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Abstract

The standard cumulative sum chart (CUSUM) is widely used for detecting small and
moderate process mean shifts, and its optimal detection ability for any pre-specified
mean shift has been demonstrated by its equivalence to continuous sequential tests.
In real practice, the assumption of knowing the true mean shift in prior can not be
always met. So it is desirable to design a procedure that is efficient for detecting
a range of future expected but unknown mean shifts. Adaptive CUSUM control
chart, which can continuously adjust itself by an one-step forecasting operator, has
been proposed to detect efficiently and robustly for a range of mean shifts in the
early literatures. Moreover, in terms of sampling time to signal, control chart with
the VSI (variable sampling intervals) feature can detect the process changes more
quickly than the traditional FSI (fixed sample intervals) chart. In this paper, a
new CUSUM control chart which is based on both adaptive and VSI features is
discussed. Also, a two-dimensional Markov chain model is developed to evaluate its
run-time performance.
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1 Introduction

The cumulative sum control chart (CUSUM) has been widely used for detect-
ing the small and moderate mean shifts since first introduced by Page (1954).
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For simplicity, we suppose that the process readings {Xi} can be modeled
by two normal distributions, which refer to IC (in-control) and OC (out-of-
control), respectively:Xi ∼ N( µ1, σ

2
1 ) , if the process is in-control ,

Xi ∼ N( µ2, σ
2
2 ) , if the process is out-of-control.

(1)

In this paper, we only focus on detecting the changes in the process mean,
that is µ1 6= µ2, but σ1 = σ2 = σ over time. Also, we assume that µ2 > µ1,
the case that µ2 < µ1 can be handled analogously. A CUSUM chart with the
optimal detection for a pre-known magnitude of the mean shift (denoted by δ
= µ2 − µ1) is defined by:C0 = 0 ,

Ci = max( 0, Ci−1 + Xi − k ) ,
(2)

where the reference value k is δ/2. The CUSUM chart signals as soon as Ci

> h, where h is called by “decision interval”, which is chosen to maintain a
desirable IC average run length (denoted by ARL0). The CUSUM procedure
has an attractive theoretical property: it is the optimal detection procedure
for the mean shift δ when its reference value k is set at δ/2, see Lorden (1971),
Pollack (1985), Siegmund (1985), Moustakieds (1986), Hawkins and Olwell
(1998) for more detailed discussions. Briefly speaking, the CUSUM’s optimal
performance requires accurate information about the magnitude of the future
mean shift δ, which can not always be known in real practice. Therefore, it is
reasonable to design a new procedure to be robust for the range shifts rather
than only sensitive to a particular shift. There are many literatures about
monitoring the range shifts. Lucas (1982) suggested a combined Shewhart-
CUSUM control chart to monitor the process within a broader range of mean
shift. Zhao et al. (2005) provided a dual CUSUM control chart to monitor
the process range shifts, in which two CUSUM charts are used simultane-
ously to deal with the small and large mean shifts, respectively. Also, there
are some other control charts based on change-point model and generalized
likelihood ratio test for detecting the range shifts, see Nikiforov (2001), Lai
(2001), and Hawkins and Qiu (2003). But these methods are usually too

complicated to execute for their excessive memories to implement and time-
consuming simulations to evaluate the run-length performance. Meanwhile,
Sparks (2000) suggested an adaptive CUSUM (ACUSUM) chart which can
continuously adjust itself according to the reference value k by an EWMA
operator, to facilitate the implement of detecting the range shifts with high
efficiency and robustness. Moreover, Shu and Jiang (2006) developed a two-
dimensional Markov chain model to facilitate the evaluation of the run-length
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performance of ACUSUM chart instead of simulation.

