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The CUSUM of Q chart, as a self-starting approach, was previously proposed for detecting
process shifts when the in-control process parameters are unknown. Motivated by recent
development of the adaptive chart, this paper proposes a new self-starting approach, which
integrates the CUSUM of Q chart with the feature of adaptively varying the reference value,
to better detect a range of shifts with unknown process parameters. The choice of the chart
parameters and the masking effect are also studied. The simulation results show that our
proposed chart offers a balanced protection against shifts of different magnitudes, and has
comparable performance with the dynamic change-point control scheme. A real example from
industrial manufacturing is used for demonstrating its implementation.
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1. Introduction

Statistical process control charts are widely used in industry for monitoring the
quality of manufactured products. In Phase II analysis, the process parameters are
usually assumed known. However, in practice the process parameters are usually
unknown in the early stages of process improvement, and they are usually estimated
by using in-control (IC) historical samples (or by the Phase I study). When the
number of historical samples is small, control charts with estimated parameters
generally produce a large bias in the IC average run length (ARL) , and reduce
the sensitivity of the chart in detecting the process changes measured by the out-
of-control (OC) ARL. Moreover, after short runs, the false alarm probabilities
from the charts increase drastically, see Bischak and Trietsch (2007). This is the
so-called “control charts with estimated parameters” problem. Many efforts have
been devoted to this problem. Among others, Bagshaw and Johnson (1975) study
the influence of estimated variance on the ARL of CUSUM tests. Jones et al (2004)
discuss the run length distribution of the CUSUM charts with estimated parameters
and Jones et al (2001) and Jones (2002) study the effect of estimation on the
performance of the EWMA chart in a variety of practical scenarios. Wu et al
(2002) consider the effect of several estimations on the performance of Shewhart
X̄ chart. An extensive discussion about the research problems on this topic can be
found in Jensen et al. (2006).

In light of the deterioration of control chart performance that results from es-
timated parameters, practitioners should collect a sample of data large enough to
ensure that parameter estimates are sufficiently close to the true parameters. It
may not be feasible to wait for the accumulation of enough observations, because
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the users usually want to monitor and adjust the process in the start-up stages. To
tackle this problem, self-starting method is an efficient choice. Hawkins (1987) uses
the running mean and standard deviation of all observations made on the process
since start-up as substitutes for the unknown true values of the process mean and
standard deviation. For more details about self-starting method, see Chapter 7 of
Hawkins (1998). Moreover, for start-up process and short or long runs, Quesenberry
(1991) presents the important formulas so that charts for both the process mean
and variance can be maintained from the start of production, whether or not prior
information for estimation the parameters is available. Quesenberry (1995) studies
the properties of Q charts for variables and the sensitivity of specially designed
EWMA and CUSUM of Q charts. In particular, Hawkins et al. (2003), Hawkins
and Zamba (2005a,b) propose a change-point model based on the likelihood ratio
for on-line monitoring that can also be seen as a self-starting method.

Assume observations Xi are independently and identically distributed (i.i.d.) as
normal with mean µ and variance σ2, and a step shift δ (in units of the standard
deviation throughout the paper) is issued at some unknown point during the pro-
cess. Here we mainly focus on the detection of changes in the process mean. It is
well known that if the IC parameters, say µ and σ are known, the CUSUM with
reference value k = δ/2 is optimal for detecting this shift (Moustakides (1986)).
However, due to the transformation of Xi to Q statistics (Quesenberry (1991)),
Zantek (2006) shows that the CUSUM of Q chart with reference value k = δ/2
is not optimal for detecting the shift δ, and the optimal reference values for the
CUSUM of Q chart are obtained by using golden section search procedure. How-
ever, the reference value is designed for a given shift and is generally difficult to be
determined especially in the start-up stages where even the IC parameters are not
accurately identified. In the setting of known IC parameters µ and σ, an adaptive
CUSUM procedure proposed by Sparks (2000) is designed to be effective for de-
tecting a range of mean shifts, and a Markov chain model for the adaptive CUSUM
is further investigated by Shu and Jiang (2006). Dual CUSUM chart with two dif-
ferent reference values is proposed by Zhao et al (2005) and used to detect a range
of mean shifts.

