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Abstract

Recently, monitoring the process mean and variability simultaneously for multivari-
ate processes by using a single control chart has drawn some attention. However, due
to the complexity of multivariate distribution, the existing methods in the univariate
processes can not be readily extended to the multivariate processes. In this paper,
we propose a new single control chart which integrates the exponentially weighted
moving average (EWMA) procedure with the generalized likelihood ratio (GLR)
test for jointly monitoring both the multivariate process mean and variability. Due
to the powerful properties of the GLR test and EWMA, the new chart provides quite
robust and satisfactory performance in various cases, including the detection of the
decrease in variability and the individual observation at the sampling point, which
are very important cases in many practical applications but may not be well han-
dled by the existing approaches in the literature. The application of our proposed
method is illustrated by a real data example in ambulatory monitoring.
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1 Introduction

In recent years, there has been a resurgent interest in multivariate control
charts in the statistical and quality literature. Given the voluminous research
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in various areas of univariate control charts, the research in multivariate con-
trol charts is perhaps overdue. It is likely to be so because in many industrial
applications, the quality of a product is often related to several correlated
quality characteristics. Several authors have also pointed out that multivariate
control charts are an important area of research for the new century (Woodall
and Montgomery, 1999; Stoumbos et al., 2000). The purpose of this paper is
to contribute to this development.

Multivariate process measurement benefits from the use of inherent multivari-
ate methods rather than a collection of univariate charting methods applied
to the individual components. The development of multivariate control charts
originates from the work by Hotelling (1947). Recent works focused mostly on
developing control charts for monitoring small changes in the process mean.
See Woodall and Ncube (1985); Healy (1987); Crosier (1988); Pignatiello and
Runger (1990); Hawkins (1991, 1993) for accounts of Multivariate Cumula-
tive SUM (MCUSUM) control chart and Lowry et al. (1992); Runger and
Prabhu (1996); Linderman and Love (2000) for accounts of Multivariate Ex-
ponentially Weighted Moving Averages (MEWMA) control charts. Qiu and
Hawkins (2001, 2003) proposed a rank-based multivariate CUSUM procedure
to detect a shift in the process mean. Other recent works focus on developing
procedures for monitoring the process variability. See Alt and Bedewi (1986);
Tang and Barnett (1996a,b); Liu (1995); Chan and Zhang (2001); Yeh et al.
(2003, 2004, 2005); Hawkins and Maboudou-Tchao (2008) for example. Gen-
erally, the process mean and variance may change simultaneously during the
monitoring period. However, monitoring small changes in multivariate process
mean and variability simultaneously receives little attention in the literature.
The few exceptions include: The traditional combination of the χ2 chart and
the |S| chart; Yeh and Lin (2002) in which a box-chart was proposed; Yeh et
al. (2003) in which a combined EWMA M-and V-chart was developed; Chen et
al. (2005) proposed a Max-EWMA (called MEW for abbreviation throughout
this paper) chart for monitoring both location and dispersion; Khoo (2005)
proposed a bivariate control chart based on the T 2 and |S| statistics, but this
chart is slow to react to small process shifts. Reynolds and Cho (2006) pro-
posed a combination of MEWMA control charts based on sample means and on
the sum of the squared deviation from target. Hawkins and Maboudou-Tchao
(2008) considered a combination of the MEWMA chart and the multivariate
exponentially weighted moving covariance matrix (MEC) chart which is called
the MAC chart here.

Alt (1985) gave a review on multivariate quality control charts and pointed out
that an important area worth further research was to develop a single control
chart for the simultaneous monitoring of both process location and dispersion.
Therefore, it is desirable to construct a single control chart that can not only
detect changes in the process mean, but also is sensitive to the shifts in the
process variability. When a single chart is used, the design and operation of
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the monitoring scheme can be greatly simplified compared to the combination-
type chart. Cheng and Thaga (2006) gave an overview of the control charts
in an effort to use only one chart to simultaneously monitor both process
location and spread in the univariate case. However, due to the complexity
of multivariate distribution, these methods can not be readily extended to
multivariate cases. The purpose of this paper is to fulfill this demand.

In this paper, our motivation is to develop a new control chart which maintains
the ability to simultaneously monitor, on a single chart, the process mean and
process variability for multivariate processes. Our new chart is based on the
generalized likelihood ratio (GLR) test and integrates the EWMA procedure.
Note Zhang et al. (2009) proposed a single control chart based on GLR that
simultaneously monitors the process mean and process variability, but it is
based on univariate processes. Hawkins and Deng (2009) also look at the GLR
based control chart. Hawkins and Maboudou-Tchao (2008) also considered
GLR, while the problem they faced was to monitor the covariance matrix of
multivariate normal process. Our proposed new chart has the following good
features: 1) It can be easily designed and constructed because no additional
parameter is involved except for the smoothing constant and an upper control
limit; 2) Due to the advantages of the classical GLR test, it is quite robust
and sensitive to various types of shifts; 3) It is able to handle the case when
the sample size is one. The average run length (ARL), which is defined as the
average number of samples before the control chart signals an out of control
condition, properties of the new chart, are studied and we find that the new
chart is quite sensitive in detecting small and moderate changes in a process.

