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Abstract

A control chart based on the likelihood ratio is proposed for monitoring the linear
profiles. The new chart which integrates the EWMA procedure can detect shifts in
either the intercept or the slope or the standard deviation, or shifts simultaneously
by a single chart, which is different from other control charts in literature for linear
profiles. The results by Monte Carlo simulation show that our approach has good
performance across a wide range of possible shifts. We show that the new method
has competitive performance relative to other methods in literature in terms of
ARL and another feature of the new chart is that it can be easily designed. The
application of our proposed method is illustrated by a real data example from an
optical imaging system.
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1 Introduction

In most statistical process control (SPC) applications, it is assumed that the
quality of a process or product can be adequately represented by the distri-
bution of a univariate quality characteristic or by the general multivariate
distribution of a vector consisting of several quality characteristics. In many
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practical situations, however, the quality of process or product is characterized
and summarized better by a relationship between a response variable and one
or more explanatory variables. In particular, there has been recent interest in
monitoring processes characterized by simple linear regression profiles. Most
of the studies conducted in the monitoring of such linear profiles have been
motivated by calibration applications. Mestek et al. (1994), Stover and Brill
(1998), Lawless et al. (1999) and Kang and Albin (2000) presented some

practical applications in industrial engineering.

Process monitoring mainly using control charts can be seen as a two stage
process-Phase I and Phase II (Woodall , 2000). The goal in Phase I is to
evaluate the stability of the process and, after dealing with any assignable
causes, to estimate the in-control values of the process parameters. In contrast,
the main concern in the analysis of Phase II is to quickly detect shifts in the
process from the in-control parameter values estimated in Phase I. Different
types of statistical methods are appropriate for the two phases with each
type requiring different measures of statistical performance. In Phase I it is
important to assess the rate of false signals of a control chart with a given
type one error determined by practitioners. In Phase II, the emphasis is on
detecting process changes as quickly as possible. That is usually measured by
parameters of the run length distribution, where the run length is the number
of samples taken before an out-of-control signal is given.

Most of the literature concerned with profile monitoring deals with the Phase
II analysis of linear profiles when the underlying in-control model parameters
are assumed to be known. Kang and Albin (2000) proposed two control charts
for Phase II monitoring of linear profiles. One of these is a multivariate T 2

chart and the other is a combination of an exponentially weighted moving
average (EWMA) chart and a range (R) chart. Kim et al. (2003) proposed
transforming the x values to achieve an average coded value of zero and a
method based on the combination of three EWMA charts was proposed for
detecting a shift in the intercept, the slope and the standard deviation. Gupta
et al. (2006) compared the performance of two phase II monitoring schemes for
linear profiles, the control charting schemes proposed by Croarkin and Varner
(1982) and Kim et al. (2003). The simulation study shows that the Croarkin
and Varner (1982) method performed poorly compared to the combined con-
trol charting scheme of Kim et al. (2003). Recently, Zou et al. (2007) proposed
a novel multivariate exponentially moving average scheme for monitoring gen-
eral linear profiles. They showed that their approach performed better than
Kim et al. (2003) for small and moderate shifts.

For Phase I analysis, Kim et al. (2003) suggested replacing the Phase II
EWMA charts with Shewhart charts. Mahmoud and Woodall (2004) studied
the Phase I method for monitoring the linear profiles. Mahmoud et al. (2007)
proposed a change-point method, based on the likelihood ratio statistics, to
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detect sustained changes in a linear profile data set in Phase I. They con-
cluded that to protect against both kinds of changes, sustained and randomly
occurring unsustained shifts, one could employ the change-point method in
conjunction with the methods proposed by Mahmoud and Woodall (2004). A
discussion about the problems in monitoring linear profiles is given in Woodall
et al. (2004). Recently, Jensen et al. (2008) proposed the use of linear mixed
models to monitor the linear profiles in order to account for any correlation
structure within a profile and Williams et al. (2007) extended the use of
the T 2 control chart to monitor the coefficients resulting from a parametric
nonlinear regression model fit to profile data.

Based on the generalized likelihood ratio test, we propose a new method to
detect shifts in the linear profile. Moreover, the comparisons among our pro-
posed method, the multivariate exponentially moving average scheme of Zou
et al. (2007) (henceforth referred to as MEWMA) and the combined control
chart of Kim et al. (2003) (henceforth referred to as KMW) are carried out
in this paper. We compare these three methods in terms of ARL performance
under sustained shifts of different magnitudes in the intercept, slope and the
error variance.

The rest of this paper is organized as follows. In Section 2, we review the
existing two competitive monitoring methods, the MEWMA and KMW charts
and present our proposed scheme. We present the proposed chart with VSI
feature in Section 3 and compare the monitoring performance of the proposed
scheme with those two methods in Section 4. In Section 5, the application
of our proposed method is illustrated by a real data example from an optical
imaging system. We summarize this paper in Section 6 with some conclusions.