In many applications, the magnitude of shift is always not known before running
a chart. Therefore, it is desirable to find a control chart that performs well over a
range of mean shifts. To improve the performance of CUSUM of Q chart for start-
up processes and short runs, an adaptive CUSUM of Q (ACQ) chart is proposed in
this paper. It has the same advantage of Q charts that the process parameters do
not have to be known, which may make it useful for short production run situations.
It also does not have the disadvantage of the CUSUM of Q chart that the reference
value has to be designed for a given size of shift. The main objective of this paper is
to develop a procedure that will perform well over a wide range of process shifts in
the mean without collecting a sufficient large sample of IC observations. Without
these IC observations, we do not have information of the process parameters, so
our ACQ chart is a self-starting control chart when the IC process parameters µ
and σ are unknown. This means that it is not necessary to collect a large number of
IC samples before the control chart begins, although it is advisable to collect a few
preliminary samples. Since the magnitude of the shift in Qi statistic is no longer
that in the original observations Xi, the implementation of ACQ chart seems to
be more complex for practitioners. This paper is to give a thorough investigation
and fulfill these demands. With our ACQ chart, practitioners can detect a range
of shifts without collecting a large number of IC samples.

The remainder of this paper is organized as follows. The next section gives some
background knowledge on the CUSUM of Q chart. Then the ACQ chart is proposed
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and the choice of control chart parameters and masking effect are studied in Section
3. Its numerical performance is investigated in Section 4. In Section 5, our proposed
ACQ chart is used to a real example from the industrial manufacturing. Several
remarks conclude this paper in Section 6.

2. The CUSUM of Q chart

A brief review of the CUSUM of Q chart is introduced in this section.
Let X1, X2, . . . , Xi, . . . be a sequence of i.i.d. normal variables with mean µ and

variance σ2, where both µ and σ2 are unknown, whether the process is in control
or not. Following Quesenberry (1991), denote

Ti = ai(Xi − X̄i−1)/σ̂i−1, i = 3, 4, . . .

where

ai =
√

(i− 1)/i, X̄i =
1
i

i∑
k=1

Xk, σ̂2
i =

1
i− 1

i∑
k=1

(Xk − X̄i)2.

Let Gi(·) denote the cumulative distribution function (CDF) of a Student t random
variable with i degrees of freedom and Φ−1(·) denote the inverse of the standard
Normal CDF. The Q statistics are defined by

Qi = Φ−1(Gi−2(Ti)), i = 3, 4, . . .

Quesenberry (1991) has shown that Qis are i.i.d. standard Normal random variables
when the process is in control. The CUSUM of Q statistic designed to detect an
increase in the process mean is defined by

S+
i = max{0, S+

i−1 + Qi − k}, i = 3, 4, . . .

where S+
2 = 0, and k is the reference value. It signals when Si > c for the first

i, where c is the control limit to specify an IC ARL. Similarly, the CUSUM of Q
statistic designed to detect a decrease in the process mean is defined by

S−2 = 0, S−i = min{0, S−i−1 + Qi + k}, i = 3, 4, . . . .

It signals when S−i < −c for the first i. Here, we focus on illustrating the imple-
mentation of the upward control chart and the implementation of the downward
control chart is similar. Zantek (2006) obtains the reference value with golden sec-
tion search method for specified shift size. To enhance the detection ability to a
range of shift sizes, we will propose an adaptive method based on Qi in the next
section.

3. Adaptive CUSUM of Q chart

In this section, we propose the ACQ chart and study the effect of its parameters on
the performance. Moreover, the masking effect of the size of the IC sample collected
before shift is investigated. At last, the design procedure is given.
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3.1 ACQ chart

In practice, the true magnitude of future mean shift is seldom known. So it has
to be estimated. Following Sparks (2000) and Shu and Jiang (2006), we could use
the EWMA scheme with a reflecting boundary as one-step-ahead forecast (OAF)
to obtain the estimator, δ̂i, of the current mean level at time i, that is,

δ̂i = max{δ̂min, (1− λ)δ̂i−1 + λQi}, i = 3, 4, . . . (1)

where 0 < λ ≤ 1 is the smoothing parameter, δ̂2 = δ̂min. Although different schemes
can be used to estimate δ, EWMA is one of the most popular schemes to estimate
δ due to its simplicity and efficiency. Conventional EWMA statistics are denoted
by

δ̂i = (1− λ)δ̂i−1 + λQi,

where 0 < λ ≤ 1 is a smoothing parameter. In practice, when detecting upward
shifts, there is often a minimum magnitude of interest for early detection, δ̂min > 0.
To improve the efficiency in detecting shifts larger than δ̂min, an upper EWMA
statistic can be derived as (1).