From another aspect, the usual practice of using a control chart to monitor
a process is to take samples with fixed time intervals or sample sizes. Recent
literatures have shown that control chart with variable sampling schemes can
detect the process shifts much faster than the traditional static one. For ex-
ample, control chart with variable sampling interval (VSI) or variable sample
size (VSS) feature allows the sampling time intervals or sample sizes to be
changed according to the values of sample readings which indicate the cur-
rent process state, see Reynolds et al. (1988), Reynolds and Arnold (1990),
Runger and Pignatiello (1991), Reyonlds (1995), Tagaras (1998), Arnold and
Reynolds (2001), Chen and Chiou (2005), Lin and Chou (2005), Costa and
De Magalhães (2007), Wu et al. (2007), Zou et al. (2008) for more detailed
discussions. Throughout this paper, a new modified CUSUM control chart
based on both self-adaption and VSI features will be discussed to achieve an
overall performance for the range shifts, which is called “VSI ACUSUM” con-
trol chart. For the case of VSS or VSSI, however, we will not discuss here for
shorting the literature, in that the analysis is similar.

The rest of this paper is organized as follows: a brief description for ACUSUM
and VSI control chart is given in Section 2. Our proposed control chart is pro-
posed in Section 3, which is followed by some numerical comparisons in Sec-
tion 4. The last section contains some concluding remarks. A two-dimensional
Markov chain model for evaluating the performance of our proposed control
chart will be shown in the Appendix.

2 Brief Introduction of Existing Work

Before providing our proposed control chart, some brief introductions of ex-
isting work are presented in this section.

2.1 ACUSUM Control Charts

For simplicity, the process is said to be in-control when all readings {Xi} are
sampled from standard normal distribution N( 0, 1 ), otherwise, the process
is said to be out-of-control when it switches to another normal distribution
differing in mean, denoted by N( δ, 1 ). Sparks (2000) suggested using the
ACUSUM chart in the situation where efficient one-step ahead forecast of the
future mean shift δ can be made. If δ can be efficiently predicted one-step-
ahead at time i, denoted by δ̂i, then one can optimize the CUSUM statistic
by setting k at half size of this predicted value at time i, that is ki = δ̂i/2.
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An upper-sided ACUSUM chart for detecting the unknown mean shift δ >
0, can be defined by Equation (3), and the lower-sided one can be defined
analogously:

C0 = 0 ,

Ci = max( 0, Ci−1 + Xi − ki ) ,

ki = δ̂i/2 .

(3)

The control chart signals if any Ci exceeds the decision interval h(ki). However,
this procedure is complicated to implement for its control limit h(ki) always
changing over time, according to the value of k, to achieve the same desired
ARL0 at every step. Therefore, Sparks (2000) used the following modified
ACUSUM statistic:

C0 = 0 ,

Ci = max { 0, Ci−1 + ( Xi − ki )/h(ki) } ,

ki = δ̂i/2 .

(4)

An alarm is triggered as soon as Ci > h, where h is a given constant and close
to but not exactly 1 because of the errors in estimates of δ̂i. Different schemes
can be used to obtain δ̂i. The EWMA operator is the most popular one due
to its simplicity and efficiency, see Roberts (1959). The traditional EWMA
can be described as a recursive form:

Qi = (1− λ)Qi−1 + λXi (5)

where λ is a smoothing parameter, and 0≤ λ≤ 1. In real practice, for detecting
the upward mean shifts, there is often a minimum magnitude of interest for
early detection, say δmin > 0. Therefore, for the purpose of improving the
efficiency in detecting the shifts larger than δmin, a modified EWMA operator
used for obtaining δ̂i can be defined as:

δ̂i = max
{

δmin, (1− λ)δ̂i−1 + λXi

}
, (6)

where the initial value δ̂0 can be set to δmin or some other values. It will be
shown later, this ACUSUM procedure can be viewed as a two-dimensional
transition process Vi = ( δ̂i, Ci ), which can be modeled as a two-dimensional
Markov chain model. Then the run-length performance of this control chart
can be evaluated by Markov transition method.
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2.2 Control Charts with Variable Sampling Intervals

The VSI control chart is first introduced by Reynolds et al. (1988). Resulted
from its time flexibility for sampling, this control scheme performs more effec-
tive in statistical and economic aspects than its static form. From Reynolds
and Arnold (1990), an upper-sided VSI CUSUM control chart can be de-
scribed as the following procedure:

C0 = 0 ,

Ci = max( 0, Ci−1 ) + Xi − k ,

k = δ/2.

