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Abstract

This paper deals with the necessary and sufficient conditions for non-interaction of
the upper-sided and lower-sided EWMAs with reflecting boundaries, the average
run length, the Laplace transform of the run length and some analysis under the
condition of interaction.
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1 Introduction

Exponentially weighted moving average (EWMA) and Cumulative Sum (CUSUM)
quality control schemes are widely used in industry for their ease to implement
and interpret. They have good performances in detecting small and moderate
changes, see Lucas and Saccucci (1990).

To be a good scheme, it should have small out-of-control average run length
(ARL), which is defined as the average number of samples before the chart
signals an out-of-control condition and large in-control ARL. Therefore, the
computation of ARL is of great importance in comparing the performance of
control charts. The main methods for computing ARL applied in literatures are
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Markov chain approach (Brook and Evans (1972)), integral equation approach
(Crowder (1987)) and simulation. Some approximations to the run length
distribution are made in Gold (1989) and Woodall (1983), among others. The
comparison between Markov chain approach and integral equation approach
is made in Champ and Rigdon (1991).

If one wants to detect both the increase and decrease shifts simultaneously,
a pair of one-sided schemes is needed. However, if the Markov chain method
is used to compute the ARL and one gets t, say, 30 discrete part of the state
space of the statistic, the transition matrix will have a dimension of 302×302,
which causes the computation tedious. Woodall (1984) shows that the number
of states included in the Markov chain for one-sided chart is smaller than t2

(it varies between 2t− 1 and (t2 + t)/2). Thus, even in the best cases we must
deal with high dimensional matrices. Fortunately, under the condition of non-
interaction, the ARL of a pair of one-sided schemes can be obtained from the
ARL of the upper-sided and lower-sided schemes. Thus, the crucial question in
this situation is whether the upper-sided and lower-sided schemes interact. For
CUSUM charts, Lucas (1985) gives sufficient conditions for non-interaction,
Lucas and Crosier (1982) obtain the ARL of the two-sided scheme from
the ARL of the upper-sided and lower-sided schemes and Yashchin (1985)
derives the necessary and sufficient conditions for various modes of interactions
of the upper and lower CUSUM schemes with head starts. However, to our
knowledge, the discussion of non-interaction for EWMA scheme is limited,
which is the motivation of this paper.

In EWMA schemes, the use of a reflecting boundary is appealing because
it ensures the EWMA is at most a certain distance. Gan (1993) and Gan
(1998) give designs of EWMA charts for normal and exponential random

variables, respectively. The sufficient condition of non-interaction for two one-
sided EWMA charts is given by Gan (1998) but without proof. Among others,
EWMA with boundaries is used in Reynolds and Stoumbos (2004) and Zhang
and Chen (2004).

The rest of the paper is organized as follows. Some preliminaries are presented
in Section 2. The main results are derived in Section 3. The simulation study
is reported in Section 4. Concluding remarks are given in Section 5. All proofs
are deferred to the Appendix.

2 Preliminaries

Let X1, X2, . . . , Xn, . . . be a sequence of i.i.d. random variables. The upper-
sided EWMA chart with boundary is intended for detecting an increase in the
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mean and is obtained by plotting

Qt = max{A, (1− λQ)Qt−1 + λQXt}

against t, for t = 1, 2, . . ., where λQ is a smoothing constant(0 < λQ < 1),
A is a boundary and A ≤ Q0 = u < hQ. A signal is issued at T+, the first t
for which Qt ≥ hQ. Similarly, the lower-sided EWMA chart with boundary is
intended for detecting a decrease in the mean and is obtained by plotting

qt = min{B, (1− λq)qt−1 + λqXt}

against t, for t = 1, 2, . . . , where λq is a smoothing constant(0 < λq < 1), B
is a boundary and hq < q0 = v ≤ B. A signal is issued at T−, the first t for
which qt ≤ hq.

A two-sided EWMA charts is obtained by running a lower-sided and an upper-
sided EWMA chart simultaneously. As in Gan (1993) and Gan (1998), only
the case λQ = λq = λ is considered in this paper. A signal is issued at T =
min{T+, T−}.