Now, the plotted statistics of the ACQ chart are defined by

Zi = max{0, Zi−1 + (Qi − δ̂i/2)/h(δ̂i/2)}, i = 3, 4, . . . (2)

where h(k) is an operating function which depends on the specified IC ARL of
CUSUM chart with reference value k and Z2 can be set to 0 or some other values
to give a fast initial response (FIR) (Lucas and Crosier (1982)). In this paper, Z2 is
set to 0. A signal is triggered when Zi > c, where c is the control limit to maintain
the specified IC ARL. The operating function h(k) used in this paper is

h(k) ≈ ln(1 + 2k2 ·ARL0 + 2.332k)
2k

− 1.166

with ARL0 the IC ARL, which is introduced in Shu and Jiang (2006). Note the
fact that the operating function h(k) introduced in Shu and Jiang (2006) is based
on the assumption that the statistics are i.i.d standard normal variables when the
process is in control and Quesenberry (1991) has shown that the Q statistics are
i.i.d standard normal variables when the process is in control. We can use the
operating function h(k) directly. Practitioners who need a more precise operating
function are referred to Sparks (2000).

A control chart is considered adaptive if at least one of its design parameters
varies as a function of the process data. Among others, Aparisi (1996), Wu (1998)
and Aparisi and Haro (2001) consider control chart with adaptive sample sizes and
variable sampling intervals. However, what is adapting to the data in this paper
is the estimate δ̂i so as to have a good knowledge of the current mean level. Once
the current mean level changes, we can have a timely estimate, which makes it
possible for us to detect a range of mean shifts. Note that the operating function
h(k) is a function of δ̂i. And as a result the value of h(δ̂i/2) varies as well. With
adaptive estimate δ̂i, practitioners can detect a broader range of mean shifts. Also
considering that practitioners can monitor and adjust the process even in the start-
up stages of a process when the process parameters are unknown, our proposed
ACQ chart can make a contribution to the field of SPC.
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3.2 The Parameter choice of ACQ chart

For the ACQ chart, there are 3 parameters: the smoothing parameter λ, the lower
bound parameter δ̂min, and the control limit c.

The selection of the smoothing parameter, λ, is based on the following consider-
ations. First, it is generally accepted that smaller smoothing parameters are most
effective in quickly detecting smaller process shifts, while larger smoothing parame-
ters are most effective in quickly detecting larger process shifts (Lucas and Saccucci
(1990)). While the EWMA chart is most useful to detect small or moderate shift
and slightly worse than other control chart, for example, Shewhart chart, a smaller
smoothing parameter seems suitable to make a better use of the advantage of the
EWMA chart. Second, when the process undergoes a shift, the statistics, Ti, are
no longer distributed as a central Student t, so Qi’s are no longer distributed as
a standard Normal, exactly. In this condition, the robustness of a control chart is
needed. Lucas and Saccucci (1990), Borror et al. (1999) point out that small values
of λ are more robust than large ones when the process produces occasional outliers
or the IC distribution is not normal. Third, Zantek (2006) shows a disadvantage of
the transformation to Q statistics is that the shift size is masked to some extent.
That is, if a shift is not quickly detected, it may no longer be detected. Note the
inertia of the EWMA, which is a disadvantage of the EWMA scheme, turns out to
be an advantage in this self-starting condition, because it allows the shifts, if there
exist, change slowly to give some extra time for the ACQ chart to detect. From
the definition of EWMA operator, smaller smoothing parameters give more weight
to the past observations, which implies a small smoothing parameter in this ACQ
chart. Fourth, according to Lucas and Saccucci (1990), the FIR feature is most
useful for EWMA schemes with λ less than or equal to 0.25. Considering all of the
above, the smoothing parameter λ is taken to be 0.1 and 0.2 in this paper, which
is also the consideration of Shu and Jiang (2006).

To specify the lower bound parameter δ̂min, we note that Sparks (2000) shows
that the value of δ̂min improves the detection performance for shifts δ ≥ δ̂min while
reducing the efficiency for shifts δ < δ̂min. At the same time, note that too small
a shift (e.g. δ < 0.1) is difficult to detect for any control chart. Also the objective
of this paper is to detect a range of mean shifts, a moderate δ̂min may be proper
to protect against a wide range of mean shift sizes. Therefore, the δ̂min of 0.25, 0.5
and 0.75 are considered here.

Since Quesenberry (1991) has shown that the Q statistics are i.i.d Normal random
variables under IC condition, that is, the IC mean and variance of the process are
both known, the two-dimensional Markov chain model developed in Shu and Jiang
(2006) can be used to evaluate the IC ARL of the ACQ chart. In Shu and Jiang
(2006), the IC region is partitioned within a two-dimensional rectangle [0, c]×[δmin,
L] to obtain a discretized Markov chain, where L is a large control limit for the
process of Qt. Then the ARL is obtained by the transition probability of {Zt, Qt}
from state (i, j) to state (k, l). So, the control limits c of ACQ chart are obtained
by Markov chain and searching method, which are shown in Table 1.