The rest of this paper is organized as follows. In the next section, our pro-
posed control chart is presented. Then the performance of the proposed chart,
from the perspective of the ARL, is evaluated using Monte Carlo simula-
tions compared to some other existing procedures. In the following section,
the application of our proposed method is illustrated by a real data example
in ambulatory monitoring. In the last section, the paper is concluded with a
conclusion and future research directions.

2 The New Chart for Monitoring Both the Mean and Variability

Let g = (g1, · · · , gp)
′
be a random vector that represents p correlated quality

characteristics from a process of interest. When the process is in-control, it
is assumed that the distribution of g is N(µ0,Σ0), a p-dimensional normal
distribution with mean vector µ0 and covariance matrix Σ0 and that both
µ0 and Σ0 are known or their values can be estimated at the end of Phase I
process control. Therefore, one can find an appropriate transformation of g,

X = Σ0
− 1

2 (g−µ0), such that in general X is distributed as N(µ,Σ) when the

3



process is in-control, where µ = Σ0
− 1

2 (µ0 − µ0) = 0, Σ = Σ0
− 1

2Σ0Σ0
− 1

2 = Ip

and Ip is a p × p identity matrix. In the subsequent discussion, the proposed
charts will be developed based on the transformed variable X.

For notational purpose, let Xt1,Xt2, · · · , Xtn, t = 1, 2, · · · , be the tth sample
of size n drawn from the process. Also we assume that the random vectors
Xtj, j = 1, · · · , n, are independent of each other, both within the sample and
between the samples. Let X̄t =

∑n
j=1 Xtj/n and St =

∑n
j=1(Xtj − X̄t)

′(Xtj −
X̄t)/n be the tth sample mean vector and sample covariance matrix, respec-
tively.

Next, consider the following hypothesis test

H0 : µ = 0 and Σ = Ip versus H1 : µ 6= 0 or Σ 6= Ip.

It is relatively easy to obtain the generalized likelihood ratio statistic as follows

LRt = np(a− log g − 1) + n‖X̄t‖2, (1)

where a = 1
p
tr(St), g = (|St|)

1
p , and | · |, tr(·) denote the determinant and trace

of a square matrix and ‖ · ‖ represents the Euclidean distance of a vector.

It can be easily checked that LRt
L→χ2

1
2
p(p+3)

as n →∞. Obviously, a large LRt

leads to reject the null hypothesis. The terms ‖X̄t‖2 and a− log g contribute
to the changes of the process mean and variance, respectively. Unlike other
test statistics in the literature, the LRt is a likelihood ratio derived statistic
under the setting in which the process mean vector and covariance matrix
may change, and thus naturally adapts to be sensitive to various types of shift
combinations. We can give a brief explanation on why the new chart has the
ability to detect the shifts for p = 2.

Suppose that µ=(µ1, µ2)
′
and the variance-covariance Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

.

We replace S and X̄ in equation (1) with Σ and µ, and we can derive

LR = n[(σ2
1 − log σ2

1) + (σ2
2 − log σ2

2)− log(1− ρ2)− p] + n(µ2
1 + µ2

2).

The function f(x) = x − log x is monotonically increasing (decreasing) when
x > 1 (0 < x < 1) and attain its minimum at x = 1. In addition, the function
g(x) = − log(1 − x2) (−1 < x < 1) attain its minimum at x = 0. So the LR
statistic will be sensitive to the increase, decrease in variance, the change in
correlation and mean.
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In order to detect small or moderate shifts effectively, next we incorporate
EWMA procedure to the construction of LRt. Here the EWMA scheme is not
to directly average the LRt statistic but rather to get more precise “estimates”
of the current process mean vector and covariance matrix respectively. It is
analogous to the construction of multivariate EWMA (Lowry et al., 1992;
Chan and Zhang, 2001) control charts to some extent. To be specific, two
EWMA statistics based on the sample mean vector X̄t and sample covariance
matrix St are given by

ut = λX̄t + (1− λ)ut−1,

vt = λS∗
t + (1− λ)vt−1, (2)

where S∗
t =

∑n
j=1(Xtj−ut)

′(Xtj−ut)/n, u0 = 0, v0 = Ip, and λ is the smooth-
ing parameter satisfying 0 < λ < 1. In general, a smaller λ leads to a quicker
detection of smaller shifts (Lucas and Saccucci, 1990). As pointed out by an
anonymous referee, we can consider using different smoothing parameters for
ut and vt. Based on our computational results, control chart with this modi-
fication is only sensitive to some particular shifts. It seems complicated in the
form and it is not so easy to discuss the optimal choices of different λ. So we
do not suggest implementing this method in real practice.

It should be noted, as Huwang et al. (2007) pointed out, that when nt ≥ p, vt

can be used to estimate Σ. Also note that the moving average estimation of
process mean vector ut is used in the covariance matrix estimation to replace
X̄t. It would be expected to be more accurate by using these sequentially up-
dated estimations and thus it may improve the ability to detect the possible
process change. In fact, Yeh et al. (2003) and Huwang et al. (2007) also ad-
vocated to use this formulation. From the simulation results we find that the
out-of-control ARL (OC ARL) increases slightly when the variance increases,
while it is not ARL-biased when the variance decreases. That is to say, the
OC ARL is not bigger than in-control ARL (IC ARL). So from this point, in
this paper, we consider this “estimation”-based formulation.

