICQ in Section 4. Several remarks conclude this
paper in Section 5.

2. The method of VSICQ

In this section, the Cusum of Q scheme of Quesenberry (1995) is briefly introduced.
Also our proposed VSICQ and its design are presented. An enhanced VSICQ—
adaptive Cusum of Q chart with variable sampling intervals (VSIACQ) is provided,
too.

2.1 The Cusum of Q chart

A brief review of the Cusum of Q chart is introduced in this section.
Let X1, X2, . . . , Xi, . . . be a sequence of i.i.d. normal variables with mean µ and

variance σ2, where neither µ nor σ2 is known, whether the process is in control
or not. From simulation results (not shown here), we find that with the same
magnitude of the mean shift, if the variance has upper-sided change, our proposed
control chart would signal more quickly and if the variance has lower-sided change,
our proposed control chart would signal more slowly. That means the performance
of our proposed control chart is affected by the variance shifts. As our focus in this
paper is on monitoring the change of process mean, we assume that the unknown σ2

remains unchanged. However, it is not difficult to generalize the idea to detecting
process variability shift if one uses the statistics of Equation (9) in Quesenberry
(1991). Further we assume that the process mean shift pattern is µ + δσ, where δ
is neither known nor fixed.

Following Quesenberry (1991), denote

Ti = ai(Xi − X̄i−1)/σ̂i−1, i = 3, 4, . . .
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where

ai =
√

(i− 1)/i, X̄i =
1
i

i∑

k=1

Xk, σ̂2
i =

1
i− 1

i∑

k=1

(Xk − X̄i)2.

Let Gi(·) denote the cumulative distribution function (CDF) of a Student t random
variable with i degrees of freedom and Φ−1(·) denote the inverse of the standard
Normal CDF. The Q statistics are defined by

Qi = Φ−1(Gi−2(Ti)), i = 3, 4, . . .

Quesenberry (1991) has shown that Qis are i.i.d. standard Normal random variables
when the process is in control. As Quesenberry (1995), the Cusum of Q statistic
designed to detect an increase in the process mean is defined by

S+
i = max{0, S+

i−1 + Qi − k}, i = 3, 4, . . .

where S+
2 = 0, and k is the reference value. It signals when S+

i > h for the first
i, where h is the control limit to specify an IC ARL. Similarly, the Cusum of Q
statistic designed to detect a decrease in the process mean is defined by

S−2 = 0, S−i = min{0, S−i−1 + Qi + k}, i = 3, 4, . . . .

It signals when S−i < −h for the first i. Here, we focus on illustrating the imple-
mentation of the upward control chart and the implementation of the downward
control chart is similar. In Quesenberry (1995), the shifts δ are in the mean of the
distribution of the Q′

is, but not in the process observations X ′
is. Zantek (2006)

points out the expected values of the Q statistics are smaller than those of the
statistics accumulated in the classic Cusum procedure following a shift and ob-
tains the reference value with golden section search method for specified shift size.
The detecting performance is improved relative to Quesenberry (1995) but still not
quite satisfactory. To enhance the detection ability of Cusum of Q chart, we will
propose a Cusum of Q chart with variable sampling interval in the next section.
As the assumption that the shifts δ are in the mean of the distribution of the Q′

is
is not proper in practice, we assume it is in the process observations X ′

is in the
following of this paper.

2.2 VSICQ

The sampling scheme of the VSICQ is to use longer sampling interval as long as
the sample point is close to the target so that there is no indication of process
change. However, if the sampling point is far from the target, but still within the
action limits so that there is some indication of process shift, then shorter sampling
interval is used. Like conventional Cusum of Q chart, if a sample point falls in the
action region, then the process is considered to be out of control.

Assume that in the conventional Cusum of Q chart, the fixed sampling interval
is d0. In general, in our VSICQ, the sampling interval function d(·) can be of any
form, but previous research on VSI control charts has shown that it is sufficient to
use only two possible values for the sampling intervals to achieve good statistical
properties in VSI control chart, see, for example, Costa (1998), Wu et al (2007) and
Reynolds and Arnold (2001). Let d1 and d2 represent these two possible sampling
intervals, where 0 < d1 < d2. Then the sampling interval function d(·) can be
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defined by partitioning C, the continuation or IC region, into two regions—warning
region and center region, say Rw and Rc, such that

d(·) =
{

d1, if the monitor statistic falls into Rw,
d2, if the monitor statistic falls into Rc.