To study the effect of different combinations of λ and δ̂min on the performance
of ACQ chart, Figure 1 shows the OC ARLs of the ACQ chart with different
combinations of λ and δ̂min when IC ARL=500 and shift position is at 100. For
other shift positions, the results are similar, thus omitted here. These are on a log
scale for clearer comparison.

From Figure 1 we observe that ACQ chart with small λ and small δ̂min gives
better performance for detecting small shifts, which is consistent with the results in
Sparks (2000) and Shu and Jiang (2006). The effect of the lower bound parameter,
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δ̂min, on the performance of the ACQ chart is more severe than the smoothing
parameter, λ. In other words, different λ have less effect on the performance than
different δ̂min. In the rest of this paper, we use δ̂min = 0.5 and λ = 0.1 for trade-off.

3.3 The masking effect

When we are discussing the selection of the smoothing parameter λ, it’s necessary
to note that the transformation to Q statistics could result in the shift size being
masked to some extent. Zantek (2006) suggests to use smaller reference values, for
example k < δ/2, for improving the detection performance. This implies that the
magnitude of the shift size of the Q statistics is smaller than that of the original
observations. To show this masking effect, we compare the performance of the
ACQ chart and the adaptive CUSUM chart (Note that when the process mean
and variance are known, the ACQ chart becomes adaptive CUSUM chart).

Figure 2 shows the performance (on log scale) of the ACQ chart with shift time
at observation 10, 25, 50, 100, 250 and the adaptive CUSUM chart with the process
mean µ = 0 and variance σ2 = 1 when the IC ARL is designed to be 500. Similar
results for other IC ARLs are omitted here.

Note that the ACQ chart is designed with unknown process parameters while
the adaptive CUSUM chart is constructed with known parameters. From Figure
2, as expected, the performance of the ACQ chart, whatever the shift position is,
is no better than the adaptive CUSUM chart due to the masking effect. However,
as the shift position becomes larger, the performance of the ACQ chart becomes
better. When the shift position is more than 250, the performances of the ACQ
chart and the adaptive CUSUM chart are nearly the same. This implies that if
a practitioner needs an ACQ chart good enough to compete with a control chart
with true parameters, he should collect IC observations more than 250, not a large
number compared with the result of Jones et al (2001), which show that for values
of λ = 0.2 and λ = 0.1, 300 and 400 respective samples of five observations are
needed to achieve the desired level of IC performance. This shows the superiority
of the ACQ chart again.

It would be more interesting to show the differences of the ACQ chart and
the adaptive CUSUM chart when the process parameters are estimated, as would
generally have to be the case in real applications. Figure 3 gives the performance (on
log scale) of the ACQ chart and adaptive CUSUM chart with estimated parameters
when the IC ARL=500 with shift time at observation 10, 100 and 250, respectively.
From Figure 3, although the adaptive CUSUM chart with estimated parameters has
comparable performance with ACQ chart when the IC observations are more than
100, the former has worse performance than the latter when the IC observations
are not so much, such as 10. Note that our ACQ chart is a self-starting control
chart which may be mainly used immediately after start-up and in this condition
it is more efficient than the adaptive CUSUM with estimated parameters. This is
just an advantage of the ACQ chart.

Now we show how to get more precise knowledge of the masking effect of the
ACQ chart with different shift positions. For example, we take the shift position
to be 10. If one wants to know how much the masking effect on the performance of
the ACQ chart when the shift size of the original observation is 1.5, the following
procedure is suggested.

(1) From the point 1.5 in the shift-axis, draw a vertical line to the shift-axis in
Figure 2 to get a crossing point with the line corresponding to “start=10”.
(2) From this crossing point, draw a vertical line to the ARL-axis to get another
crossing point with the line corresponding to “ACUSUM”.
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(3) From the second crossing point, draw a vertical line to the shift-axis. The
crossing point with the shift-axis, 0.5, is just the shift size not masked, i.e., a
shift size of 1.5− 0.5 = 1 is masked in this case.

From the procedure above, a practitioner can note that the masking effect is so
severe that he should collect IC observations as many as possible to achieve good
enough performance of the ACQ chart.

3.4 The design of the ACQ chart

For designing the ACQ chart, we should find a combination of parameters
(δ̂min, λ, c) that achieves the specified IC ARL and the chart signals quickly when
the process undergoes a mean shift. For δ̂min = 0.25(0.25)0.75, λ = 0.1 and 0.2,
and a wide range of IC ARLs, the desired control limit c is obtained by Markov
chain method. The results are listed in Table 1. From the performance of the ACQ
chart shown in Figure 1, the following design procedure is recommended.