Finally, we substitute ut and vt for X̄t and St in equation (1) and obtain the
charting statistic (denoted as ELRt):

ELRt = np(a′ − log g′ − 1) + n‖ut‖2,

t = 1, 2, · · · , where a′ = 1
p
tr(vt), g′ = (|vt|)

1
p . If ELRt > h, an alarm is

triggered, where h > 0 is chosen to achieve a specified IC ARL. In this paper,
we call this chart the ELR chart.

Our ELR chart is similar to Hawkins and Maboudou-Tchao (2008) MEC chart
but it has some differences. First, our chart aims for simultaneously monitoring
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the process mean and variability with a single chart while the MEC chart aims
for aims for monitoring changes in the covariance matrix only (see Hawkins
and Maboudou-Tchao (2008) for details), so the charting statistics are not the
same. Second, the estimation of the process mean is used when estimating the
covariance and after this simple remedy, it can be seen from the next section
that the ELR chart is ARL-unbiased while the MEC chart is ARL-biased.
Apparently, unlike the box and the MEW charts, the ELR chart still works
for the case n = 1 due to the definition of vt.

In this paper, the ARL values are found by using 20,000 simulated runs and
corresponded to standard errors of less than 0.5 in the simulated ARL. Tables
1 provides the control limits of the ELR chart for various combinations of n
and IC ARL for p = 2, p = 3 and p = 5, respectively, when λ = 0.1 and
λ = 0.2. Note that the control limits are almost the same when n is large
enough under the same IC ARL, which is expected because the ELR statistic
follows an asymptotic χ2 distribution. For other choices of parameters, the
control limits are available from the authors upon request.

[Insert Table 1 about here]

3 ARL Comparisons

In this section, we compare the performance of our chart with some competing
charts.

3.1 ARL Comparisons for Rational Groups

The ARL performance of the ELR chart is studied with different values of
λ, n, p, the shift in the process mean vector µ and the change in the process
covariance matrix Σ. We simulate 20,000 run lengths and use the average to
estimate the corresponding ARL. The run length is sufficient long, enabling us
to draw reasonable conclusions. In this paper, we only tabulate the zero-state
ARLs in order to be consistent with the literatures.

Table 2 tabulates the simulation results for p = 2, n = 2, 5, IC ARL=370
and different values of λ. Note that the ELR chart is effective in detecting
changes that only take place in ρ as it is in detecting changes that also occurs
in σ2

1 or σ2
2 or both. Also note that since the in-control values of the means

and the correlation coefficient are zero, due to the symmetry, the simulation
results for the case when ρ is negative produce similar comparisons among
the competing charts as those seen when ρ is positive and therefore are not
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discussed in the current paper. It can be seen that the performance of the
ELR chart improves as n becomes larger (for a fixed λ). When the process
shift is small, the performance improves as λ becomes smaller (for a fixed n).

[Insert Table 2 about here]

Also we compare the performance of the proposed ELR chart with that of box
chart, T 2 − |S| and MEW charts aforementioned. Reynolds and Cho (2006)
proposed several combinations of multivariate EWMA control charts based
on sample means and on the sum of the squared deviation from target. The
performance of these charts does depend on the direction of the shift in mean
or the variance. The result of this dependence on the direction of the shift is
that conclusions about which combination of charts is best for specific shifts
are complicated, with the choice of the best combination depending on the
type, direction, and size of the shift, and hence in this research we exclude
this chart for further investigation.

In order to be consistent with the literatures, the IC ARL is taken as 370 and
n = 4 is considered. For the two EWMA-type charts, λ = 0.2 is used for fair
comparisons. When the process is out of control, without loss of generality, for
p = 2, the process mean has been shifted to µ = (µ1, µ2)

′
and the variance-

covariance Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

. From the top of Table 3, we observe that

if the process shift is only from the mean vector, the MEW chart performs
slightly better. The difference between the performance of the MEW chart
and our ELR chart, however, is relatively small. For other types of shifts, our
ELR chart performs significantly better than the other three charts. Other
simulations for different values of p, n (n > 4), ρ and IC ARL are also done
by authors (not reported here), and the similar results could be obtained.

[Insert Table 3 about here]

Sometimes, the sample size n is very small at one sampling point, say n = 2.
From Table 3 we can see that the MEW chart does better than the box chart
and the combined T 2−|S| chart, so we exclude the box chart and the combined
T 2 − |S| chart in the following of this paper, and hence we compare our ELR
chart with the MEW chart only. In this case, when the process is out of control,

we assume that µ = (0, c)
′
and Σ =

 σ2
1 0

0 σ2
2

.