2 Control chart for linear profiles

Denote by {(xi, yij), i = 1, 2, · · · , n} the jth random sample collected over
time. When the process is in control, the relationship between the response
and explanatory variables is assumed to be

yij = A0 + A1xi + εij, i = 1, 2, · · · , n, (1)

where the εij/σ are independently identically distributed (i.i.d) as a standard
normal random variable, and the explanatory variable x is assumed to be
fixed at n values. This is usually the case in the practical applications and
is consistent with Kang and Albin (2000), Kim et al. (2003) and Mahmoud
and Woodall (2004). In this paper, we consider the Phase II case in which
the in-control (IC) values of the parameters A0, A1 and σ2 are assumed to be
known.
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2.1 The existing work

The KMW chart (Kim et al., 2003):

In Kim et al. (2003), using the coded explanatory values, they obtained the
following alternative form of the underlying model

yij = B0 + B1x
∗
i + εij, i = 1, 2, · · · , n, (2)

where B0 = A0 + A1x̄, B1 = A1, x∗
i = xi − x̄ and x̄ = 1

n

n∑
i=1

xi. For the jth

sample, the least square estimators for B0, B1 and σ2 are

b0j = ȳj, b1j =
Sxy(j)

Sxx

, MSEj =
1

n− 2

n∑
i=1

(yij − b1jx
∗
i − b0j)

2,

where ȳj = 1
n

n∑
i=1

yij, Sxx =
n∑

i=1
(xi − x̄)2 and Sxy(j) =

n∑
i=1

(xi − x̄)yij. Note

that these three estimators are independent. Thus, they proposed to use three
EWMA charts (EWMAI , EWMAS, EWMAE) to detect if the Y -intercept (B0),
slope (B1) and standard deviation (σ) had changed, respectively. They are

EWMAI(j) = θb0j + (1− θ)EWMAI(j − 1),

EWMAS(j) = θb1j + (1− θ)EWMAS(j − 1),

EWMAE(j) = max
{
θ ln(MSEj) + (1− θ)EWMAE(j − 1), ln(σ2)

}
,

where EWMAI(0) = B0, EWMAS(0) = B1 ,EWMAE(0) = ln(σ2) and θ is a
smoothing constant. The three EWMA charts are used jointly, with the com-
bination of charts signaling with the first chart to signal. Their ARL compar-
isons show that the three EWMA charts are more effective than the methods
of Kang and Albin (2000) in terms of ARL in Phase II for detecting sustained
shifts in either Y -intercept or slope or increases in the error variance. Espe-
cially, the three EWMA charts are more effective in detecting shifts in the
slope of the line when the average Y -value does not change, that is to say, the
shifts in parameter B1 of equation (2). Also, their method seem much more
interpretable.

The MEWMA chart (Zou et al., 2007):

In Zou et al. (2007), they considered the general linear profile model. Assume
that for the jth random sample collected over time, they have the observations
(Xj,Yj), where Yj is nj-variate vector and Xj is a nj × p (nj > p) matrix.
When the process is in-control, the underlying model is
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Yj = Xj
~β + ~εj, (3)

where ~β = (β(1), β(2) · · · , β(p)) is the p-dimensional coefficient vector and the
~ε′js are i.i.d as an nj-variate multivariate normal random vector with mean ~0
and σ2I covariance matrix. Without loss of generality, suppose that Xj is of
form (1,X∗

j), where X∗
j is orthogonal to 1 and 1 is a nj-variate vector of all

1′s. The n′
js are equal and Xj is assumed to be fixed for different j, denoted

as n and X, respectively. Following the notation in (3), they define

Zj(~β) = (
~̂
βj − ~β)/σ,

and

Zj(σ) = Φ−1{F ((n− p)σ̂2
j ; n− p)},

where
~̂
βj = (X′X)−1X′Yj, σ̂2

j = 1
n−p

(Yj − X
~̂
βj)

′(Yj − X
~̂
βj), Φ−1 is the

inverse of the standard normal cumulative distribution function, and F (·; ν)
is the chi-squared distribution function with ν degrees of freedom. Denote Zj

by (Z′
j(

~̂
β), Zj(σ)′), which is a p + 1-variate random vector. When the process

is in-control, the vector is multivariate normally distributed with mean ~0 and

covariance matrix Σ =

 (X′X)−1 0

0 1

.