(7)

Let {Ti} denote the sampling time interval between ith and (i+1)th samples.
g is called the “warning line”, which makes {Ti} switch between t1 and t2,
where t2 < 1 < t1. The VSI scheme works out as follows:

Ti =

 t1, if Ci < g ,

t2, if g ≤ Ci < h.
(8)

For the VSI control chart, the time up to signal is no longer a constant mul-
tiple of run length. Therefore, Reynolds et al. (1988) introduced another two
measurements to reinforce the comparison, which are:

I. Average time to signal (ATS): the expected value of the time from the start
of the process to the time when chart signals (zero-state).

II. Adjusted average time to signal (AATS): the expected value of the time
from process shifts to the time when chart signals (steady-state).

3 Our proposed VSI ACUSUM control scheme

The design and some properties of our proposed VSI ACUSUM chart are
provided thoroughly in this section.

3.1 The design of our proposed control scheme

As mentioned above, by continuously using data information to adjust itself
based an EWMA operator, the ACUSUM control chart is expected to achieve

5



an overall performance for detecting range mean shifts. Also, by adding the
variable sampling scheme, one could expect a great increase of the control
chart’s detection ability from time and economical aspects. It is reasonable
to integrate these two features to design a modified ACUSUM control chart
with variable sampling scheme to perform more efficiently and economically
for range shifts, which we call “VSI ACUSUM” control chart. Here, one upper-
sided CUSUM chart is used to illustrate the basic idea of our adaptive chart.
Assume that a process {Xi} is expected to experience an upward mean shift
(δ > 0) at some unknown time. When the mean shift magnitude δ is known,
the CUSUM statistic in Equation (2) with k = δ/2 has been shown optimal
in detecting the occurrence of the shift δ. To maintain a pre-defined ARL0,
the threshold varies with the reference value k. According to the ARL approx-
imation derived in Siegmund (1985), Shu and Jiang (2006) established the
relationship between the threshold and reference value for the conventional
upper CUSUM chart as

h(k) =
ln(1 + 2k2ARL0 + 2.332k)

2k
− 1.166 . (9)

In practice, when δ is unknown, one can use its estimate δ̂i to substitute
for δ in the reference value of the upper-sided CUSUM chart to obtain an
adaptive CUSUM procedure. This gives rise a varying reference value derived
from the real time observations. Note that for a fixed value of ARL0, h(k) is a
decreasing function of k. Thus, monitoring the CUSUM statistic with a fixed
threshold implies relatively tight control for small shifts and relatively loose
control for large shifts. Clearly, this results in different sensitivities to different
levels of mean shifts. To balance the detection sensitivity to both small and
larger shifts, a standardization of the offset, Xi, δ̂i/2, based on h(δ̂i/2) would
be desirable. From another aspect, with the VSI feature added in the control
scheme, it is necessary to modify the new adaptive CUSUM statistic based
on tradition VSI CUSUM form (for more detailed information about such
modification, see Reynolds and Arnold (1990)). For such two reasons above,
our proposed VSI ACUSUM control chart (upper-sided) is described as follows,
and the lower-sided one can be derived analogously,

C0 = 0 ,

Ci = max ( 0, Ci−1 ) + (Xi − ki)/h(ki),

ki = δ̂i/2 ,

(10)

where δ̂i can be obtained by Equation (6) and the VSI scheme works out as
described in Equation (8). The control chart signals if Ci exceeds h and g is
the warning line for partition the in-control region (−∞, h ), and theocratically
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can be computed from the following equations (also see Reynolds and Arnold
(1990) for more detailed information), ρ1t1 + ρ2t2 = 1 ,

ρ1 + ρ2 = 1 ,
(11)

where ρ1 and ρ2 denote the probabilities of the ACUSUM statistic falling
into (−∞, g ] and ( g, h ], respectively, with the condition that no false alarm
happens before.