It is advisable to start the control with the shorter sampling interval, d1, so the first
sample is taken quickly after the process is started in case of start-up problems.

Then the VSICQ can use warning limit ω and control limit h to divide the chart
into the central region Rc = (0, ω), warning region Rw = [ω, h) and action region
[h, +∞). To facilitate the derivation of ω, define p0 as the conditional probability
of a sample point S+

i falling in the central region given that this point does not
fall in the action region, i.e.,

p0 = P [S+
i < ω|S+

i < h].

A large value of p0 indicates that the value ω is close to h, and a large number of
samples is taken using the long sampling interval d2. Due to the intricacy of the
distribution of S+

i , we can only find the warning limit ω corresponding to different
p0 through Monte Carlo simulation. As expected, ω is related to the reference
value k and the control limit h besides the conditional probability p0. Given these,
a Fortran program to find corresponding ω is available from the authors upon
request.

2.3 The design of VSICQ

Traditionally, the ARL has been generally employed as a performance indicator to
evaluate the effectiveness of various control schemes, provided that the sampling
interval remains constant. However, when the sampling interval is variable, the time
to signal is not a constant multiple of the ARL, and thus ARL is not appropriate
for evaluating the effectiveness of VSI control charts. The widely used performance
indicators for adaptive control charts are the average time to signal (ATS), which
is defined as the expected value of time from the start of the process to the time
when the charts indicate an OC signal, and the adjusted average time to signal
(AATS), which is defined as the expected value of time from the occurrence of an
assignable cause to the time when the charts indicate an OC signal. The AATS is
also called the steady-state ATS (SSATS).

When the process is in control, the ATS may be used to develop the measures of
the false alarm rate for a chart. A chart with a larger IC ATS indicates a lower false
alarm rate than other charts. When the process is out of control, the AATS may
be used to measure the performance of a chart. A chart with a smaller OC AATS
indicates a better detection ability of process shifts than other charts. To make the
Cusum of Q chart with and without VSI comparable, the same IC average sample
rate is used, i.e.,

(1− p0)d1 + p0d2 = d0. (1)

The performance of VSICQ is related to determination of the following param-
eters: the warning limit ω, the sampling interval d1 and d2. Of course, the control
limit h and the reference value k involved in computing the statistics S+

i should be
specified first to give a given IC ATS. They can be determined by golden section
search in conjunction with Monte Carlo simulation according to Zantek (2006).
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A thorough study of the effect of different shift size δ, different shift position v,
different reference value k and different IC ATS is deferred in the next section.

In this paper, it is assumed that d0 = 1 without loss of generality. Otherwise,
the results can be obtained by multiplying d0. Zantek (2006) shows that Cusum of
Q chart with k = 0.125, h = 12.0842 gives an overall one-sided IC ARL of roughly
740. Thus the ATS is 740 under the assumption that d0 = 1.

To facilitate the determination of ω, the conditional probability p0, which can be
considered as the proportion of samples taken using the longer sampling interval
d2 when the process is in control, needs to be specified. Figure 1 provides the ATS
and AATS for several VSICQ with various p0 when the process mean undergoes
different shifts, which are in unit of the standard deviation throughout this paper.
These are on a log scale for clearer comparison. In Figure 1, d1 = 0.1 and d2

computed from (1) are used. Figure 1 shows that the VSICQ with smaller p0 value
has smaller OC AATS when the IC ATS is approximately 740, which results in
quicker detection of the process shift. It seems that p0 should be as small as possible
from statistical point of view. However, too small a p0 gives too large a d2 for fixed
d1, which implies that once S+

i falls in Rc, too long a sampling interval will be used.
This is not realistic in practice. For X control chart, Reynolds (1996) and Lin and
Chou (2005a) suggest that the p0 value should not be too small. Moreover, from
the results (not shown here) of the Fortran program (available from the authors),
too small a p0 results in too small an ω, which is not convenient for practitioners
to use. Further note that there is little gain from p0 = 0.4 to p0 = 0.5. Therefore,
the p0 value may be in the vicinity of 0.5 for VSICQ.