The results are summarized in Table 4. We also observe that our proposed
method uniformly performs significantly better than the MEW chart over the
entire range of shifts considered.
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[Insert Table 4 about here]

For p = 3, when the process is out of control, µ = (0, 0, c)
′
, Σ =


σ2

1 ρ1 ρ2

ρ1 σ2
2 ρ3

ρ2 ρ3 σ2
3


is considered. The results are summarized in Table 5. From Table 5 we can see
that our proposed ELR chart works still significantly better than the MEW
chart in most cases, especially for detecting the correlation shifts only. For
example, when ρ1 = 0.25, ρ2 = 0.50, ρ3 = 0.75, the OC ARL for the MEW
chart is 65.6, but for the ELR chart, the OC ARL reduces to 2.1. When the
process shift is only from the mean vector, i.e., c = 0.50 or c = 1.00, and the
variance and correlation do not change, the MEW chart does a little better
than the ELR chart. We also compared our chart with other two charts (not
reported here), and the conclusions are the same.

[Insert Table 5 about here]

3.2 Performance of the ELR Chart for Individual Observation Case

In industrial practice, sampling may be expensive, time consuming, and the
sample interval may be relatively long. In such cases, individual observation
at sampling points is usually considered. However, the MEW chart and the
box-chart may not be appropriate. Yeh et al. (2005) proposed a Maximum
Multivariate Exponentially Weighted Moving Variability control chart (MMV
chart) for monitoring process variability with individual observations. They
show that this chart is more sensitive than the multiple CUSUM and EWMA
charts and is sensitive to the shift in the process mean. Huwang et al. (2007)
proposed two control charts, MEWMS (MES) and MEWMV (MEV) charts,
based on the traces of the estimated covariance matrices derived from the
individual observations. The simulation results show that the MES chart is
better than the MEV chart in many cases. They also checked the capabil-
ity of their chart to detect the shift in the mean, and it was also effective.
Hawkins and Maboudou-Tchao (2008) considered the MEC chart for detect-
ing the covariance matrix and the MAC chart for detecting both the process
mean and covariance matrix. Recently, Zhang and Chang (2008) proposed a
Combined DEWMA-MEWMD (CDM chart) chart for monitoring mean vec-
tor and variances in the variance-covariance matrix. This section compares the
performance of the MMV, MES, MEC, MAC, CDM and ELR charts. In ad-
dition, we also compare our proposed chart with the MEWMA (MEA chart)
charts of Lowry et al. (1992) for monitoring the mean vector. In order to be
consistent with the literatures, the IC ARL is taken as 370 and λ = 0.2 is
considered for fair comparison. For the combined MAC chart, the IC ARL
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was chosen as 700 for each chart so that the combined MAC chart has IC
ARL of about 370.

In our study, we compared the performance of these charts for p = 2, i.e.,
the process has a bivariate normal distribution with µ = (µ1, µ2)

′
and Σ = σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

. When the process is in-control, it was assumed that µ1 =

µ2 = 0, σ2
1 = σ2

2 = 1 and ρ = 0. We then simulated out-of-control scenarios
by generating observations from processes having different bivariate normal
distributions. When an observation was generated, it was used to test all
competing charts. All the simulated OC ARL’s were obtained based on 20,000
Monte Carlo simulations. Note that the focus of the simulation was on cases
when either σ2

1 or both σ2
1 and σ2

2 increase with an increase in ρ, or when
ρ changes only or the mean vector changes only, or both mean shifts and
covariance matrix changes occur at the same time in the process.

Table 6 tabulates the simulation results. We can see that for detecting the
covariance only, the MES chart does better than other charts. For detecting
the mean vector only, the MEA chart performs better. It is not surprising be-
cause the MEA chart and the MES chart were specially designed for detecting
changes in mean and covariance matrix, respectively. The MAC, CDM and
the ELR charts are designed for monitoring the process mean and variance
simultaneously. From the last three columns of this table, we can see that
when only σ2

1 increases, the MAC chart has the best performance for detect-
ing small shifts, i.e., σ2

1 = 1.25, and the CDM chart does better for detecting
large shifts, σ2

1 = 1.75. When both σ2
1 and σ2

2 and ρ increase with a small size,
i.e., σ2

1 = σ2
2 = 1.25, ρ = 0.25, the MAC chart performs better, while when

both σ2
1 and σ2

2 increase with a large size, i.e., σ2
1 = σ2

2 = 1.75, and ρ = 0.25,
the CDM chart does better. When ρ increases with a large size, i.e., ρ = 0.75
and the process variance also increases, the MAC chart does better than the
CDM chart, but the ELR chart has the best performance. In other cases, our
ELR chart always outperforms the other two charts. Also we can see that the
CDM chart is insensitive to changes in ρ.

[Insert Table 6 about here]

Note that in this paper, we only provide a general guideline on the choice of
λ which produces a reasonably good performance for the ELR chart, under
a variety of out of control scenarios. On the other hand, for a specific λ in
0.1 < λ < 0.3, the ELR chart may not produce the smallest OC ARL for a
pre-determined IC ARL and a pre-specified change in parameters. Although
the Markovian mean estimation (Shu et al., 2008) should perform better in
detecting a range of shifts, we do not investigate it here, for simplicity. In
summary, we suggest that a smaller smoothing constant λ, e.g., 0.1 be used
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in setting the ELR control chart since it gives smaller OC ARL values.