(1) Specify the IC ARL.
(2) If there is little knowledge of the mean shift size, δ̂min = 0.5, λ = 0.1 are
suggested, which are also useful choice in practice.
(3) If there is some knowledge of the mean shift size and the shift size is small,
small δ̂min and λ are suggested, and vice versa.
(4) Select control limit c in Table 1 to achieve the desired IC ARL. If this is not
shown in Table 1, the interpolation method can be used. Moreover, a Fortran
program to find control limit c is available from the authors upon request.

4. Comparisons

In this section, the comparisons between our proposed ACQ chart and CUSUM
of Q chart (Quesenberry (1991)), and the chart based on the change point model
(Hawkins et al. (2003)) are carried out by Monte Carlo simulation based on 10,000
replications, such that the standard errors of the estimates are less than 2%, en-
abling us to draw reasonable conclusions.

4.1 Comparison with CUSUM of Q chart with fixed k

In this section, we compare ARL performance of our ACQ chart with that of
conventional CUSUM of Q charts with fixed reference value k = 0.25, 0.5 and 1.0,
respectively. For IC ARL of 100 and 500 (two-sided), the control limits of CUSUM
of Q chart given by Hawkins et al. (2003) are

for ARL=100: k=0.25, c=5.69; k=0.5, c=3.51; k=1.0, c=1.87;
for ARL=500: k=0.25, c=8.76; k=0.5, c=5.14; k=1.0, c=2.71.

For our proposed ACQ chart, the control limits c = 1.147 and c = 1.212 are used
to give an IC ARL of 200 and 1000 so that we can make the ACQ chart and the
three conventional CUSUM of Q charts comparable.

Two mean-shift settings are considered: one mean shift starting from the 10th
observation, while the other one starting from the 100th observation. The resulting
ARLs (on log scale) for detecting the mean shift in the range [0,3] are presented
in Figure 4 (a)-(d).

From Figure 4, several conclusions can be made.
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• As a result of the masking effect, the CUSUM of Q chart with fixed reference
value may not perform best at its designed shift size. For example, the CUSUM
of Q chart with k = 0.5 does not signal the most quickly when the shift size is
less than 1 in Figure 4 (a) and (c), although it has the best performance among
the three CUSUM of Q chart in Figure 4 (b) and (d). Note that the shift position
between the left and right two panels is the difference. This suggests that the
more IC sample, the less masking effect on the performance.
• When the IC ARL is 100, shown in Figure 4 (a) and (b), whatever the

shift position is, the ACQ chart always has the best performance, although the
difference is slight between the CUSUM of Q chart with k = 0.25 when the shift
size is less than 1.5 and with k = 0.5 when the shift size is larger than 2.
• However, when the IC ARL is 500, from Figure 4 (c) we can see that the

CUSUM of Q chart with k = 0.25 has a little better performance when the shift
is about 2 and the one with k = 0.5 has a little better performance when the shift
size is larger than 2.7. If note that in this case the shift position is only 10 and
the CUSUM of Q chart with fixed reference values is designed for a particular
shift size, this is not a surprise.
• As expected, among the three conventional CUSUM of Q charts, Figure 4

(d) shows that the CUSUM of Q chart with k = 0.25 has best performance when
the shift size is less than 1, the one with k = 0.5 has best performance when the
shift size is in the range [1,1.7] and the one with k = 1.0 performs best when the
shift size is larger than 1.7. To our delight, the ACQ chart has nearly the same
performance with the one that performs best for different shift sizes.

4.2 Comparison with the change point approach

The change point approach is proposed by Hawkins et al. (2003). The simulation
results show this approach is always nearly the best for detecting the mean shifts.
Thus, it makes an appropriate benchmark against which to compare the ACQ
chart.

The ACQ chart and the change point approach of Hawkins et al. (2003) are
compared when the IC ARL are made comparable. Note that the ACQ chart in
this paper is one-sided while the change point approach is two-sided. Thus, IC
ARL of 1000, 400, 200 and 100 for the ACQ chart are considered to compare with
IC ARL of 500, 200, 100 and 50 for the change point approach, respectively. As
Hawkins et al. (2003) and Zantek (2006) point out, the ARL performance will be
affected by the size of the IC sample, so we also study the differences of ARLs for
different shift positions. The ARL performances are listed in Table 2. The columns
labelled “CP” are obtained from the change point approach while those labelled
“ACQ” are derived from the ACQ chart. Note that the bolded values in Table 2
are smaller.