Insert Figure 1 about here.
When VSICQ is used, the sampling intervals may vary. The detection ability

depends on the sampling intervals d1 and d2. Figure 2 provides the ATS and AATS
(on a log scale) for several VSICQ with various d1 and d2 computed from (1). In
Figure 2, p0 = 0.5 is used based on the discussions above. Figure 2 shows that
the VSICQ with smaller d1 value has smaller OC AATS when the IC ATS is
approximately 740, which results in quicker detection of the process shift. It seems
that d1 should be as small as possible from statistical point of view. However, d1

depends on the shortest time required to sample each item in practice. Thus, d1

may be the shortest time to sample each item.
Insert Figure 2 about here.
For a particular application, the steps of designing VSICQ may be proposed as

follows.

(1) Set the IC ATS according to the administrative consideration and determine
the value of h and k with golden section search method.
(2) Choose the conditional probability p0. It may be in the vicinity of 0.5 if
there is no special requirement based on the findings above.
(3) Choose the warning limit ω based on an application a sequence of trial and
error selections. A Fortran program to find the warning limit is available from
the authors upon request.
(4) Determine the shorter sampling interval d1. It may be the shortest time to
sample each item, which depends on the practical consideration of how quick
it is possible to sample again after the samples have been taken. Then d2 is
computed from (1).

Although the application of our proposed control chart in practice will generally
require the use of a computer, we do not feel that it is a major consideration
today because many manufacturing facilities have been well stocked with computers
and moreover, once these parameters are chosen, they are not changed during the
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monitoring process. Considering the great time reduction (from simulation results
in next section) in detecting process shifts, we believe it is worth taking the effort in
designing the proposed control chart and employing the variable sampling schemes.
Moreover, it is better to show what would be gained and at what expense in time
and complexity. There are lots of papers studying this issue from economic models,
so we do not study this in detail to save space. Interested practitioners are referred
to Chen and Chiou (2005), among others.

2.4 Enhanced VSICQ—VSIACQ

Zantek (2006) obtains the reference value with golden section search method for
specified shift size. In practice, however, the assumption that the true magnitude
of future mean shift is known is not realistic. So it has to be estimated with some
sample based methods. As Sparks (2000), Shu and Jiang (2006) and Li and Wang
(2008), we use the EWMA scheme with a reflecting boundary to obtain the esti-
mator, δ̂i, of the current mean level at time i, that is,

δ̂i = max{δ̂min, (1− λ)δ̂i−1 + λQi}, i = 3, 4, . . .

where 0 < λ ≤ 1 is the smoothing parameter and δ̂2 = δ̂min. Thus, the plotted
statistics of the VSICQ chart are revised by

AS+
i = max{0, AS+

i−1 + (Qi − δ̂i/2)/f(δ̂i/2)}, i = 3, 4, . . .

where f(k) is an operating function which depends on the specified IC ARL of
Cusum chart with reference value k and AS+

2 is set to 0. The operating function
f(k) used in this paper is

f(k) ≈ ln(1 + 2k2 ·ARL0 + 2.332k)
2k

− 1.166

with ARL0 the IC ARL, which is introduced in Shu and Jiang (2006). We call this
revised VSICQ chart adaptive Cusum of Q chart with variable sampling intervals
(VSIACQ). Two additional control chart parameters in VSIACQ are δ̂min and λ.
Following the guidelines for choosing parameters in Li and Wang (2008), we set
δ̂min = 0.25 and λ = 0.1 because the minimum potential mean shift in which we are
interested is 0.5 in this paper. Interested practitioners are referred to Li and Wang
(2008), so we do not study the effect of parameters on the performance of VSIACQ
in detail in this paper to save space. With VSIACQ, a practitioner can detect a
range of unknown mean shifts, which is more flexible in a real industrial process.
Furthermore, because δ̂i is changed as each new sample is collected, a practitioner
can have a more accurate and timely estimator of the current mean level, which
makes the VSIACQ nearly optimal for each sample step. The comparison results
in next section with fixed reference values imply this result.