3.2 The effects of parameters

Sparks (2000) suggested choosing δ̂0 as the best guess of the future mean
shift or assuming δ̂0 = 1 without much investigation on its effect. Because δmin

is the lower bound of the EWMA estimator, it is natural that δ̂0 ≥ δmin. In
general, a large value of δ̂0 improves the sensitivity of control chart to large
shifts but reduces the sensitivity to small shifts, and vice versa for a small
value of δ̂0. It is interesting to note that δ̂0 has small effect on the ATS0 but
does have great effect on the OC ATS. The zero-state ATS of VSI ACUSUM
charts with δ̂0 = 0.5, 1.0, 1.5, 2.0 and 2.25 are given in Table 1, where the
VSI ACUSUM charts are designed with the same parameters: h = 1.1681, g
= 0.122, λ = 0.1, δmin = 0.5, t1 = 1.9, and t2 = 0.1.

Table 1
The zero-state ATS of VSI ACUSUM charts with different δ̂0.

δ̂0

δ 0.5 1.0 1.5 2.0 2.25

0.00 392.80 395.14 396.62 398.54 400

0.50 9.97 10.81 13.12 15.97 17.56

1.00 2.92 3.16 3.91 5.19 5.97

1.50 1.35 1.35 1.56 2.00 2.30

2.00 0.74 0.69 0.74 0.88 0.99

2.50 0.45 0.40 0.40 0.44 0.48

3.00 0.31 0.26 0.25 0.25 0.26

3.50 0.24 0.20 0.18 0.17 0.17

4.00 0.20 0.17 0.15 0.13 0.13

It can be seen that the same control limit and warning line provide nearly
the same ATS0 for all VSI ACUSUM charts with different values of δ̂0. This
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insensitivity of the ATS0 to δ̂0 indicates a very good property because the OC
run-time performance can be adjusted only by changing δ̂0 without changing
other parameters. This is very similar to the effect of a head-start on the
traditional CUSUM and EWMA charts, see Lucas (1982).

Suppose [ δ1, δ2 ] is the range of potential mean shifts needed for detection.
Based on the discussion of Sparks (2000) and Shu and Jiang (2006), we rec-
ommend the following guidelines for working out our VSI ACUSUM scheme:

1. Select δmin = δ1, which improves the detection performance for shifts δ ≥
δ1.

2. Set δ̂0 = ( δ1 + δ2 )/2. Although large value of δ̂0 can offer a very good
performance for detecting large shift δ2, it often substantially deteriorates
the performance of detecting other small shifts. Therefore, we choose δ̂0 to
be the midpoint of [ δ1, δ2 ] to balance the detection efficiency.

3. For the VSI scheme, we recommend to use the symmetric form, that is t1
and t2 are symmetric about one unit time, for example, t1 = 1.9, t2 = 0.1.

4. Choose λ based on the rule of thumb. Here, we recommend λ ∈ [ 0.1, 0.2 ].
5. Find the h and g to achieve the desired ATS0 by using either the Markov

method given in the Appendix or simulation.

3.3 Some computational aspects

Based on Markov chain method in Appendix, all the results are implemented
in Fortran 95 program with IMSL package. Just as mentioned in Appendix, the
performance of VSI ACUSUM chart can be evaluated by a two-dimensional
Markov chain model. Therefore, it means that the transition space L: [ h∗, h ]×
[ δmin, δmax ] can be divided into two subregions, L1: [ h∗, g ]× [ δmin, δmax ] and
L2: ( g, h ] × [ δmin, δmax ], where h is the control limit, h∗ could be chosen
small enough and δmax be large enough to approximate the values of ATS.
Assume that the number of states along axis δ̂ over the range [ δmin, δmax ] is
mδ, along axis C over the range [ h∗, g ] is mc1 and along the range [ g, h ] is
mc2. Then, the in-control region L is divided into a number of N = ( mc1 +
mc2 )×mδ two-dimensional rectangles. Routine “nordf” is used to evaluate the
corresponding probabilities of the VSI ACUSUM statistic transiting from one
state to another. Routine “blinf” is used to obtain the ARL and ATS by the
expressions in Appendix. The computation time is highly correlated to the
total dimension N . That implies larger value of N will lead the result with
higher accuracy, but more time consuming, and vice versa. To balance the time
and accuracy, we recommend that N = 2400, where mc1 = 30, mc2 = 30 and
mδ = 40. The execution time is less than 5 minutes on a Pentium 4 with CPU
processor 3.00 GHz. However, smaller N never represents lack of accuracy.
For example, for zero-state situation, if the desired ARL0 and ATS0 is 400,
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t1 = 1.9, t2 = 0.1 and δmin = 0.5, by using N = 2400, the results is h = 1.1681
and g = 0.118, the computational time is around 5 minutes; while, by using
N = 600 (mc1 = 15, mc2 = 15 and mδ = 20), which is a quarter of 2400, the
results is h = 1.1663 and g = 0.115, however it only takes less than 1 minute
to compute, and also accurate enough. We recommend to practitioners to use
high-dimensional transition space (N = 2400 is enough), once the parameter
is obtained, then it can be used at all times.