Let (A, hQ, Q0, λQ), (B, hq, q0, λq) and (A, hQ, Q0, B, hq, q0, λ) be an upper-
sided EWMA, lower-sided EWMA and two-sided EWMA scheme respectively.

For the one-sided and two-sided EWMA charts we define the follows:

(1) The lower-sided EWMA scheme does not act on the upper-sided EWMA
scheme if for every realization {X1, . . . , Xn, . . .}, qT− ≤ hq implies that
QT− = A.

(2) The upper-sided EWMA scheme does not act on the lower-sided EWMA
scheme if for every realization {X1, . . . , Xn, . . .}, QT+ ≥ hQ implies that
qT+ = B.

(3) The upper-sided EWMA and lower-sided EWMA schemes do not interact
if neither the upper scheme nor the lower one acts on each other.

3 The main results

We assume B ≤ hQ and A ≥ hq throughout this paper without loss of gener-
ality.

Theorem 1 Let (A, hQ, Q0, B, hq, q0, λ) be a two-sided EWMA scheme.

(i) The necessary and sufficient condition for the upper-sided EWMA not to
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act on the lower-sided one is

1− λ ≤

 min{ hQ−B

Q0−q0
,

hQ−B

A−hq
}, if Q0 − q0 > 0,

hQ−B

A−hq
, if Q0 − q0 ≤ 0.

(1)

(ii) The necessary and sufficient condition for the lower-sided EWMA not to
act on the upper-sided one is

1− λ ≤

 min{ A−hq

Q0−q0
, A−hq

hQ−B
}, if Q0 − q0 > 0,

A−hq

hQ−B
, if Q0 − q0 ≤ 0.

(2)

(iii) The upper-sided and lower-sided schemes do not interact if and only if
both (1) and (2) hold.

If we assume that Q0 = A, q0 = B, the necessary and sufficient condition for
non-interaction for a pair of one-sided EWMAs can be more general. This is
the following result.

Theorem 2 Let Q0 = A, q0 = B, the upper-sided EWMA and lower-sided
EWMA schemes do not interact if and only if

(1− λ)2 ≤ min

{
A− hq

hQ −B
,
hQ −B

A− hq

}
. (3)

Remark 1 Theorem 2 is consistent with the result mentioned in Gan (1993).
However, the necessity of the conditions is not mentioned. In this paper, the
condition is shown not only sufficient but also necessary.

Let H(x) = E(T+|Q0 = x), L(y) = E(T−|q0 = y) and ARL(x, y) = E(T |Q0 =
x, q0 = y), respectively. Then we have the ARL of the two-sided EWMA
scheme under non-interaction.

Theorem 3 If the upper-sided EWMA and lower-sided EWMA schemes do
not interact, then

ARL(Q0, q0) =
H(Q0)L(B) + H(A)L(q0)−H(A)L(B)

H(A) + L(B)
. (4)

Remark 2 The formula obtained in Theorem 3 is similar to that mentioned
in Lucas and Crosier (1982) and Lucas (1985) for CUSUM charts.

We consider the problem of finding the Laplace transform of the run length
(RL) for the two-sided EWMA scheme (A, hQ, Q0, B, hq, q0, λ) when the upper-
sided EWMA and lower-sided EWMA schemes do not interact.
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Let us introduce the following notations:

F+(s|x+) = E{exp(−sT+)|Q0 = x+},

F−(s|x−) = E{exp(−sT−)|q0 = x−},

F (s|x+, x−) = E{exp(−sT )|Q0 = x+, q0 = x−},

b+ = P{T+ < T−}E{exp(−sT+)|T+ < T−},

b− = P{T− < T+}E{exp(−sT−)|T− < T+}.