3. Comparisons

In this section, a comparative study is conducted by Monte Carlo simulation to
evaluate the performance of VSICQ and VSIACQ. The simulations are sufficiently
long, 10,000 replications, such that the standard errors of the estimates are less
than 2%, enabling us to draw reasonable conclusions. The IC ATS of each chart
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is set to be equal, and so is the IC average sample rate, such that the comparison
can be conducted under the same criteria.

3.1 Comparison of VSICQ and CUSUM of Q charts with fixed reference
value

Because there is no corresponding work on adaptive control chart in self-starting
analysis, we compare AATS performance of our VSICQ with that of conventional
Cusum of Q charts with fixed reference value k=0.125, 0.250 and 0.375, respec-
tively. For IC ATS of 335.4 and 740 (one-sided), the control limits of Cusum of Q
chart given by Zantek (2006) are

ATS = 335.4 : k = 0.125, h = 9.4302; k = 0.250, h = 6.5275; k = 0.375, h = 4.9792;

ATS = 740 : k = 0.125, h = 12.0842; k = 0.250, h = 8.0092; k = 0.375, h = 5.9965,

respectively. The parameters of our proposed VSICQ chart are p0 = 0.5, d1 = 0.1
based on discussions above. Five mean shift settings are considered: i.e., mean
shift starting from v = 11, 21, 31, 41 and 101 observation. The resulting AATS for
detecting the mean shift in the range [0,2] are presented in Table 1. Note that the
column labelled “CQ” and “VSI” are the AATS of the Cusum of Q chart and the
VSICQ, respectively; the column labelled “R” is the percentage gain of the VSICQ
to Cusum of Q, which is defined as

R =
AATSCQ −AATSV SI

AATSCQ
× 100.

Insert Table 1 about here.
From Table 1, several general conclusions can be made.

• It is clear that adding the VSI feature to the Cusum of Q chart substantially
improves the efficiency of the chart. The percentage gain is more than 50% in
most of the cases studied here, the largest gain is 79.5%, and the smallest gain is
8.0%. Note that a process at start-up may encounter problems due to instability
and if the assignable cause is not identified in time, practitioners will encounter
cost by OC products. As our VSICQ can make the time to find the problem
greatly reduced, the cost will be reduced accordingly.
• The effect of shift size δ: The percentage gain becomes larger as δ gets larger.

This implies that adding VSI feature to Cusum of Q chart has more benefit for
larger process shifts. The reason is that when a process has a larger process shift,
the shorter sampling interval d1 is used most of the time. This is different from
other control charts, such as X, Cusum and EWMA control chart, where adding
VSI feature is more effective for small to moderate process shifts.
• The effect of shift position v: For small shift, δ = 0.5 and δ = 1.0, the

percentage gain gets larger as v grows larger. The reason is that one needs more
IC samples to have a more accurate estimate of the process mean. However, for
large shift, δ = 2.0, the percentage gain gets smaller as v grows larger. The reason
is that once a large mean shift occurs at the start-up of a process, the VSICQ
can detect this shift quickly, but if this large shift occurs at the steady stage of
a process, this large shift will be masked a lot so that it is relatively difficult for
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VSICQ to detect. For moderate shift, δ = 1.5, the results show different pictures
for different k and IC ATS.
• The effect of reference value k: The percentage gain becomes smaller as k

gets larger. The reason is that when larger k is used, more of Qi is shrunk to
zero from the definition of S+

i , which makes the mask of the magnitude of Qi

statistics more severe.
• The effect of IC ATS: The results show different pictures for different δ, v

and k. Generally speaking, the AATS for different IC ATS depends mainly on
different δ. When δ = 0.50, the percentage gain is large for IC ATS=335.4; when
δ = 1.50 and δ = 2.00, the percentage gain is large for IC ATS=740; when
δ = 1.00, either case has larger gain.