4 Performance Comparisons

To investigate the performance of our proposed VSI ACUSUM chart for de-
tecting the range shifts in the process mean, some comparisons are carried out
in this section.

4.1 The comparisons between VSI ACUSUM and FSI charts

In this subsection, it is reasonable to compare the performance of VSI ACUSUM
with other fixed sampling interval (FSI) control charts for detecting range
shifts. Here, the charts used for comparison are FSI ACUSUM, Dual CUSUM
suggested by Zhao et al. (2005), the Combined Shewhart-CUSUM suggested
by Lucas (1982). The Combined Shewhart-CUSUM(SC ) control chart can
achieve an overall performance in detecting a wide range shifts by adding the
Shewhart X̄ feature to increase its sensitivity to large mean shifts. The other
one, Dual CUSUM(DCUSUM ), combines two traditional CUSUMs to mon-
itor the process simultaneously, in which one CUSUM with small reference
value k1 intends to be sensitive to small shifts, and the other with a large
reference value k2 to increase its ability to large shifts. From the aspect of the
sampling scheme, here we adopt the most popular symmetric form to work
out the VSI scheme: t1 =1.9, t2 =0.1. For a fair comparison between VSI and
FSI control schemes, all these charts are designed to maintain the equation
ARL0 = ATS0 = 400. The numerical results of zero-state ATS and steady-state
AATS of the four charts are listed in Tables 2 and 3.

From Tables 2 and 3, from the aspect of time to signal, it is clear to see
that the VSI ACUSUM chart substantially improves the detection efficiency
of ACUSUM control chart for both zero and steady states, and it performs
uniformly better than DCUSUM and combined Shewhart-CUSUM charts. Es-
pecially, it greatly improves the detection ability for small and moderate shifts.
For example, in the situation of zero-state, when the true magnitude of the pro-
cess mean shift δ is 0.25 (small mean shift), other three charts (FSI ACUSUM,
DCUSUM and SC) takes 67.93, 69.36 and 74.56 to give a signal, respectively.
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Table 2
The zero-state ATS for detecting a range shift [ 0.5,4.0 ].