Theorem 4 If the upper-sided EWMA and lower-sided EWMA schemes do
not interact, then

F (s|Q0, q0) =
{ F+(s|Q0)(1−F−(s|B))+F−(s|q0)(1−F+(s|A))

1−F+(s|A)F−(s|B)
, s 6= 0,

1, s = 0.
(5)

We shall give some results which are important in the analysis of interacting
schemes. Let i be the smallest non-negative integer such that

(1− λ)i(Q0 − q0)−max{hQ −B, A− hq} ≤ 0. (6)

We shall show that if the signal is not triggered in a certain period of time
[0, i], the subsequent behavior of the interacting schemes is very similar to
that of non-interacting ones. Here and in the following of the paper we shall
further assume that Q0 > q0, because Q0 ≤ q0 implies i = 0, which does not
give a period of time [0, i].

Theorem 5 Let (A, hQ, Q0, B, hq, q0, λ) be a two-sided EWMA scheme and
let i, the smallest non-negative integer satisfying (6), be greater than 0.

(i) Let X1, X2 . . . be any realization for which T ≥ i. Then for every 0 ≤ j < i

 (a)0 ≤ (1− λ)j(Q0 − q0) + hq − A < Qj − A < hQ − A,

(b)0 ≤ (1− λ)j(Q0 − q0)− hQ + B < −qj + B < −hq + B.
(7)

(ii) For some realization X1, X2, . . ., let one of the relations (7) hold for every
0 ≤ j < i. Then (for this realization) the other relation also holds for every
0 ≤ j < i and T ≥ i.
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4 Simulation results

From Theorem 1 and Theorem 2, we know a small λ may violate the condi-
tion for non-interaction when other parameters are fixed. Lucas and Saccucci
(1990) suggests a small λ considering the following: (1) EWMA is designed

to detect small to moderate process shifts and smaller λ is more effective
in this condition; (2) Fast initial response feature is most useful for EWMA
control schemes with λ less than or equal to 0.25; (3) For smaller values of
λ, EWMA scheme is more robust to contamination. So in real-world control
charting, one might want to use parameter values that violates the conditions
for non-interaction. In literature, the parameters (A, hQ, Q0, B, hq, q0, λ) =
(0.5, 2.137, 1.0, 2.0, 0.406, 1.0, 0.18) for exponentially distributed statistics are
used in Table 2 of Gan (1998). However, Theorem 1 shows us that λ less than
or equal to 0.31 violates the condition for non-interaction in this case. The ARL
results of Gan (1998) and those obtained from Theorem 3 are listed in Table
1. Note that the lines labeled “T” are true results and “F” are false results ob-
tained ignoring the interaction. From Table 1, we observe that the differences
are substantial if one neglects the interaction, especially in-control situation.
Note that the condition with shift equals 1 is the in-control condition because
the statistics are exponentially distributed. The substantial decrease in ARL
when the process is in control if one neglects the interaction implies more
frequent false signals, which is not one wants. Table 2 shows the ARL with
parameters (A, hQ, Q0, B, hq, q0) = (−1.0, 1.154,−1.0, 1.0,−1.089, 1.0) for nor-
mally distributed statistics. λ less than or equal to 0.23 violates the condition
for non-interaction in this case by Theorem 2. From Table 2, the ARLs have
substantial differences for the two approaches.

It would be better able to handle the inertia problem EWMA charts suf-
fer from. Due to the space limitation, however, we do not study the inertia
problem further except showing the effect of the boundaries on the inertia
problem. Table 3 shows the ARLs obtained from lower-sided EWMA with or
without boundaries. Note that the lines labeled “N” and “B” are obtained
from EWMA scheme without and with reflecting boundaries, respectively. In
the simulation, the first ten statistics are assumed to have a δ standard de-
viation shift upward to generate the inertia problem. Table 4 has the same
structure with Table 3 except that it is for upper-sided EWMA. From Table
3 and Table 4, when |δ| is small, for example, |δ| = 0.5, the inertia problem
is not serious; however, when |δ| is large, for example, |δ| = 3.0, the inertia
problem has great effect on the ARL performance. The EWMA scheme with
boundaries has much smaller ARL when the process is out-of-control. There-
fore, the EWMA scheme with boundaries can lessen the inertia problem so
much that it warrants further research.
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5 Concluding remarks