3.2 Comparison of VSICQ and VSIACQ

In order to evaluate the robustness of a control chart to various magnitudes of
mean shifts, we use the relative mean index (RMI), which is given by Han and
Tsung (2006). The RMI of a control chart C is denoted by

RMI(C) =
1
n

n∑

i=1

AATSδi
(C)−AATS∗δi

AATS∗δi

,

where AATSδi
(C) is the OC AATS of the control chart C for mean shift size δi and

AATS∗δi
is the smallest OC AATS among all the considered chars for mean shift

size δi. Table 2 shows the OC AATS of VSICQ and VSIACQ when IC ATS=740.
The results for IC ATS=335.4 are similar, thus omitted here.

Insert Table 2 about here.
Note in Table 2 that

RI = (AATS(ki)− min
1≤i≤4

{AATS(ki)})/ min
1≤i≤4

{AATS(ki)}

with

k1 = 0.125, k2 = 0.250, k3 = 0.375, k4 = adaptive

and

RMI =
4∑

i=1

RI(δi)/4

with

δ1 = 0.5, δ2 = 1.0, δ3 = 1.5, δ4 = 2.0.

It is obvious that a control chart with smaller RMI is more robust.
From Table 2, we can observe that a control chart with adaptive reference value

indeed has an overall good performance. Concretely speaking, for small shift time,
such as v = 11, the performance of VSIACQ is the most robust in terms of RMI
among the four control charts considered here. Note that VSIACQ is a self-starting
control chart, which is usually used when the process may have start-up problems.
So the performance gain by finding adaptive reference values is in support of the
implementation of VSIACQ. When the shift time gets larger, the RMI of VSIACQ
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is comparable with VSICQ with k = 0.250, no better than VSICQ with k = 0.125
and much better than VSICQ with k = 0.375. Moreover, the performance gain
relative to VSICQ with k = 0.375 outweighs the performance loss relative to VSICQ
with k = 0.125. So it is desirable for a practitioner to use adaptive reference values
when he focuses on a range of unknown mean shifts.

4. A real data example

In this section, our proposed VSICQ chart is illustrated by an example of two
laboratories carrying out routine indirect assays for precious metals of batches of a
feedstock. It is difficult to carry out such routine assays to the level of accuracy and
precision required. So this process is a start up process in a real life situation in
which our prosed VSICQ chart is particularly appropriate. Interested practitioners
in the data from the two laboratories are referred to Table 3 in Hawkins (1987),
so the data sets are not presented here. This example is used to illustrate the self-
starting Cusum charts proposed by Hawkins (1987), who shows that the process
variance has not gone outside the control limit of the Cusum at any stage of
operation, i.e. there has been no significant bias on the process variance. Thus, the
data sets satisfy the assumption in this paper that the process variance is constant
so that we can use these data sets to illustrate the implementation of the VSICQ
chart. Because the performance of our proposed control chart is affected by the
variance shift, the result of our proposed control chart may be misleading if the
assumption that the variance is constant is violated. Because the objective of this
paper is to construct a control chart to monitor mean shifts of a process, we do
not study the variance shifts in detail. However, if monitoring variance shift is a
concern for some practitioners, they can use another control chart based on the
statistics of Equation (9) in Quesenberry (1991) to guard against variance shift.

Although in the previous section, the comparisons between our proposed VSICQ
chart and three conventional Cusum of Q charts with fixed reference values are
carried out, we incorporate some results in Hawkins (1987) to better illustrate
the efficiency of our method. As discussed before, the parameters of our proposed
VSICQ chart are p0 = 0.5, d1 = 0.1. For this VSICQ chart the control limit is h = 6
and the IC ATS is about 100, which is the same as the self-starting Cusum chart
employed by Hawkins (1987), in which the control limit is h = 6 and the reference
value is k = 0.25.

The monitoring statistics are presented in Table 3. Note that the column labelled
“No.” represents the index of the observations, the columns labelled “I”, “S”,
and “H” represent the variable sampling interval of VSICQ chart, the monitoring
statistics of VSICQ chart and the monitoring statistics of self-starting method of
Hawkins (1987), respectively. Also note that the notations 4, 44, ∗, and ∗∗ over
the values represents, respectively, that the corresponding value is not obtained at
this observation, the corresponding value need not be shown because the process
has gone out of control, the corresponding value is the first point in that excursion
whose monitoring statistic is nonzero and the corresponding value is the point that
gives an OC signal.