From Table 2, we can draw some conclusions as follows:

• As a result of the masking effect, the ACQ chart has worse performance than
the change point approach when the shift position is less than 50 for detecting
δ = 0.25 and less than 25 for detecting δ = 0.5.
• When δ = 2.0, the ACQ chart performs worse relative to the change point

method.
• When the shift position is larger than 50, the ACQ chart detects small to

moderate process mean shift (δ < 2.0) more quickly than the change point
approach except two conditions, i.e. start=250, δ = 1.0 when the IC ARL is 500
and 200.
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Although our proposed ACQ chart does not always perform better than the
change point approach, it has its own advantages. First, it is easy to design for ACQ
chart in practice. All a practitioner need to do is specify a combination of IC ARL,
smoothing parameter λ, lower bound parameter δ̂min and control limit c, which
can be found in Table 1. Once these parameters are chosen, they are not changed
during the monitoring process. This is not the case for the change point approach,
in which the critical value hn has to be changed as a new observation enters the
monitoring process. Second, it is easy to compute the monitoring statistics for
ACQ chart. For the change point approach, because it is needed to calculate the
two sample statistic Tjn for every possible split point 1 ≤ j < n to find the Tmax,n,
the ever-growing storage requirement for the two samples seems less convenient.

5. A real data example

In this section, our proposed ACQ chart is illustrated by an example of two lab-
oratories carrying out routine indirect assays for precious metals of batches of a
feedstock. Interested practitioners in the data from the two laboratories are re-
ferred to Table 3 in Hawkins (1987), so the data sets are not presented here. This
example is used to illustrate the self-starting CUSUM charts proposed by Hawkins
(1987), who shows that the process variance has not gone outside the control limit
of the CUSUM at any stage of operation, i.e. there has been no significant bias on
the process variance. Thus, the data sets satisfy the assumption in this paper that
the process variance is constant so that we can use these data sets to illustrate the
implementation of the ACQ chart.

Although in the previous section, the comparisons among our proposed ACQ
chart, three conventional CUSUM of Q charts with fixed reference values, and
the change point method proposed by Hawkins et al. (2003) are carried out, we
incorporate some results in Hawkins (1987) to better illustrate the efficiency of
our method. As discussed before, the parameters of our proposed ACQ chart are
δmin = 0.5, λ = 0.1. For this ACQ chart the control limit is c = 1.137 and the IC
ARL is about 100, which is the same as the self-starting CUSUM chart employed
by Hawkins (1987), in which the control limit is h = 6 and the reference value is
k = 0.25.

The monitoring statistics are presented in Table 3. Note that the column labelled
“No.” represents the index of the observations, the columns labelled “k”, “S”, and
“H” represent the adaptive reference values of ACQ chart, the monitoring statistics
of ACQ chart and the monitoring statistics of self-starting method of Hawkins
(1987), respectively. Also note that . . .1 represents that the corresponding value in
the entry is not obtained at this observation. . . .2 implies that the corresponding
value in the entry need not be shown for the process has gone out of control. ∗

shows that the corresponding value in the entry is the first point in that excursion
whose monitoring statistic is nonzero and ∗∗ says that the corresponding value in
the entry is the point that gives an OC signal.

From Table 3, we can safely get some conclusions. For Laboratory 1 data, the
statistic of our ACQ chart and the self-starting method of Hawkins (1987) give an
OC signal at the same time (the 30th observation). From the signal point, we read
backwards the statistics until it is zero; then we can find out that both statistics
show that the 16th observation is the last point whose value is nonzero. That is
to say, the monitor statistic of our ACQ chart has equally the same performance
with that of Hawkins (1987), at least for Laboratory 1 dada.

For Laboratory 2 data, the statistics indicate that there is significant change
from the 23th observation on. However, the statistic of our ACQ chart gives an



September 1, 2008 15:37 International Journal of Production Research tPRSguide

10 Taylor & Francis and I.T. Consultant

OC signal at the 29th observation while the statistic of Hawkins (1987) signals at
the 31th observation, which is 2 observations later. There is some difference on the
interpretation of the 29th observation. We take it as an OC signal while Hawkins
(1987) shows that it is an outlier because U29 exceeds 3 where

Ui =
8ν + 1
8ν + 3

[ν ln(1 + T 2
i /ν)]

1
2 , ν = i− 2.

Then Ui is approximately distributed as normal N(0, 1). The interpretation is not
immediately clear. It is a function of the studentized deviation (Xi − X̄i−1)/σ̂i−1,
and as i → ∞, Ui → (Xi − µ)/σ. Thus we may think of Ui as essentially just
a studentized residual, restandardised to a N(0, 1) distribution. Interested prac-
titioners are referred to Wallace (1959) for more details. In Hawkins (1987), any
Ui value exceeds a preset cutoff is edited down to equal the cutoff and the edited
value is used in the CUSUM. As a consequence of this, the CUSUM is protected
from signals generated solely by isolated outliers. The number 3 is a generally used
preset cutoff and this is appropriate to applications such as this, where the primary
role of the control is detecting small shifts in mean–the outliers are diagnosed us-
ing the Shewhart part of the control, while still being allowed to make a limited
contribution to the CUSUM.