The EWMA charting statistic is defined as

Wj = λZj + (1− λ)Wj−1, j = 1, 2, · · · , (4)

where W0 is a (p + 1)-dimensional starting vector and λ is a smoothing con-
stant parameter. The chart signals when

Uj = W′
jΣ

−1Wj > L
λ

2− λ
, (5)

where L > 0 is chosen to achieve a specified IC ARL. This control scheme
can be deemed a special application of MEWMA charts. The MEWMA chart
was first proposed by Lowry et al. (1992); the design of MEWMA charts was
investigated by Prabhu and Runger (1997).
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2.2 Our proposed methodology

We consider model (2) and assume that σ2 = 1 when the process is in-control,
without loss of generality. For the tth random sample collected over time, we
have observations (x∗

i , yit), i = 1, 2, · · · , n. If the coded model at time t is
assumed to be

yit = b
(t)
0 + b

(t)
1 x∗

it + εit,

then we consider the following hypothesis test

H0 : b
(t)
0 = B0, b

(t)
1 = B1, σ

2 = 1←→ H1 : b
(t)
0 6= B0 or b

(t)
1 6= B1 or σ2 6= 1

It is straightforward (see the appendix) to obtain the generalized likelihood
ratio statistic as follows

LRt = Ct − n log σ̂2
t − n, (6)

where

Ct =
n∑

i=1

(yit −B0 −B1x
∗
i )

2, σ̂2
t =

1

n

n∑
i=1

(yit − b1tx
∗
i − b0t)

2,

b0t = ȳt, b1t =
Sxy(t)

Sxx

,

Subsequently, we incorporate EWMA procedure to the construction of LRt.
Here the EWMA scheme is not to directly average the LRt statistics but
rather to get more precise “estimates” of the current process intercept, slope
and variance. To be specific, three EWMA statistics are introduced by

EIt = λb0t + (1− λ)EIt−1,

ESt = λb1t + (1− λ)ESt−1,

EEt = λS∗
t + (1− λ)EEt−1,

where S∗
t = 1

n

n∑
i=1

(yit − EStx
∗
i − EIt)

2, EI0 = B0, ES0 = B1, EE0 = 1 and

λ is the smoothing parameter satisfying 0 < λ < 1. In general, a smaller λ
leads to a quicker detection of smaller shifts (Lucas and Saccucci , 1990). Note
that the moving average estimation of process variance EIt and ESt is used
in the variance estimation to replace B0 and B1. It would be expected to be
more accurate by using this sequentially updated estimations and thus may
improve the ability to detect the possible process change. It should be noted
that the first term of the statistics LRt also contains much information about
the process, so we introduce another EWMA statistics as follows:

ECt = λCt + (1− λ)ECt−1,
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where EC0 = n as the starting value. Our extensive simulation results verified
this point that the performance of the chart improved significantly.

Finally, substituting ECt and EEt for Ct and σ̂2
t in (6), we obtain the charting

statistics

ELRt = ECt − n log EEt − n, t = 1, 2, · · · ,

If ELRt > h, an alarm is trigged, where h > 0 is chosen to achieve a specified
IC ARL.

Although our method is to use omnibus-type test statistics to implement sin-
gle control scheme for detecting shifts in intercept, slope and the variance
simultaneously, when the process has gone out of control, we can also obtain
some useful information about the process parameters. For example, when an
alarm is trigged at point t and at the same time we find that the term EEt, in
the test statistics, deviated from its target significantly, then we can say that
the process variance has gone out of control. See more details in the example
in section 5.

3 Adding the VSI performance to the proposed ELR chart

The variable sampling interval (VSI) scheme is a known approach to enhance
the efficiency of SPC monitoring schemes. In recent years, several modifica-
tions have been suggested to improve traditional fixed sampling rate (FSR)
policies that provide better performance than conventional charts in the sense
of quicker responses to a process change. Among these, adding VSI in a control
chart instead of a fixed sampling interval (FSI) is one of the most popular and
useful approaches to improve the detection ability. In a VSI control chart, the
sampling interval is varied as a function of the control statistics. The basic
idea of the VSI feature is to use a shorter sampling interval if there is an
indication of a possible change, but a longer sampling interval if there is no
such indication.

Many researchers have contributed to the theory and application of the VSI
chart. Most work on developing VSI control charts focus on monitoring the
mean (e.g., Reynolds et al. (1988); Reynolds (1989); Reynolds et al. (1990);
Runger and Montgomery (1993); Reynolds and Stoumbos (2001) and Reynolds
and Amold (2001). Chengular et al. (1989) introduced a VSI Shewhart chart
for monitoring the mean and variance with a sample of size of n > 1. Reynolds
and Stoumbos (2001) added the VSI feature to various combinations of control
charts to detect the shift in mean and variance using individual observations.
Aparisi (2001) considered a VSI control chart based on Hotelling’s statistic.
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Reynolds and Kim (2005a) and Reynolds and Kim (2005b) recently inves-
tigated MEWMA control charts based on sequential sampling and unequal
sample size.