Insert Table 3 about here.
From Table 3, we can safely get some conclusions. For Laboratory 1 data, the

statistic of our VSICQ chart and the self-starting method of Hawkins (1987) give
an OC signal at the 29th and 30th observation, respectively. From the signal point,
we read backwards the statistics until it is zero; then we can find out that both
statistics show that the 16th observation is the last point whose value is nonzero.
That is to say, both statistics indicate that the process has gone out-of-control from
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the 16th observation but our VSICQ signals one observation earlier. Moreover, note
the time to signal of our VSICQ is 24.5, which is the sum of the column labelled
“I”. We can detect the shift of this process more quickly if we use variable sampling
intervals. For Laboratory 2 data, both the statistic of our VSICQ chart and the
self-starting method of Hawkins (1987) imply that the process has a mean shift
from the 23th observation but our VSICQ gives a signal two observations earlier.
That is to say, the monitor statistic of our VSICQ chart has better performance
than that of Hawkins (1987) in terms of run length. Note that the time to signal of
our VSICQ is 35.3. The fact that the time to signal is longer than the run length
implies that the process is in-control most of the time, which can be seen from the
monitoring statistics, so we use the long interval d2 more than d1.

5. Conclusion and extension

In this paper, we propose an adaptive Cusum of Q chart with variable sampling
intervals for monitoring the process mean, which can greatly reduce the time to
identify process variations compared with some competing methods. The proposed
charts have the following good features: 1) it can be used in the start up of a
process, which is desirable in practice, such as job-shop environment, in which
production is low-volume and there is often a scarcity of relevant data available
for estimating the process parameters and establishing control limits prior to a
production run; 2) the effort to design the proposed control chart is not as great
because no additional parameter is involved except for the conditional probability
p0 and shorter sampling interval d1; 3)the tradition Cusum is only optimal for
fixed mean shifts, but the VSIACQ chart is quite robust and sensitive to various
types of shifts or a range of shifts from the index of RMI. Meanwhile, the proposed
chart has some disadvantages: 1) the sampling intervals specified by the chart
may not correspond to the natural periods in the process, such as work shifts for
plant personnel. This disadvantage may not be particularly important in many
applications, but for situations in which it is important, a modification of the
VSI idea could be used, such as Reynolds (1996) and Lin and Chou (2005a). 2)
the implementation of the proposed control chart will generally require the use
of a computer. We feel that this is a minor consideration today because many
manufacturing facilities have been well stocked with computers and moreover, a
Fortran program to find the control chart parameters is available from the authors
upon request. The effect of different conditional probability p0, different sampling
interval d1 and d2, different shift size δ, different shift position v, different reference
value k and different IC ATS is studied thoroughly. An enhancement of our VSICQ
is proposed as VSIACQ by finding adaptive reference values to detect a range of
unknown mean shifts. In this paper, we only consider detecting mean shifts, it is
not difficult to generalize the idea of this paper to detecting variance shifts.

The powerful properties of VSICQ have been developed in this paper under the
assumption that the observations from the process are normally distributed. For
some processes, this assumption may not be realistic. The VSI feature could of
course be used with non-normal observations, but in this case the properties and
design strategies would need to be developed under a model which allows for non-
normality. Lin and Chou (2005b) study the design of VSS and VSI X charts under
non-normality based on Burr distribution. This warrants further research.
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Table 1. AATS of Cusum of Q chart with and without VSI

δ
k v 0.50 1.00 1.50 2.00

CQ VSI R CQ VSI R CQ VSI R CQ VSI R
IC ATS 740

0.125 11 439.6 365.1 16.9 146.7 78.2 46.7 34.2 9.0 73.7 15.6 3.2 79.5
21 237.5 177.5 25.3 30.7 8.9 71.0 12.8 3.2 75.0 9.2 2.4 73.9
31 134.6 86.5 35.7 19.0 4.8 74.7 10.6 2.8 73.6 7.7 2.1 72.7
41 94.9 49.4 47.9 16.1 4.3 73.3 9.7 2.6 73.2 7.1 2.0 71.8