3.3 Diagnosis

When choosing a control chart or combination of control charts to detect and
eliminate special causes, a primary consideration should be the ability to sig-
nal quickly after a special cause occurs. Another important issue, particularly
in the multivariate setting, is the development of procedures that can be em-
ployed after a signal for diagnostic purposes. In particular, it is necessary to
be able to pinpoint which parameter or parameters have shifted after a signal
occurs.

From the traditional perspective on diagnostics, our proposed chart would
be problematic because our proposed method is an omnibus chart, and it
is sensitive to both mean vector and variance-covariance matrix changes, so
it is not easy to diagnose which parameter or parameters have shifted. But
just as Reynolds and Cho (2006) pointed out that in today’s environment,
control charts are almost always plotted by computer, so after a signal by a
control chart, additional control charts or other plots can easily be called up
when needed to help diagnose which parameters have changed. For this type
of control charts, some diagnostic aids have been proposed and developed in
the literature (see, for example, Healy (1987), Hawkins (1991), Runger (1996),
Mason Tracy and Young (1995)).

4 A Real Data Example

In this section, the application of our proposed ELR chart is illustrated by
a real data example Hawkins and Maboudou-Tchao (2008) used to show the
implementation of their MEWMC chart for covariance shifts. The data set is
from a long-standing research project in ambulatory monitoring. In this work
subjects were equipped with instruments that measure and record physiolog-
ical variables. The wearer’s blood pressure and heart rate were measured and
recorded every 15 minutes for 6 years. Before analysis using SPC methods,
each week’s raw data are condensed into weekly summary numbers, which
include mean systolic blood pressure (SBP), mean diastolic blood pressure
(DBP), mean of heart rate (HR), and overall mean arterial pressure (MAP).
Interested readers are referred to Hawkins and Maboudou-Tchao (2008) for
more detail.

In Hawkins and Maboudou-Tchao (2008), the smoothing parameter λ is set
to 0.1 and the IC ARL is set to 500. Although we have made a detailed
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comparative study in last section, we set the same smoothing parameter λ and
IC ARL with Hawkins and Maboudou-Tchao (2008) to show the application
of our ELR chart more clearly. Note that, for our chart, the control limit
h is 1.664 to achieve IC ARL 500 with λ = 0.1. Table 7 shows the data
set taken from Table 5 in Hawkins and Maboudou-Tchao (2008), with label
“U1”, “U2”, “U3” and “U4”, the ELR statistics with label “ELRn”. Note that
“U1”, “U2”, “U3” and “U4” are the standardized data for SBP, DBP, HR and
MAP, respectively. From Table 7, we observe that the ELR chart gives an OC
signal at observation 23, which is consistent with the result of Hawkins and
Maboudou-Tchao (2008). This, again, shows that the ELR chart is quite a
useful tool for practitioners.

[Insert Table 7 about here]

After a signal, it gives no direct information on which variable or variables
may undergo the shift. The standard approach that addresses this problem is
a decomposition of T 2. Hawkins and Maboudou-Tchao (2008) gave a detailed
discussion about the diagnosis, so we do not address this problem here any
more.

5 Conclusions

In this paper, we propose and study a new multivariate charting scheme for
simultaneously monitoring the process mean vector and covariance matrix of
a multivariate normal process by using a single chart. It is worth noting that
the proposed chart can be applied to both the cases when sample size is one
or larger than one. As long as the current stage t satisfies nt ≥ p, we can
use these nt observations to construct the ELR chart for monitoring both the
process mean and covariance matrix.

Huwang et al. (2007) proposed using the trace in their paper to monitor the
process variability. As they pointed out that while trace reduces a complex
matrix to a summary statistic, an apparent drawback is that it is insensitive
in detecting changes in which the in-control and the out-of-control covariance
matrices have the same trace. However, in our paper, thanks to the good
properties of the GLR test and EWMA procedure, our chart is very effective
for diverse cases, including the detection of the individual observation case.
When compared with some existing charts, the ELR chart does significantly
better in detecting almost all kinds of shifts in the process. The new chart
can be easily designed and constructed. By taking consideration of its easy
design, implementation and effectiveness, we think the ELR scheme is a serious
alternative in practical applications.
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Table 1. The control limits of the ELR chart for
various combination of p, n and IC ARL when λ = 0.1 and λ = 0.2.

λ = 0.1 λ = 0.2
IC ARL IC ARL

n 185 200 370 500 1000 185 200 370 500 1000
p = 2 1 0.742 0.752 0.836 0.877 0.968 1.695 1.718 1.872 1.949 2.115