Past work on VSI control charts has shown that using only two possible values
for the sampling intervals is sufficient. Thus in this article, we consider two
possible interval values, say 0 < d1 < d2. To apply the VSI feature to the
ELR chart, we apply additional warning limits 0 < ω < h inside the control
limits to determine which sampling interval to use next. In particular, a long
sampling interval d2 should be used after the sample is obtained if ELRt falls
inside the warning limits of ω. On the other hand, a short sampling interval
d1 should be used if ELRt falls outside of the warning limits of ω but inside
the control limits h. If ELRt falls outside of the control limits, then an out-of-
control signal would be triggered. The choices of d1 and d2 are determined in
practice. When they are determined, then warning limit ω is chosen to achieve
a specified IC ATS. In this paper, the warming limits ω is determined through
simulation when d1 and d2 are fixed.

The speed with which a control chart detects process shifts measures its sta-
tistical efficiency. When the interval between samples is fixed, the speed can
be measured by ARL . When evaluating the statistical performance of a VSI
control chart, the average time to signal (ATS) should be considered. But at
the same time, the average number of samples to signal (ANSS) should be con-
sidered, too. When a process is in control, it is desirable that the mean time
from the beginning of the process until a signal be long, which guarantees fewer
false alarms. When a process is out of control, it is desirable that the mean
time from the occurrence of the assignable cause until a signal be short as this
guarantees the fast detection of process changes. In the comparative study, we
require that all of the charts being compared have the same in-control sam-
pling rate and the same false-alarm rate. This ensures that the charts being
compared have the same ATS and ANSS when the process is in-control. When
different control charts being compared are designed to have the same IC ATS
and ANSS, these charts can be fairly compared according to the steady-state
ATS (SSATS). The SSATS is defined as the expected time from the point of
the shift to the point at which the chart signals, under the assumption that
the control statistic has reached a steady-state distribution by the time that
the shift occurs. In this article, we use simulation to approximate the SSATS.

4 Performance comparisons

When evaluating and comparing the performances of static control charts,
the ARL performance is considered. This ARL performance is referred to as
the zero-state ARL performance. In practice, it may be reasonable to assume
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that the process starts in control and then shifts at some random time t in
the future. For an arbitrarily t > 0, the ARL performance of a control chart
is called steady-state ARL performance. In this paper, we only tabulate the
zero-state ARLs in order to be consistent with Kang and Albin (2000) and
Kim et al. (2003). In fact, the steady-state ARLs show similar conclusions
(available from the authors), thus they are omitted here.

For simplicity, we only consider the case of overall IC ARL=200. The underly-
ing IC model is the same as that of Kang and Albin (2000) and the parameters
in the in-control model are A0 = 3, A1 = 2 and σ2 = 1, xi=2(2)8. In Kim et
al. (2003), the control limits LI , LS and LE are set to be 3.0156, 3.0109 and
1.3723 for the three EWMA charts respectively when the smoothing constant
λ is chosen to be 0.2. In the case of known parameters, this design will have
an overall IC ARL of roughly 200 and the IC ARL of each chart is about 584.

Note that the monitoring statistics ECt, EEt involved in ELRt do not have an
explicit in-control distribution, although b0t and b1t are known to be normally
distributed with means B0 and B1 and variances σ2/n and σ2/Sxx, respec-
tively. Because the distribution of ELRt is quite complected and there is no
direct and simple method to compute the transition matrix for our chart, the
ARL results are evaluated by 100,000 Monte Carlo simulations. The methods
have been implemented in a FORTRAN program (available from the authors
upon request) that uses the routines “rnmvn” “rnnor” and “rnun” to generate
multivariate Normal vectors, Normal random variables and Uniform random
variables, respectively.

In Zou et al. (2007), the results are obtained through Markov chain approxi-
mation. Moreover, the types of shifts considered in this paper are the same as
those in Kim et al. (2003), although some other scales, instead of the scale σ,
can be used to measure the size of shifts in all parameters.

Next we compare our proposed ELR chart with the KMW chart and the
MEWMA chart in terms of OC ARL. The OC ARL’s of our proposed ELR
chart and those of the KMW chart and the MEWMA chart for detecting the
shift in A0, A1, σ and B1 are shown in Table 1. From this table, we observed

• The performance of our proposed ELR chart is comparable for detecting
the small and moderate shifts in A0, A1 and B1. For detecting the shifts
in A0 and B1, the KMW chart does better, and for detecting the shifts in
A1, the MEWMA chart does better. The ELR chart seems a little better
than the KMW chart, although the difference is negligible. Note that three
monitor statistics EWMAI , EWMAS and EWMAE should be compared
with three corresponding control limits to detect whether the process has
gone out of control in the KMW chart, which is not easier than our ELR
chart for practitioners to implement in practice.
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• For detecting the shift in standard deviation σ, our proposed ELR chart
performs almost uniformly significantly better than the other two charts.
This is a very important case in practice because the variance increase
means that the quality of the product deteriorate. So it should be detected
quickly. This implies that our ELR chart can guard against process and
product deterioration quite effectively, which shows the superiority of our
ELR chart.