VSI ACUSUM FSI ACUSUM DCUSUM SC

h=1.1681 h=1.1681 h1=7.46 hc=8.04

δ δmin=0.5 δmin=0.5 h2=1.21 hX̄=3.00

λ=0.1, g=0.118 λ=0.1 k1=0.25, k2=2.0

0.00 400 400 400 400

0.25 46.19 67.93 69.36 74.56

0.50 17.56 28.35 25.82 27.19

0.75 9.91 16.37 14.83 15.49

1.00 5.97 10.54 10.23 10.62

1.25 3.67 7.22 7.70 7.94

1.50 2.30 5.22 6.07 6.22

1.75 1.49 3.99 4.09 4.99

2.00 0.99 3.20 4.00 4.06

2.25 0.68 2.66 3.29 3.32

2.50 0.48 2.27 2.72 2.74

2.75 0.35 1.99 1.93 2.27

3.00 0.26 1.77 1.68 1.91

3.25 0.21 1.59 1.48 1.64

3.50 0.17 1.45 1.38 1.44

3.75 0.15 1.34 1.34 1.29

4.00 0.13 1.24 1.23 1.19

However, our VSI ACUSUM chart only takes 46.19, which is 47%, 50% and
61% faster than other three charts. Similar conclusion can be obtained for
moderate and large mean shifts. Another important advantage of our chart
should be noted is that, since the SC and DCUSUM charts are both combined
charts, it means two thresholds should be used simultaneously to monitor the
process. Such design works always encounter the difficulties, such as the opti-
mal selection of the parameters. On the other side, our chart can utilize only
one threshold to monitor the process and its optimal selection can be easily
obtained, see Appendix for more detailed computational information.
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Table 3
The steady-state AATS for detecting a range shift [ 0.5,4.0 ]

VSI ACUSUM FSI ACUSUM DCUSUM SC

h=1.181 h=1.181 h1=7.51 hc=8.11

δ δmin=0.5 δmin=0.5 h2=1.21 hX̄=3.00

λ=0.1, g=0.122 λ=0.1 k1=0.25, k2=2.0

0.00 400 400 400 400

0.25 38.98 60.09 64.76 71.08

0.50 10.54 21.88 23.02 24.76

0.75 5.24 12.39 12.95 13.83

1.00 3.61 8.45 8.88 9.42

1.25 2.65 6.34 6.69 7.05

1.50 2.09 5.06 5.30 5.54

1.75 1.74 4.20 4.33 4.48

2.00 1.50 3.60 3.59 3.69

2.25 1.34 3.15 3.00 3.06

2.50 1.23 2.81 2.53 2.56

2.75 1.16 2.54 2.16 2.16

3.00 1.10 2.32 1.86 1.84

3.25 1.07 2.14 1.64 1.60

3.50 1.04 1.99 1.46 1.41

3.75 1.02 1.87 1.33 1.28

4.00 1.01 1.77 1.23 1.18

4.2 The comparisons between VSI ACUSUM and VSI CUSUM charts

In this subsection, we mainly focus on the comparison of the performance of
VSI ACUSUM charts with that of the traditional VSI CUSUM charts.

For fair comparison for detecting the range shifts, a new criterion is introduced,
which is similar to the IRARL provided by Zhao et al. (2005). The new
criterion, called the integral of the relative AATS (IRAATS), is defined by

IRAATS(C) = E

[
AATSc(δ)

AATSop(δ)

]
=
∫ AATSc(δ)

AATSop

dF (δ), (12)
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where AATSc(δ), AATSop(δ) are the OC AATS of control chart C and CUSUM
chart with k = δ/2 for detecting the shift δ, respectively. F (δ) is the cumu-
lative distribution function (CDF) of shifts δ. If we have no idea about prior
information of the shift, the CDF of uniform distribution U [ δ1, δ2 ] could be
used as F (δ), which we employ in this paper. To ease the computation, the
discrete form of Equation (12) is used to approximate the value of IRAATS,
which is given by

IRAATS ≈ 1

m + 1

m∑
i=0

AATSc(δi)

AATSop(δi)
, (13)

where m is a given integer, and δi = δ1 + i
m

(δ2 − δ1). When comparing the
performance of VSI ACUSUM with that of VSI CUSUM control charts, it
is necessary to evaluate the values of IRAATS. Apparently, a control chart
with a smaller IRAATS value of a particular region is considered to be more
effective to detect the shifts in that region, and vice versa. In the following, the
IRAATS comparison between VSI ACUSUM and VSI CUSUM charts with
different reference value k is carried out. The conclusion for the zero-state
ATS are similar, which we would not discuss here for shorting the paper. The
comparison is designed as follows: for any pre-specified shifts range [ δ1, δ2 ]
( here, we use [ 0.5, 4.0 ], [ 0.5, 2 ], [ 1, 3 ] for investigation, respectively ), two
VSI ACUSUM charts with λ=0.1 and 0.2, and three VSI CUSUM charts with
reference values k = δ1/2, ( δ1 + δ2 )/2, and δ2/2, respectively. The numerical
results are given in Tables 4–6.