101 36.0 11.5 68.1 13.2 3.6 72.7 8.3 2.3 72.3 6.2 1.8 71.0
0.250 11 485.7 430.5 11.4 206.7 132.5 35.9 42.4 20.2 52.4 12.0 2.9 75.8

21 306.5 267.0 12.9 43.2 20.3 53.0 9.8 2.6 73.5 6.4 1.7 73.4
31 206.6 159.0 23.0 18.7 6.0 67.9 8.0 2.1 73.8 5.7 1.6 71.9
41 153.7 105.4 31.4 13.9 3.7 73.4 7.4 2.0 73.0 5.3 1.6 69.8

101 47.7 20.2 57.7 11.0 3.1 71.8 6.6 1.9 71.2 4.8 1.5 68.8
0.375 11 536.8 493.6 8.0 278.0 221.8 20.2 91.8 45.7 50.2 17.9 6.3 64.8

21 380.6 347.1 8.8 78.6 53.0 32.6 10.4 2.8 73.1 5.4 1.5 72.2
31 292.7 247.1 15.6 30.8 15.3 50.3 7.2 1.9 73.6 4.8 1.5 68.8
41 224.2 184.9 17.5 17.1 7.3 57.3 6.6 1.9 71.2 4.5 1.4 68.9

101 77.2 49.3 36.1 10.6 3.0 71.7 5.8 1.8 69.0 4.1 1.4 65.9
IC ATS 335.4

0.125 11 163.5 129.1 21.0 47.4 21.1 55.5 15.4 4.2 72.7 9.6 2.5 74.0
21 87.3 56.9 34.8 16.8 5.0 70.2 8.9 2.6 70.8 6.5 2.0 69.2
31 55.9 31.4 43.8 12.7 3.7 70.9 7.6 2.3 69.7 5.6 1.8 67.9
41 42.9 20.8 51.5 11.7 3.5 70.1 7.2 2.2 69.4 5.3 1.7 67.9

101 25.1 9.3 62.9 10.1 3.2 68.3 6.5 2.1 67.7 4.8 1.6 66.7
0.250 11 186.0 154.4 17.0 66.9 37.2 44.4 17.0 4.5 73.5 7.1 1.8 74.6

21 111.7 85.2 23.7 18.5 6.8 63.2 7.1 2.0 71.8 4.9 1.5 69.4
31 80.5 54.2 32.7 11.9 3.7 68.9 6.2 1.9 69.4 4.5 1.5 66.7
41 58.1 36.2 37.7 10.4 3.2 69.2 5.9 1.9 67.8 4.3 1.5 65.1

101 28.6 13.3 53.5 8.9 2.8 68.5 5.4 1.8 66.7 3.9 1.4 64.1
0.375 11 206.4 188.5 8.7 88.9 63.2 28.9 25.1 11.3 55.0 7.6 2.2 71.1

21 141.5 117.3 17.1 27.4 13.6 50.4 6.8 2.1 69.1 4.3 1.4 67.4
31 105.9 82.0 22.6 14.3 6.0 58.0 5.7 1.8 68.4 3.9 1.4 64.1
41 79.2 60.2 24.0 11.0 3.8 65.5 5.3 1.7 67.9 3.7 1.4 62.2

101 37.5 20.7 44.8 8.6 2.8 67.4 4.8 1.7 64.6 3.5 1.4 60.0

Figure caption list:

• Figure 1. log(AATS) for p0 = 0.4(0.1)0.9, d1 = 0.1.
• Figure 2. log(AATS) for d1 = 0.1(0.1)0.6, p0 = 0.5.
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Table 2. AATS of VSICQ with fixed k and adaptive k when IC ATS=740

k
v δ 0.125 0.250 0.375 adaptive

AATS RI AATS RI AATS RI AATS RI
11 0.5 365.1 0.118 430.5 0.318 493.6 0.511 326.7 0

1.0 78.2 0.310 132.5 1.219 221.8 2.715 59.7 0
1.5 9.0 0.098 20.2 1.463 45.7 4.573 8.2 0
2.0 3.2 0.103 2.9 0 6.3 1.172 3.9 0.345