Note that the KMW chart in detecting the change of standard deviation is
an upper-sided scheme. In Kim et al. (2003), authors suggested using the
appropriate methods discussed by Acosta-Mejia et al. (1999) if one wished
to detect the decreases in variance. However, our approach can also detect
decreases in variance very well. The simulated ARL’s are shown in Table 2.
For purpose of comparison, we also list the results of the MEWMA chart.

From Table 2, we can see that for detecting small and moderate decrease
in variance, our ELR chart performs significantly better than the MEWMA
chart. For example, when δ = 0.75, the OC ARL for the MEWMA chart is
114.5, but for the ELR chart, the OC ARL reduce to 27.8. For very large
shifts(e.g., δ < 0.3), the MEWMA chart works better. Note that it is the
small to moderate shifts that is difficult to detect for any control chart. We
do not think the litter inferior position relative to MEWMA when detecting
large shifts will hamper the use of our ELR chart in practice.

Simultaneous shifts in the intercept and slope in model (2) are also considered
in this paper. The OC ARL values are obtained and summarized in Table 3.
The magnitudes of shifts in intercept (B0) and slope (B1) are consistent with
Kim et al. (2003). In general, it seems that the MEWMA chart performs better
than the other two charts in most of the cases, but the difference is not very
significant. For the ELR and KMW charts, the ELR chart performs almost
always better than the KMW chart, especially when the shifts in intercept
and slope are both small (e.g., δ1 ≤ 0.25 and δ2 ≤ 0.075) or both moderate
and large ( e.g., δ1 ≥ 0.2 and δ2 ≥ 0.075).

As mentioned in the last section, when comparing the performance of VSI
control charts, ARL is not a proper criteria any more. So, we demonstrate the
improved performance in terms of SSATS gained by adding the VSI feature
to the ELR chart. Table 4 presents the SSATS values of the VSI and FSI
ELR charts for the linear profiles model (1) by 100,000 simulations. The shifts
in intercept, slope and standard deviation are investigated. The IC ATS and
ANSS of each chart are both set to 200; that is, the average IC sampling rate
of the VSI chart is 1 sample per unit time. The numerical results are given in
Table 4. Zou et al. (2007) also considered the VSI MEWMA charts for the shift
in intercept and standard deviation, the results are tabulated in parentheses.
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From Table 4, we conclude that adding the VSI feature can provide quite
substantial reductions in the time required to detect small and moderate shifts.
The results presented here, are fairly consistent with previous research on
univariate VSI control charts. In general, the interval, d1, should be as small
as possible for better statistical performance (Reynolds et al., 1990); therefor,
it usually depends on how soon that it is feasible to sample again after the
current sample was obtained. On the other hand, the sampling interval, d2,
should be chosen to be long so that the resulting control chart would have
an acceptable average sampling rate. When compared with VSI MEWMA
for detecting intercept shifts, our ELR chart has comparable performance.
But for variance shifts, our ELR chart shows much superiority. For example,
when δ = 0.7, our ELR chart has SSATS 12.1 and 7.2 while VSI MEWMA
has SSATS 63.9 and 51.1 for d1 = 0.5, d2 = 1.25 and d1 = 0.1, d2 = 1.9,
respectively. Similar conclusions can be obtained for other types of changes as
well.

5 A real data example

In this section, the application of our proposed ELR chart for monitoring lin-
ear profiles is illustrated by a real data example Gupta et al. (2006) used to
compare the performance of two phase II monitoring schemes for linear pro-
files, the control charting schemes proposed by Croarkin and Varner (1982)
and Kim et al. (2003). The data set consists of line widths of photo masks
reference standards on 10 units (40 measurements) used for monitoring linear
calibration profiles of an optical imaging system. The line widths are used to es-
timate the parameters of the linear calibration profile, yit = 0.2817+0.9767xi,
with a residual standard deviation of 0.06826 micrometers. Interested readers
are referred to the NIST/SEMATECH e-Handbook of statistical methods and
Gupta et al. (2006) for deeper background.