This paper deals with necessary and sufficient conditions for a pair of one-
sided EWMA schemes not to interact. One can analyze the two-sided EWMA
schemes by considering the upper-sided and lower-sided EWMA schemes sep-
arately under some general conditions, even in the case of interacting schemes.
The inertia problem warrants further research.
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7 Appendix

Lemma 1 Suppose that for a sequence of observations, (Qt, qt), (Qt+1, qt+1), . . .,
(Qt+k, qt+k), is a part of the realization of a two-sided EWMA scheme (A, hQ, Q0,
B,hq, q0, λ). We have

Qt+k − qt+k ≥ (1− λ)k(Qt − qt). (8)

If, in addition, Qt ≥ A, Qt+1, . . . , Qt+k > A and qt ≤ B, qt+1, . . . , qt+k < B,
then equality holds in (8).

The proof of this lemma can be completed with the induction method. �

Lemma 2 Let (A, hQ, Q0, B, hq, q0, λ) be a two-sided EWMA scheme. Sup-
pose that for some realization of the observations X1, . . . , XT , the upper-sided
EWMA signals at T and qT < B. Suppose that T is the minimal time for
which a realization with such a property is possible. Then:

(i) T = 1 if and only if

(1− λ)(Q0 − q0) > hQ −B. (9)

(ii) T ≥ 2 if and only if
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(a)equation (9) does not hold; (b)QT−1 = A, and (c) 1− λ >
hQ −B

A− hq

.(10)

Proof. (i)If T = 1, Q1 = (1−λ)Q0+λX1 ≥ hQ and q1 = (1−λ)q0+λX1 < B.
We have (1 − λ)(Q0 − q0) > hQ − B. If (1 − λ)(Q0 − q0) > hQ − B, then an
observation X1 = 1

λ
(−(1− λ)Q0 + hQ) will cause Q1 = (1− λ)Q0 + λX1 = hQ

and q1 = (1 − λ)q0 + λX1 = (1 − λ)(q0 − Q0) + hQ < B. Thus, T = 1 by
definition.

(ii)The sufficiency of the conditions (10) follows from the sufficiency of (a).
The necessity of (a) follows from the proof above.

To prove the necessity of (b), note that XT > qT−1. If not,

QT = (1−λ)QT−1 +λXT ≤ (1−λ)QT−1 +λqT−1 ≤

 QT−1, if QT−1 ≥ qT−1

qT−1, if QT−1 < qT−1

,

which implies QT < hQ, contradicting the fact that the upper-sided scheme
signals at T . Then we have B > qT = (1 − λ)qT−1 + λXT > qT−1 > hq. Now
suppose that A < QT−1 < hQ. Then, by Lemma 1,

QT − qT = (1− λ)2(QT−2 − qT−2) > 0. (11)

Now let us choose the (T −1)th observation to be X∗
T−1 = 1

λ
(qT −(1−λ)qT−2).

Then the corresponding values of the lower-sided and upper-sided scheme
would be q∗T−1 = (1− λ)qT−2 + λX∗

T−1 = qT < B and by (11)

Q∗
T−1 = (1− λ)QT−2 + λX∗

T−1 = QT + λ(1− λ)(QT−2 − qT−2) > hQ,

which contradicts the fact that T is the minimal time for which a realization
with such a property is possible.

To prove the necessity of (c), now suppose that T ≥ 2 and 1 − λ ≤ hQ−B

A−hq
.