RMI 0.157 0.750 2.243 0.086
21 0.5 177.5 0.165 267.0 0.753 347.1 1.279 152.3 0

1.0 8.9 0 20.3 1.281 53.0 2.800 10.1 0.135
1.5 3.2 0.231 2.6 0 2.8 0.077 3.8 0.462
2.0 2.4 0.600 1.7 0.133 1.5 0 2.8 0.867

RMI 0.249 0.542 1.039 0.366
31 0.5 86.5 0.230 159.0 1.262 247.1 2.515 70.3 0

1.0 4.8 0 6.0 0.250 15.3 2.800 5.7 0.188
1.5 2.8 0.474 2.1 0.105 1.9 0 3.2 0.684
2.0 2.1 0.400 1.6 0.067 1.5 0 2.4 0.600

RMI 0.276 0.421 1.329 0.368
41 0.5 49.4 0.235 105.4 1.635 184.9 3.623 40.0 0

1.0 4.3 0.162 3.7 0 7.3 2.800 5.0 0.351
1.5 2.6 0.368 2.0 0.053 1.9 0 3.0 0.579
2.0 2.0 0.429 1.6 0.143 1.4 0 2.2 0.571

RMI 0.299 0.458 1.606 0.375
101 0.5 11.5 0 20.2 0.757 49.3 3.287 11.7 0.017

1.0 3.6 0.200 3.1 0.033 3.0 0 4.1 0.367
1.5 2.3 0.278 1.9 0.056 1.8 0 2.5 0.389
2.0 1.8 0.286 1.5 0.071 1.4 0 1.9 0.357

RMI 0.191 0.229 0.822 0.283

Table 3. The monitoring statistics for Lab. 1 & Lab. 2

For Laboratory 1 For Laboratory 2
No. I S H I S H

1 0.1 4 0.00 0.1 4 0.00
2 0.1 4 0.00 0.1 4 0.00
3 0.1 0.00 0.00 0.1 0.00 0.00
4 1.9 0.00 0.00 1.9 0.00 0.00
5 1.9 0.00 0.00 1.9 0.39 0.27
6 1.9 0.00 0.00 1.9 0.14 0.00
7 1.9 0.03 0.00 1.9 0.89 0.62
8 1.9 0.00 0.00 1.9 0.32 0.00
9 1.9 1.26 1.13 1.9 0.00 0.00
10 0.1 1.81 1.56 1.9 0.00 0.00
11 0.1 0.51 0.13 1.9 2.19 2.06
12 1.9 0.21 0.00 0.1 1.33 1.07
13 1.9 0.00 0.00 0.1 0.09 0.00
14 1.9 0.00 0.00 1.9 0.64 0.43
15 1.9 0.00 0.00 1.9 0.44 0.10
16 1.9 0.47∗ 0.34∗ 1.9 0.31 0.00
17 1.9 1.31 1.06 1.9 0.00 0.00
18 0.1 2.19 1.81 1.9 0.00 0.00
19 0.1 1.92 1.43 1.9 0.00 0.00
20 0.1 2.42 1.80 1.9 0.00 0.00
21 0.1 2.38 1.63 1.9 0.00 0.00
22 0.1 2.01 1.14 1.9 0.00 0.00
23 0.1 2.14 1.15 1.9 2.22∗ 2.09∗
24 0.1 1.98 0.86 0.1 1.85 1.60
25 0.1 3.27 2.02 0.1 1.08 0.70
26 0.1 5.05 3.68 0.1 1.57 1.07
27 0.1 5.87 4.38 0.1 2.91 2.29
28 0.1 5.70 4.08 0.1 3.80 3.06
29 0.1 6.15∗∗ 4.41 0.1 6.84∗∗ 5.81
30 44 44 6.48∗∗ 44 44 5.70
31 44 44 44 44 44 6.02∗∗