From our point of view, it may not be an outlier. First, from Table 3 of Hawkins
(1987), the 29th observation is 2.51, while the 36th and the 38th are both 2.24. It is
not probable that a process with run length no more than 10 (from the 29th to the
38th) should contain three outliers. Second, Hawkins (1987) does show that there
is significant bias from the 23th observation onward. Third, the chart parameters
employed in this example are relatively robust as mentioned above.

From Table 3 only, our ACQ chart does show some superiority over the self-
starting method of Hawkins (1987). As shown by Hawkins (1987), the shifts for
the data from Laboratory 1 and Laboratory 2 are less than one standard deviation
in magnitude, they are, however, detected relatively quickly by our ACQ chart —
after only 15 and 7 observations, respectively. The mean bias estimated by Hawkins
(1987) for Laboratory 1 and Laboratory 2 is 0.286− (−0.670) = 0.956 and 0.481−
(−0.387) = 0.868, respectively. This suggests reference values of k = 0.956/2 =
0.478 and k = 0.868/2 = 0.434 are optimal for detecting the biases. However, note
that Hawkins (1987) makes use of some knowledge about the magnitude of the
process bias to imply a reference value k = 0.25. From Table 3, we can see that
the reference values used for the ACQ chart are larger than 0.25, which shows the
efficiency of adaptive estimate of δ̂i.

6. Conclusion and extension

Based on the Q statistics, the ACQ chart proposed in this paper can be used
to detect a range of mean shifts with unknown IC process parameters µ and σ2.
This chart can be easily designed and its performance is satisfactory when the
parameters are unknown. Monte Carlo simulation results indicate that our ACQ
chart method has higher IC ARL values than the adaptive CUSUM with known
parameters but performs well when compared with the CUSUM of Q chart with
fixed reference value k and the change point method of Hawkins et al. (2003),
particularly when the shift does not occur immediately after start-up and the shift
size is small or moderate. A table is presented to assist in the design of the ACQ
chart with parameters δ̂min = 0.25, 0.5 and 0.75, λ = 0.1 and 0.2 and a range of IC
ARLs. Moreover, if there are some historical IC samples, say, no less than 200, the
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performance of the ACQ chart is almost equally good relative to the control chart
with true known process parameters. The application to the Laboratory Data shows
the implementation of the ACQ chart. In this paper, we only consider detecting
mean shifts, it is not difficult to generalize the idea of this paper to detecting
variance shifts.
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Table 1. The control limits for various IC ARL

IC δ̂min = 0.25 δ̂min = 0.5 δ̂min = 0.75
ARL λ = 0.1 λ = 0.2 λ = 0.1 λ = 0.2 λ = 0.1 λ = 0.2
50 1.205 1.252 1.132 1.190 1.091 1.127
100 1.205 1.306 1.137 1.220 1.091 1.138
200 1.255 1.470 1.147 1.260 1.091 1.157
300 1.311 1.596 1.159 1.300 1.097 1.175
400 1.366 1.732 1.167 1.330 1.097 1.190
500 1.400 1.844 1.177 1.340 1.105 1.190
600 1.441 1.950 1.187 1.350 1.105 1.196
700 1.473 2.053 1.197 1.370 1.106 1.197
800 1.502 2.151 1.203 1.378 1.108 1.201
900 1.532 2.251 1.206 1.390 1.110 1.206
1000 1.560 2.331 1.212 1.400 1.114 1.211

Table 2. ARLs of change point approach and ACQ chart.

IC Shift δ
ARL pos. 0 0.25 0.5 1.0 2.0

CP ACQ CP ACQ CP ACQ CP ACQ CP ACQ
500 10 535.8 1004.9 531.1 855.5 492.7 695.8 280.9 279.8 10.8 14.4

25 538.7 1003.9 504.3 696.9 357.5 374.2 43.7 33.7 4.3 6.1
50 539.5 994.0 457.8 538.5 195.4 156.9 15.7 13.8 3.4 5.0

100 542.8 1007.9 373.1 363.5 77.3 55.5 12.3 12.0 3.0 4.7
250 546.2 1015.2 222.9 180.2 43.3 33.5 10.8 11.2 2.8 4.5