Then, since QT−1 = A and QT = (1− λ)A + λXT ≥ hQ,

qT = (1−λ)qT−1+λXT ≥ (1−λ)qT−1+hQ−(1−λ)A ≥ (1−λ)(hq−A)+hQ ≥ B,

which contradicts the assumption that for realization X1, . . . , XT , we must
have qT < B. This lemma is proved. �

Lemma 3 Let (A, hQ, Q0, B, hq, q0, λ) be a two-sided EWMA scheme. Sup-
pose that for some realization of the observations X1, . . . , XT , the lower-sided
EWMA signals at T and QT > A. Suppose that T is the minimal time for
which a realization with such a property is possible. Then:
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(i) T = 1 if and only if

(1− λ)(Q0 − q0) > A− hQ. (12)

(ii) T ≥ 2 if and only if

(a)equation (12) does not hold; (b)qT−1 = B, and (c) 1− λ >
A− hq

hQ −B
.(13)

The proof of this lemma is similar to that of Lemma 2 and is omitted. �

Lemma 4 If the upper-sided EWMA and lower-sided EWMA schemes do not
interact, then

F+(s|Q0) = b−F+(s|A) + b+, (14)

F−(s|q0) = b+F−(s|B) + b−. (15)

Proof. To prove (14), note that

F+(s|Q0) = P{T+ > T−}E{exp(−s(T− + (T+ − T−))|T+ > T−}
+ P{T+ < T−}E{exp(−sT+)|T+ < T−}. (16)

But under the condition T+ > T−, the random variables T− and (T+−T−) are
independent since the upper-sided EWMA and lower-sided EWMA schemes
do not interact. In this case, the distribution of (T+ − T−) is the same as that
of RL of the upper-sided EWMA with boundary A. Now we can obtain (14).
The proof of (15) is similar, which is omitted. �

Proof of Theorem 1. By symmetry considerations, we only consider the
proof of (i).

Firstly, we prove the sufficiency. Assume that (1) holds. Then both conditions
(9) and (10)(c) fail to hold. Thus, by Lemma 2, it is impossible to find a
realization X1, . . . , XT with the property that the upper-sided EWMA signals
at T and qT < B.

Secondly, we prove the necessity. Assume that (1) does not hold. If (1−λ)(Q0−
q0) > hQ − B, then we can have a realization such that Q1 ≥ hQ and q1 < B

by Lemma 2. If 1 − λ >
hQ−B

A−hq
, then consider the realization X1 = 1

λ
(−(1 −
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λ)q0 + hq + ε), X2 = 1
λ
(hQ − (1 − λ)Q1), where ε > 0 is a parameter. For

this realization, Q2 = (1 − λ)Q1 + λX2 = hQ, i.e. the upper-sided EWMA
signals at T = 2. If ε is chosen close enough to 0 such that hq + ε < B and
(1− λ)(hq − A + ε) + hQ < B, then,

q1 = min{B, (1− λ)q0 + λX1} = min{B, hq + ε} = hq + ε,

q2 ≤ (1−λ)q1+λX2 = (1−λ)(hq−Q1+ε)+hQ < (1−λ)(hq−A+ε)+hQ < B.

Thus, the fact that (1) does not hold implies that there exists a realization
for which the lower-sided EWMA is below B at the moment the upper-sided
signals. The proof of Theorem 1 is completed. �

Proof of Theorem 2. The necessity is trivial by Theorem 1.

To prove the sufficiency, let t be the time when the upper-sided EWMA begins
to accumulate from the last time when Qt = A, and w be the time when the
lower-sided EWMA begins to accumulate from the last time when qw = B. If
the upper-sided EWMAs since time t and the lower-sided EWMAs since time
w are drawn and all of them lie between their respective chart limits imme-
diately after the rth sample, then we have a sequence of EWMAs Q∗

j and a
sequence of EWMAs q∗l where A < Q∗

j < hQ, j = 1, 2, . . . ,m,Q∗
0 = A, hq <

q∗l < B, l = 1, 2, . . . , n, and q∗0 = B. Note that t+m = r and w +n = r, where
r is the total number of samples taken. Then, the EWMAs Q∗

j and q∗l can be
expressed as

Q∗
j = (1− λ)jA + λ

t+j∑
i=t+1

(1− λ)j−i+tXi, j = 1, 2, . . . ,m,

q∗l = (1− λ)lB + λ
w+l∑

i=w+1

(1− λ)l−i+wXi, l = 1, 2, . . . , n.

Suppose that Q∗
m+1 ≥ hQ, then Q∗

m+1 = (1− λ)Q∗
m + λX∗

m+1 ≥ hQ, so that

λX∗
m+1 ≥ hQ − (1− λ)Q∗

m.