2 0.745 0.758 0.847 0.888 0.983 1.711 1.728 1.896 1.977 2.156
5 0.751 0.758 0.855 0.896 0.991 1.723 1.745 1.915 1.998 2.186
8 0.751 0.765 0.855 0.898 0.995 1.725 1.746 1.918 2.005 2.191
10 0.751 0.765 0.855 0.898 0.995 1.726 1.746 1.922 2.008 2.196
15 0.751 0.765 0.855 0.898 0.995 1.726 1.747 1.923 2.010 2.201

p = 3 1 1.080 1.096 1.199 1.246 1.352 2.455 2.478 2.669 2.752 2.950
2 1.090 1.105 1.208 1.256 1.365 2.464 2.490 2.685 2.781 2.985
5 1.094 1.110 1.214 1.263 1.375 2.468 2.495 2.698 2.788 3.008
8 1.095 1.110 1.214 1.264 1.377 2.470 2.496 2.701 2.797 3.014
10 1.095 1.111 1.215 1.266 1.378 2.470 2.498 2.702 2.798 3.014
15 1.096 1.111 1.217 1.266 1.378 2.471 2.498 2.703 2.799 3.015

p = 5 1 1.923 1.941 2.071 2.133 2.264 4.311 4.341 4.579 4.582 4.934
2 1.926 1.945 2.077 2.143 2.276 4.308 4.340 4.588 4.713 4.974
5 1.927 1.945 2.082 2.144 2.280 4.285 4.321 4.575 4.692 4.965
8 1.929 1.945 2.084 2.144 2.281 4.282 4.316 4.571 4.687 4.959
10 1.929 1.945 2.084 2.144 2.285 4.280 4.316 4.571 4.688 4.959
15 1.929 1.945 2.084 2.145 2.285 4.280 4.316 4.571 4.688 4.959
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Table 2. The OC ARL values for ELR chart
when p = 2, n = 2, 5, λ = 0.1, 0.2, 0.3, 0.4 and IC ARL=370

n = 2 n = 5
λ λ

(µ1, µ2, σ1, σ2, ρ) 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
(0.25, 0.25, 1.00, 1.00, 0.00) 48.7 68.3 88.4 109 21.2 26.6 35.3 46.3
(0.50, 0.50, 1.00, 1.00, 0.00) 14.5 15.9 18.7 23.5 7.7 7.1 7.4 8.1
(0.75, 0.75, 1.00, 1.00, 0.00) 8.1 7.6 8.0 8.8 4.5 3.9 3.8 3.7
(1.00, 1.00, 1.00, 1.00, 0.00) 5.4 4.9 4.8 5.0 3.1 2.7 2.6 2.4
(1.25, 1.25, 1.00, 1.00, 0.00) 3.9 3.5 3.4 3.4 2.3 2.1 1.9 1.8
(1.50, 1.50, 1.00, 1.00, 0.00) 3.0 2.7 2.6 2.6 1.9 1.6 1.5 1.4
(1.75, 1.75, 1.00, 1.00, 0.00) 2.4 2.2 2.1 2.1 1.5 1.3 1.2 1.0
(2.00, 2.00, 1.00, 1.00, 0.00) 2.0 1.8 1.8 1.7 1.2 1.1 1.0 1.6
(0.00, 0.00, 0.75, 0.75, 0.00) 10.1 26.8 44.2 72.1 1.0 4.8 10.2 16.2
(0.00, 0.00, 0.60, 0.60, 0.00) 1.0 3.2 8.4 13.6 1.0 1.0 1.0 1.9
(0.00, 0.00, 0.50, 0.50, 0.00) 1.0 1.0 2.2 5.2 1.0 1.0 1.0 1.0
(0.00, 0.00, 0.25, 0.25, 0.00) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.00, 0.00, 1.25, 1.25, 0.00) 17.6 34.3 44.6 51.7 1.3 8.7 14.1 18.8
(0.00, 0.00, 1.50, 1.50, 0.00) 1.0 4.6 8.5 11.3 1.0 1.0 1.5 2.6
(0.00, 0.00, 1.60, 1.60, 0.00) 1.0 1.9 5.0 7.1 1.0 1.0 1.0 1.5
(0.00, 0.00, 1.75, 1.75, 0.00) 1.0 1.0 2.3 4.0 1.0 1.0 1.0 1.0
(0.00, 0.00, 1.25, 1.00, 0.00) 44.0 67.2 83.4 91.5 11.1 23.6 33.2 41.5
(0.00, 0.00, 1.25, 0.75, 0.00) 14.3 31.1 45.5 57.5 1.0 6.8 12.4 18.0
(0.00, 0.00, 1.00, 0.50, 0.00) 1.0 6.0 13.4 22.3 1.0 1.0 1.4 3.1
(0.00, 0.00, 1.50, 0.50, 0.00) 1.0 1.5 5.3 8.3 1.0 1.0 1.0 1.3
(0.00, 0.00, 1.75, 0.25, 0.00) 1.0 1.0 1.0 7.9 1.0 1.0 1.0 1.0
(0.00, 0.00, 1.00, 1.00, 0.25) 85.3 132 159 188 28.7 53.2 78.0 103
(0.00, 0.00, 1.00, 1.00, 0.50) 10.7 27.0 41 55.3 1.0 5.0 10.3 15.3
(0.00, 0.00, 1.00, 1.00, 0.75) 1.0 3.4 8.3 13.4 1.0 1.0 1.1 1.9
(0.00, 0.50, 1.00, 1.00, 0.50) 7.3 13.2 17.6 23 1.0 3.4 5.3 6.8
(0.00, 0.00, 1.50, 1.50, 0.50) 1.0 2.4 5.6 7.7 1.0 1.0 1.1 1.8
(0.00, 0.50, 1.50, 1.50, 0.50) 1.0 2.1 4.7 6.2 1.0 1.0 1.0 1.0
(0.50, 0.50, 1.50, 0.50, 0.50) 1.0 1.1 2.8 4.2 1.0 1.0 1.0 1.0

Table 3. Comparisons of OC ARL for the box-chart, T 2 − |S|
MEW and ELR charts when p = 2, n = 4, λ = 0.2 and IC ARL=370.