In Gupta et al. (2006), the in-control ARL is set to 200. Although we have
made a detailed comparative study in the last section, we set the same in-
control ARL with Gupta et al. (2006) for our proposed ELR chart for moni-
toring linear profiles to show the application of our ELR chart more clearly.
Table 5 shows the data set taken from Table 7 in Gupta et al. (2006), with
label “x1”, “x2”, “x3”, “y1”, “y2” and “y3”. In order to be consistent with
model (2), the original data had been standardized by

yit

0.06826
= (

0.2817

0.06826
+

0.9767

0.06826
x̄) +

0.9767

0.06826
x∗

i + εit,

where εit ∼ N(0, 1). Table 6 shows the standardized data with label “x∗
1”,

“x∗
2”, “x∗

3”, “y∗1”, “y∗2” and “y∗3”, where x∗
i = xi−x̄, y∗i = 14.6498yi. Some other
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statistics results with label “EIt”, “ESt”,“EEt”, “ECt” and “ELRt” are also
listed in this table. Here, the in control model is y∗it = 65.8443+14.3085x∗

i +εit.
Note that the control limit h is 1.752 to achieve in-control ARL 200 when λ
is chosen to be 0.2. From Table 6, we can observe our ELR chart gives an
out-of-control signal at observation 4. Note that the EE4 statistics is 3.231,
which deviated from its target value 1 significantly, so we can say that the
process variance has gone out of control and the variance increased. These
results are consistent with those of Gupta et al. (2006). Moreover, this signal
is significant enough to show that the process has gone out of control. It is
urgent for practitioners to take effective measures. This, again, shows that our
ELR chart is quite a useful tool for practitioners.

6 Conclusions and considerations

In this paper, we propose a new method for detecting shifts in intercept, slope
and standard deviation for the linear profiles by using a single chart. The
proposed scheme integrates the EWMA procedure with the generalized like-
lihood ratio statistics. The new chart can be easily designed and constructed.
By the simulations, we show that the EWMA chart performs similar to the
existing charts in terms of OC ARL. For detecting the standard deviation, our
proposed new chart works significantly better than the existing competitive
chats.

As Kim et al. (2003) pointed out, it is very necessary to justify which pa-
rameter or parameters have shifted after a signal occurs. Since their proposed
chart is the combination of the three EWMA charts and each chart detects the
corresponding parameter, the diagnosis of any process change is easier than
that of omnibus methods of Kang and Albin (2000). It should be noted that
our proposed method is an omnibus chart, but when the process has gone
out of control, we also can observe some useful information from the statistics
results about which parameter has shifted. So it is still an advantage of our
new chart for practitioners. Of course, for this type of control charts, some
diagnostic aids have been proposed and developed in the literature. For ex-
ample, Hawkins and Zamba (2005) used two conventional parametric tests:
a two-sided F test for detecting the changes in variance and an approximate
t-test for detecting the changes in mean. So these methods also can be used
to diagnose the change of the process.
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Appendix

The derivation of equation (6):
As

yit −B0 −B1x
∗
i = εit ∼ N(0, 1), i = 1, 2, · · · , n,

then the Log likelihood function under H0 is

l0 = −n

2
log 2π −

n∑
i=1

(yit −B1x
∗
i −B0)

2

2

When we get n samples, the MLE of the parameters are

B̂0 = ȳt, B̂1 =
Sxy(t)

Sxx

, σ̂2
t =

1

n

n∑
i=1

(yit − B̂1x
∗
i − B̂0)

2,

respectively, then the Log likelihood function under H1 is

l1 = −n

2
log 2πσ̂2

t −
n

2

Then we have the LRt statistics as follows:

−2(l0 − l1) =
n∑

i=1

(yit −B1x
∗
i −B0)

2 − n log σ̂2
t − n
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Table 1
The ARL comparisons between ELR, MEWMA and KMW chart for the shift in
A0, A1, standard deviation σ and B1

A0 A1

δ ELR MEWMA KMW δ ELR MEWMA KMW

0.0 200.0 200.0 200.0 0.0 200.0 200.0 200.0

0.1 131.9 131.5 133.7 0.025 99.4 99.0 101.6

0.2 61.2 59.9 59.1 0.0375 58.0 57.4 61.0

0.3 30.8 29.6 28.3 0.05 36.1 35.0 36.5

0.4 18.2 17.2 16.2 0.0625 24.2 23.1 24.6

0.5 12.2 11.5 10.7 0.075 17.3 16.4 17.0

0.6 9.0 8.5 7.9 0.1 10.5 9.8 10.3

0.8 5.8 5.8 5.1 0.125 7.3 6.9 7.2

1.0 4.2 4.1 3.8 0.15 5.5 5.3 5.5

1.5 2.4 2.6 2.4 0.2 3.7 3.7 3.8

2.0 1.6 2.0 1.9 0.25 2.7 2.9 2.9

σ B1

δ ELR MEWMA KMW δ ELR MEWMA KMW

1.0 200.0 200.0 200.0 0.0 200.0 200.0 200.0

1.1 73.3 76.2 72.8 0.05 120.6 120.5 120.8

1.15 44.0 48.7 48.1 0.075 77.8 77.3 77.3

1.2 28.6 33.2 33.5 0.1 51.2 50.0 49.1

1.25 20.0 24.1 24.9 0.15 25.0 24.0 22.8

1.3 14.9 18.4 19.4 0.2 14.9 14.0 13.1

1.4 9.5 12.1 12.7 0.25 10.1 9.5 8.9

1.6 5.3 7.0 7.2 0.3 7.6 7.1 6.6

1.8 3.7 4.9 5.1 0.4 4.9 4.7 4.4

2.2 2.3 3.1 3.2 0.5 3.6 3.6 3.3

2.6 1.7 2.3 2.5 0.7 2.2 2.5 2.3

3.0 1.5 1.9 2.1 0.9 1.6 2.0 1.9
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Table 2
The ARL’s of the MEWMA and ELR chart for detecting the decrease in variance