200 10 195.9 392.2 186.2 307.9 168.3 220.9 84.9 72.2 7.0 7.3
25 196.6 397.6 174.7 233.4 113.9 105.9 20.4 15.0 3.3 4.5
50 196.3 388.9 154.9 175.2 68.7 53.9 11.2 10.2 2.7 4.0

100 196.9 390.9 131.3 124.0 42.2 31.5 9.4 9.2 2.5 3.8
250 194.8 391.2 99.0 82.6 29.7 24.1 8.2 8.6 2.3 3.7

100 10 99.3 190.6 95.9 137.5 82.4 90.6 39.1 28.6 5.3 5.1
25 99.4 194.0 86.9 106.9 55.2 48.0 13.4 10.2 2.8 3.6
50 99.2 193.1 76.3 80.5 38.2 28.8 8.8 8.0 2.3 3.3

100 99.7 194.9 69.3 63.6 28.5 21.2 7.6 7.4 2.2 3.2
250 96.9 194.1 55.4 50.5 23.9 18.1 7.0 7.0 2.1 3.1

50 10 54.5 99.2 51.8 66.3 43.3 41.9 21.3 14.1 4.1 3.8
25 54.2 100.5 46.7 50.4 30.8 24.9 9.4 7.3 2.4 2.9
50 53.8 99.9 42.8 42.9 23.3 18.0 7.0 6.3 2.1 2.7

100 54.7 100.6 41.4 35.3 19.4 15.2 6.0 6.0 1.9 2.6
250 58.7 100.0 33.4 32.2 16.6 14.2 6.3 6.0 1.8 2.6

Figure caption list:

• Figure 1. The ARLs of ACQ chart when shift occurs at the “start=100”
position with units of the sifts standard deviation when IC ARL=500.
• Figure 2. The ARLs of ACQ chart when shift occurs at the “start” posi-

tion and adaptive CUSUM charts (ACUSUM) with units of the sifts standard
deviation when IC ARL=500.
• Figure 3. The ARLs of ACQ chart and adaptive CUSUM chart with estimated

parameters (EACUSUM) with units of the sifts standard deviation when IC
ARL=500.
• Figure 4. The ARLs of ACQ and CUSUM of Q charts when the IC ARL and

shift position in (a)-(d) are (100, 10), (100, 100), (500, 10), and (500, 100) with
units of the sifts standard deviation.
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Table 3. The monitoring statistics for Lab. 1 & Lab. 2

For Laboratory 1 For Laboratory 2
No. k S H k S H
1 . . . 1 . . . 1 0.00 . . . 1 . . . 1 0.00
2 . . . 1 . . . 1 0.00 . . . 1 . . . 1 0.00
3 0.37 0.00 0.00 0.35 0.00 0.00
4 0.34 0.00 0.00 0.31 0.00 0.00
5 0.25 0.00 0.00 0.31 0.06 0.27
6 0.25 0.00 0.00 0.27 0.00 0.00
7 0.25 0.00 0.00 0.29 0.15 0.62
8 0.25 0.00 0.00 0.25 0.00 0.00
9 0.30 0.28 1.13 0.25 0.00 0.00
10 0.30 0.38 1.56 0.25 0.00 0.00
11 0.25 0.04 0.13 0.34 0.55 2.06
12 0.25 0.00 0.00 0.27 0.30 1.07
13 0.25 0.00 0.00 0.25 0.00 0.00
14 0.25 0.00 0.00 0.26 0.10 0.43
15 0.25 0.00 0.00 0.25 0.02 0.10
16 0.26 0.08∗ 0.34∗ 0.25 0.00 0.00
17 0.28 0.26 1.06 0.25 0.00 0.00
18 0.30 0.44 1.81 0.25 0.00 0.00
19 0.27 0.34 1.43 0.25 0.00 0.00
20 0.27 0.43 1.80 0.25 0.00 0.00
21 0.25 0.39 1.63 0.25 0.00 0.00
22 0.25 0.27 1.14 0.25 0.00 0.00
23 0.25 0.27 1.15 0.34 0.56∗ 2.09∗

24 0.25 0.20 0.86 0.30 0.42 1.60
25 0.30 0.49 2.02 0.25 0.21 0.70
26 0.36 0.94 3.68 0.26 0.29 1.07
27 0.37 1.11 4.38 0.31 0.60 2.29
28 0.34 1.01 4.08 0.33 0.79 3.06
29 0.33 1.08 4.41 0.45 1.69∗∗ 5.81
30 0.41 1.68∗∗ 6.48∗∗ . . . 2 . . . 2 5.70
31 . . . 2 . . . 2 . . . 2 . . . 2 . . . 2 6.02∗∗