(µ1, µ2, σ1, σ2, ρ) box-chart T 2 − |S| MEW ELR
(0.50, 0.50, 1.00, 1.00, 0.0) 63.5 41.4 7.6 8.5
(0.75, 0.75, 1.00, 1.00, 0.0) 14.8 10.6 3.6 4.6
(1.00, 1.00, 1.00, 1.00, 0.0) 4.9 3.9 2.3 3.1
(0.50, 0.00, 1.00, 1.00, 0.0) 145 100 16 16
(0.00, 0.00, 1.25, 1.25, 0.0) 39 33 14 13
(0.00, 0.00, 1.50, 1.50, 0.0) 9.2 8.3 4.2 1.0
(0.00, 0.00, 1.25, 1.25, 0.5) 43 35 13 2.6
(1.00, 1.00, 1.50, 1.50, 0.0) 2.6 2.3 1.9 1.0
(0.75, 0.75, 1.50, 1.50, 0.0) 3.8 3.4 2.5 1.0
(0.50, 0.50, 1.75, 1.75, 0.5) 3.9 3.4 2.2 1.0
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Table 4. The OC ARL values of the ELR and MEW charts
when p = 2, n = 2, ρ = 0, λ = 0.2 and IC ARL=200.

c
(σ1, σ2) Charts 0 0.5 1.0 1.5 2.0 2.5 3.0

(1.00,1.00) MEW 200.7 30.6 7.6 4.2 3.0 2.4 2.0
ELR 200.7 25.3 7.6 4.2 2.8 2.0 1.6

(0.60,1.00) MEW 78.5 30.4 8.0 4.3 3.0 2.4 2.0
ELR 12.6 7.7 4.2 2.7 2.0 1.5 1.2

(1.25,1.00) MEW 64.7 22.6 7.1 4.1 2.9 2.3 2.0
ELR 48.1 17.1 6.7 3.8 2.6 1.9 1.5

(1.25,2.00) MEW 7.0 6.3 4.8 3.7 2.9 2.4 2.1
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(0.50,1.50) MEW 44.9 17.9 7.3 4.4 3.1 2.5 2.1
ELR 1.3 1.3 1.2 1.1 1.0 1.0 1.0

(0.50,2.50) MEW 6.2 5.6 4.5 3.6 2.9 2.5 2.1
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(0.50,0.50) MEW 10.5 10.9 7.4 4.2 3.0 2.1 2.0
ELR 1.0 1.0 1.0 1.1 1.1 1.1 1.0

(0.60,0.60) MEW 18.4 18.7 8.0 4.2 3.0 2.3 2.0
ELR 2.1 2.3 2.6 2.5 2.2 1.8 1.3

(0.60,0.80) MEW 36.5 28.8 8.1 4.3 3.0 2.3 2.0
ELR 8.5 6.1 4.0 2.8 2.1 1.6 1.3

(1.25,1.25) MEW 28.6 15.2 6.8 4.1 3.0 2.4 2.0
ELR 26.1 12.5 3.5 3.2 2.2 1.6 1.3

(1.50,1.50) MEW 10.1 8.2 5.5 3.8 2.9 2.4 2.0
ELR 3.6 3.3 2.2 1.6 1.3 1.1 1.0

(2.00,2.00) MEW 4.3 4.1 3.6 3.1 2.6 2.2 1.9
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(2.50,2.50) MEW 2.9 2.9 2.7 2.5 2.2 2.0 1.8
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(3.00,3.00) MEW 2.3 2.3 2.2 2.1 2.0 1.9 1.7
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table 5. Comparisons of OC ARL for the ELR and MEW
charts when p = 3, n = 2, λ = 0.2 and IC ARL=200.

(c, σ1, σ2, σ3, ρ1, ρ2, ρ3) MEW ELR
(0.00, 0.50, 0.50, 0.50, 0.00, 0.00, 0.00) 6.3 1.0
(0.00, 1.50, 1.50, 1.50, 0.00, 0.00, 0.00) 7.5 2.6
(0.50, 0.50, 0.50, 0.50, 0.00, 0.00, 0.00) 6.8 1.0
(0.50, 1.50, 1.50, 1.50, 0.00, 0.00, 0.00) 6.6 2.4
(0.50, 1.00, 1.00, 1.00, 0.00, 0.00, 0.00) 36.6 32.5
(1.00, 1.00, 1.00, 1.00, 0.00, 0.00, 0.00) 8.4 9.2
(0.00, 0.75, 1.00, 1.00, 0.00, 0.00, 0.00) 156.7 63.3
(0.00, 1.50, 1.00, 1.00, 0.00, 0.00, 0.00) 29.3 16
(0.00, 2.00, 1.00, 1.00, 0.00, 0.00, 0.00) 9.7 1.6
(0.50, 0.75, 1.00, 1.00, 0.00, 0.00, 0.00) 38.4 20.2
(0.50, 1.50, 1.00, 1.00, 0.00, 0.00, 0.00) 17.5 10.7
(0.50, 2.00, 1.00, 1.00, 0.00, 0.00, 0.00) 8.5 1.5
(0.00, 1.00, 1.00, 1.00, 0.50, 0.50, 0.50) 77.2 7.8
(0.00, 1.00, 1.00, 1.00, 0.25, 0.50, 0.75) 65.6 2.1
(0.50, 1.50, 1.50, 1.50, 0.25, 0.25, 0.25) 4.9 2.3
(0.50, 1.50, 1.50, 1.50, 0.25, 0.50, 0.75) 5.0 2.0
(1.00, 0.75, 1.00, 1.00, 0.00, 0.00, 0.00) 8.7 7.7
(1.00, 1.50, 1.00, 1.00, 0.00, 0.00, 0.00) 7.2 5.7