δ 0.10 0.15 0.20 0.25 0.30 0.35 0.40

MEWMA 3.3 3.9 4.5 5.3 6.4 7.8 9.7

ELR 5.6 5.9 5.9 6.0 6.1 6.4 6.9

δ 0.45 0.50 0.55 0.60 0.65 0.70 0.75

MEWMA 12.5 16.5 22.9 33.0 49.1 74.9 114.5

ELR 7.5 8.4 9.5 11.3 14.2 18.9 27.6
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Table 3
The ARL comparisons between MEWMA, KMW and ELR chart under combina-
tions of intercept (δ1) and slope (δ2) shifts in model (2)

δ1 δ2 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

0.05 MEWMA 155.8 111.0 72.9 48.0 32.8 23.5 17.7 13.9 11.3 9.5

KMW 157.6 114.7 74.8 48.3 32.2 22.5 16.9 13.2 10.7 8.9

ELR 154.8 111.3 73.9 49.0 33.9 24.5 18.6 14.7 12.0 10.0

0.10 MEWMA 118.0 89.2 62.1 42.8 30.2 22.2 16.9 13.5 11.0 9.3

KMW 122.1 94.6 66.4 44.9 30.7 21.9 16.6 13.1 10.6 8.9

ELR 118.3 89.7 62.8 43.7 31.3 23.1 17.9 14.2 11.7 9.8

0.15 MEWMA 82.2 66.3 49.5 36.1 26.7 20.2 15.8 12.8 10.6 9.0

KMW 84.6 70.8 54.5 39.6 28.5 20.9 16.1 12.8 10.4 8.8

ELR 83.0 67.5 50.6 37.3 27.9 21.1 16.7 13.6 11.3 9.6

0.20 MEWMA 56.4 48.0 38.2 29.6 22.9 18.1 14.5 12.0 10.4 8.8

KMW 57.1 51.1 42.4 33.3 25.4 19.5 15.4 12.4 10.2 8.7

ELR 57.0 49.2 39.3 30.7 24.0 18.9 15.3 12.2 9.6 9.0

0.25 MEWMA 39.5 35.0 29.4 24.0 19.5 15.9 13.2 11.2 9.6 8.3

KMW 39.5 36.5 32.3 27.1 22.0 17.8 14.4 11.9 10.0 8.5

ELR 39.7 36.2 30.6 25.1 20.4 16.8 13.9 11.7 10.0 8.7

0.30 MEWMA 28.7 26.2 22.9 19.6 16.5 13.9 11.8 10.2 8.8 7.8

KMW 28.2 26.9 24.7 22.0 18.8 15.7 13.2 11.2 9.6 8.3

ELR 29.6 27.2 24.1 20.5 17.3 14.7 12.6 10.7 9.4 8.2

0.35 MEWMA 21.7 20.2 18.3 16.1 14.0 12.2 10.6 9.3 8.2 7.3

KMW 20.9 20.2 19.1 17.6 15.8 13.9 12.1 10.5 9.1 8.0

ELR 22.5 21.2 19.2 16.9 14.8 12.9 11.2 9.9 8.7 7.7

0.40 MEWMA 17.0 16.1 14.9 13.5 12.0 10.7 9.5 8.5 7.6 6.9

KMW 16.2 15.9 15.3 14.5 13.5 12.1 10.9 9.7 8.6 7.6

ELR 17.8 16.9 15.7 14.2 12.7 11.4 10.1 9.0 8.1 7.2

0.45 MEWMA 13.7 13.2 12.4 11.4 10.5 9.5 8.6 7.8 7.1 6.5

KMW 13.1 12.9 12.6 12.1 11.4 10.6 9.8 8.9 8.0 7.3

ELR 14.5 13.9 13.1 12.1 11.1 10.0 9.1 8.2 7.5 6.8

0.50 MEWMA 11.4 11.1 10.5 9.9 9.2 8.5 7.8 7.2 6.6 6.1

KMW 10.8 10.8 10.6 10.3 9.9 9.3 8.7 8.1 7.5 6.9

ELR 12.1 11.7 11.2 10.3 9.7 8.9 8.2 7.5 6.9 6.3
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Table 4
SSATS comparisons between FSI ELR and VSI ELR charts for the shift in intercept
A0, slope B1, A1 and standard deviation σ