The lower-sided EWMA becomes

q∗n+1 = (1− λ)q∗n + λX∗
m+1 ≥ (1− λ)(q∗n −Q∗

m) + hQ.

If w = t, then m = n and Q∗
m − q∗n = (1 − λ)m(A − B). Since the condition

(1− λ)2 ≤ hQ−B

A−hq
implies that hQ ≥ B + (1− λ)2(A− hq), we have

q∗n+1 ≥ hQ − (1− λ)m+1(A−B) ≥ B + (1− λ)2(A− hq)− (1− λ)m+1(A−B).
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Note that A− hq − (1− λ)m−1(A−B) > 0, then we have q∗n+1 > B.

If w > t, Q∗
m − q∗n < (1− λ)n(hQ −B), then q∗n+1 > hQ − (1− λ)n+1(hQ −B).

Note that the condition hQ ≥ B implies that hQ − (1 − λ)n+1(hQ − B) ≥ B,
then we have q∗n+1 > B.

If w < t, q∗n −Q∗
m > (1− λ)m(hq −A), then q∗n+1 > hQ + (1− λ)m+1(hq −A).

Note that the condition hQ−B− (1−λ)2(A−hq) ≥ 0 implies that hQ + (1−
λ)m+1(hq − A) ≥ B, then we have q∗n+1 > B.
Similarly, we can obtain that if q∗n+1 ≤ hq, Q∗

m+1 < A. The proof is omitted
here.�

Proof of Theorem 3 is similar to the approach of A.1 of Appendix in Lucas
and Crosier (1982). �

Proof of Theorem 4. By taking expectations of both sides of the identity

exp(−sT+) + exp(−sT−) = exp(−sT ) + exp(−s max{T+, T−}),

and using the fact that for non-interacting schemes

exp(−s max{T+, T−}) = b−F+(s|A) + b+F−(s|B),

we obtain

F (s|x+, x−) = F+(s|Q0) + F−(s|q0)− b−F+(s|A)− b+F−(s|B). (17)

From Lemma 4, b+ = F+(s|Q0)−F+(s|A)F−(s|q0)
1−F+(s|Q0)F−(s|q0)

, and b− = F−(s|q0)−F−(s|B)F+(s|Q0)
1−F+(s|Q0)F−(s|q0)

.

Substituting b+ and b− into (17), we can obtain (5).�

Proof of Theorem 5. (i)For every 0 ≤ j < i, by Lemma 1 and the definition
of i, we have Qj − qj ≥ (1 − λ)j(Q0 − q0) > max{hQ − B, A − hq}. Since
T > i, it is clear that A < Qj < hQ, hq < qj < B for every 0 ≤ j < i.
Therefore, for every 0 ≤ j < i we have hq < qj ≡ Qj − (1− λ)j(Q0 − q0), and
(1− λ)j(Q0 − q0) + qj ≡ Qj < hQ, which imply (7)(a) and (7)(b) respectively.

(ii)In the case i = 1, the proof is trivial. Now consider the case i > 1. Suppose
that (7)(a) holds for every 0 ≤ j < i and that j∗(0 < j∗ < i) is the smallest
index for which qj∗ ≤ hq. Then, by the definition of i,

Qj∗ − qj∗ > (1− λ)j(Q0 − q0) > max{hQ −B, A− hq}, (18)

which implies that Qj − qj > max{hQ − B, A− hq}, also for any j < j∗. But
then we must have Qj−qj = (1−λ)j(Q0−q0) for any j < j∗. This contradicts
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(18). Thus, qj > hq. And (1− λ)j(Q0 − q0) + qj ≡ Qj < hQ implies

(1− λ)j(Q0 − q0)− hQ + B < −qj + B.

Therefore, (7)(b) holds for every 0 ≤ j < i.

Similarly, we can show that if (7)(b) holds for every 0 ≤ j < i, then (7)(a)
holds for every 0 ≤ j < i. �
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