Table 6. Comparisons of OC ARL for various charts with
individual observations when p = 2, λ = 0.2 and IC ARL=370.

(µ1, µ2, σ
2
1, σ

2
2, ρ) MEA MMV MES MEC MAC CDM ELR

(0.00, 0.00, 1.25, 1.00 0.00) 205.1 154.5 144.0 166.7 177.8 207.4 249.6
(0.00, 0.00, 1.75, 1.00 0.00) 86.1 50.8 43.2 44.8 52.2 27.0 80.7
(0.00, 0.00, 1.25, 1.25 0.25) 122.1 66.2 69.2 70.0 81.3 139.2 118.3
(0.00, 0.00, 1.75, 1.75 0.25) 43.7 21.6 18.2 19.2 23.6 12.6 35.3
(0.00, 0.00, 1.25, 1.25 0.75) 70.1 19.7 46.0 10.6 20.3 109.2 14.1
(0.00, 0.00, 1.75, 1.75 0.75) 33.1 11.7 17.0 6.1 12.4 12.8 9.0
(0.00, 0.00, 1.00, 1.00 0.25) 298.3 184.1 298.5 174.2 213.2 363.4 198.8
(0.00, 0.00, 1.00, 1.00 0.50) 196.1 68.2 191.9 52.8 76.0 350.4 63.4
(0.00, 0.00, 1.00, 1.00 0.75) 132.8 32.3 126.2 12.6 26.4 272.9 15.0
(0.25, 0.25, 1.00, 1.00 0.00) 95.6 241.0 228.2 258.2 127.5 228.3 116.2
(0.50, 0.50, 1.00, 1.00 0.00) 23.6 84.3 80.9 94.1 29.8 84.9 28.2
(1.00, 1.00, 1.00, 1.00 0.00) 6.7 13.1 13.0 13.1 7.3 13.6 6.4
(0.25, 0.25, 1.25, 1.25 0.50) 44.6 29.2 45.4 26.1 30.9 105.6 30.3
(0.25, 0.25, 1.25, 1.25 0.75) 38.8 17.7 38.3 9.6 17.7 96.4 11.4
(0.50, 0.50, 1.25, 1.25 0.50) 18.4 19.5 27.6 16.9 16.9 63.0 15.0
(0.50, 0.50, 1.25, 1.25 0.75) 17.6 13.5 24.8 7.7 12.9 61.1 7.5
(0.25, 0.25, 0.75, 0.75 0.50) 112.5 135.3 838.5 55.1 78.8 123.1 31.6
(0.25, 0.25, 0.75, 0.75 0.75) 88.9 57.2 450.8 10.2 26.4 104.5 9.5
(0.50, 0.50, 0.75, 0.75 0.50) 25.9 48.9 192.4 30.5 28.4 56.3 13.9
(0.50, 0.50, 0.75, 0.75 0.75) 24.4 28.3 133.4 7.9 18.1 54.1 6.2

18



Table 7. Ambulatory monitoring data
n U1 U2 U3 U4 ELRn

1 .497 −.259 −1.249 .398 0.038
2 1.052 −.602 −.878 −2.061 0.186
3 .510 2.327 .244 −1.167 0.282
4 1.483 .671 .914 .452 0.269
5 1.664 .099 −.735 .735 0.330
6 .272 1.683 −.085 .519 0.407
7 .984 1.504 −.304 .771 0.608
8 −.449 1.305 .952 1.195 0.673
9 .717 −.389 −.299 −.824 0.681
10 .309 .606 −.207 −.416 0.766
11 .867 −1.262 −.772 .476 0.772
12 .435 −1.992 .064 1.129 0.811
13 −.581 −1.026 .295 1.647 0.864
14 1.184 −2.159 −1.140 1.359 1.287
15 .121 −1.449 −.564 .214 1.332
16 −.714 −.161 .122 −1.621 1.098
17 −.288 −.924 .199 −.625 1.108
18 −1.427 −.782 .565 −1.272 1.127
19 −1.327 −.626 −.399 −2.818 1.504
20 .381 1.367 1.352 −2.552 1.518
21 .296 −.870 .579 −.068 1.401
22 −.363 −1.029 .781 .469 1.389
23 .412 −.630 .194 3.169 1.672
24 −.208 −.687 −.674 −2.351 1.892
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