A0 A1

d1 = 0.5 d1 = 0.1 d1 = 0.5 d1 = 0.1

δ FSI d2 = 1.25 d2 = 1.9 δ FSI d2 = 1.25 d2 = 1.9

0.1 126.4 (127.9) 122.8(124.4) 112.2(120.0) 0.025 96.0 90.4 80.8

0.2 57.7 (57.6) 52.1 (51.9) 44.2 (45.2) 0.0375 55.6 49.5 41.5

0.3 28.6 (28.1) 23.9 (23.3) 18.0 (18.1) 0.05 33.9 28.5 22.2

0.4 16.5 (16.1) 13.1 (12.6) 9.2 (9.2) 0.0625 22.3 18.0 13.1

0.5 11.0 (10.6) 8.4 (8.0) 5.7 (5.8) 0.075 15.7 12.3 8.6

0.6 8.0 (7.6) 6.0 (5.7) 4.2 (4.2) 0.1 9.4 7.1 4.9

0.8 5.1 (4.8) 3.8 (3.6) 2.8 (2.8) 0.125 6.4 4.8 3.5

1.0 3.7 (3.4) 2.8 (2.6) 2.2 (2.1) 0.15 4.9 3.7 2.7

1.5 2.1 (2.0) 1.6 (1.6) 1.4 (1.4) 0.2 3.2 2.4 2.0

2.0 1.4 (1.4) 1.0 (1.1) 0.9 (1.1) 0.25 2.4 1.8 1.6

3.0 1.0 (0.8) 0.5 (0.8) 0.5 (0.9) 0.3 1.8 1.4 1.2

σ B1

d1 = 0.5 d1 = 0.1 d1 = 0.5 d1 = 0.1

δ FSI d2 = 1.25 d2 = 1.9 δ FSI d2 = 1.25 d2 = 1.9

0.1 4.4 (2.7) 3.5 (2.1) 2.8 (1.8) 0.05 116.3 111.7 102.7

0.3 5.0 (5.8) 3.9 (4.3) 3.0 (3.3) 0.075 74.2 68.7 60.1

0.5 7.0 (15.9) 5.2 (11.2) 3.7 (7.1) 0.1 48.3 43.2 35.4

0.7 16.8 (73.8) 12.1 (63.9) 7.2 (51.1) 0.15 23.2 19.0 13.9

1.1 70.9 (73.2) 68.3 (68.9) 63.6 (63.9) 0.2 13.5 10.4 7.2

1.2 27.0 (31.2) 24.1(27.4) 20.7 (23.4) 0.25 9.0 6.8 4.8

1.4 8.7 (16.9) 7.1 (14.1) 5.6 (11.4) 0.3 6.7 5.0 3.6

1.8 3.3 (10.8) 2.6 (8.8) 2.2 (6.9) 0.4 4.3 3.3 2.5

2.2 2.1 (4.0) 1.6 (3.2) 1.4 (2.6) 0.5 3.1 2.4 1.9

2.6 1.6 (2.4) 1.1 (1.9) 1.1 (1.7) 0.7 2.0 1.5 1.4

3.0 1.4 (1.3) 0.9 (1.1) 0.9 (1.2) 0.9 1. 0.9 0.9
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Table 5
The data set of the example from an optical imaging system

t x1 x2 x3 y1 y2 y3

1 0.76 3.29 8.89 1.12 3.49 9.11

2 0.76 3.29 8.89 0.99 3.53 8.89

3 0.76 3.29 8.89 1.05 3.46 9.02

4 0.76 3.29 8.89 0.76 3.75 9.30

5 0.76 3.29 8.89 0.96 3.53 9.05

6 0.76 3.29 8.89 1.03 3.52 9.02

Table 6
The statistics results of the example from an optical imaging system

t x∗1 x∗2 x∗3 y∗1 y∗2 y∗3 EIt ESt EEt ECt ELRt

1 11.134 48.198 130.237 16.408 51.128 133.460 66.075 14.309 1.123 3.705 0.357

2 11.134 48.198 130.237 14.503 51.714 130.273 65.957 14.309 1.031 3.304 0.231

3 11.134 48.198 130.237 15.328 50.689 132.142 65.980 14.326 0.881 2.857 0.236

4 11.134 48.198 130.237 11.134 54.937 136.244 66.272 14.510 3.231 12.897 6.379

5 11.134 48.198 130.237 14.064 51.714 132.581 66.241 14.519 2.616 10.859 4.974

6 11.134 48.198 130.237 15.089 51.508 132.142 66.246 14.494 2.115 8.848 3.600
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