It can be seen from tables 4–6 that the VSI ACUSUM charts performance
better than the traditional VSI CUSUM for detecting specified range shifts
in terms of IRAATS. Also, it is shown that VSI ACUSUM chart performs
nearly optimally at each point of the specified range. In the real practice,
increasing the value of λ will lead the control chart to be more sensitive to
moderate and large shifts. But it reduces the ability to detect the small shifts,
just as mentioned in section 3. However, based on our computation, we found
that λ has small effect on the performance of VSI ACUSUM chart in terms
of IRAATS. To balance the performance of detecting both small and large
mean shifts, we recommend λ ∈ [ 0.1, 0.2 ] for practical use based on the
rule of thumb. Though it can be seen that VSI ACUSUM performs slightly
better but nearly the same as a VSI CUSUM chart with the reference value
k set at δmin/2, but here we recommend to use the VSI ACUSUM scheme
for the following three reasons. First, the true magnitude of the process shift
is always seldom known in real practice, the VSI ACUSUM can be a better
monitor scheme due to its self-adaption feature. Second, by using the EWMA
operator, one can also get a one-step ahead forecast about the process mean
level, which can not in the traditional CUSUM. Third, it is well known that
the VSI feature never effects the ARL performance of a control chart. But the
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Table 4
The steady-state AATS and IRAATS (range shift [ 0.5, 4.0 ])

VSI ACUSUM VSI CUSUM

δ λ k Optimal AATS

0.1 0.2 0.25 1.125 2

0.00 400 400 400 400 400 400

0.50 10.54 10.62 10.44 34.29 59.06 10.44

0.75 5.24 5.33 5.21 11.59 23.75 5.04

1.00 3.61 3.52 3.40 4.77 10.13 2.99

1.25 2.65 2.60 2.52 2.53 4.79 2.05

1.50 2.09 2.05 2.01 1.70 2.64 1.58

1.75 1.74 1.71 1.69 1.35 1.75 1.32

2.00 1.5 1.48 1.49 1.18 1.35 1.17

2.25 1.34 1.32 1.34 1.09 1.16 1.09

2.50 1.23 1.21 1.25 1.03 1.06 1.03

2.75 1.16 1.14 1.18 1.00 1.01 0.99

3.00 1.10 1.08 1.13 0.97 0.97 0.97

3.25 1.07 1.05 1.10 0.95 0.95 0.95

3.50 1.04 1.02 1.07 0.94 0.93 0.93

3.75 1.02 1.00 1.05 0.93 0.92 0.92

4.00 1.01 0.99 1.03 0.92 0.92 0.92

IRAATS 1.17 1.15 1.18 1.31 1.89 \

VSI ACUSUM works better in aspect of ATS performance, which means the
VSI ACUSUM tends to take fewer samples on average to give a signal than
that of VSI CUSUM, see Sparks (2000).

5 Conclusion and Remarks

The ACUSUM control chart has been developed to achieve an overall per-
formance for range shifts. By adding the VSI feature, the ACUSUM control
chart performs better than its FSI form in terms of run-time performance.
Moreover, just like its FSI form, the VSI ACUSUM chart inherits its good
overall property for detecting the range shifts when compared with different
VSI CUSUM charts. There is no technical difficulty in extending the result
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Table 5
The steady-state AATS and IRAATS (range shift [ 0.5, 2.0 ])

VSI ACUSUM VSI CUSUM

δ λ k Optimal AATS

0.1 0.2 0.25 0.625 1

0.00 400 400 400 400 400 400

0.50 10.54 10.62 10.44 17.20 29.63 10.44

0.75 5.24 5.33 5.21 6.01 9.83 5.04

1.00 3.61 3.52 3.40 3.08 4.16 2.99

1.25 2.65 2.60 2.52 2.05 2.33 2.05

1.50 2.09 2.05 2.01 1.59 1.64 1.58

1.75 1.74 1.71 1.69 1.35 1.33 1.32

2.00 1.5 1.48 1.49 1.21 1.17 1.17

IRAATS 1.21 1.17 1.18 1.14 1.48 \

Table 6
The steady-state AATS and IRAATS (range shift [ 1.0, 3.0 ])

VSI ACUSUM VSI CUSUM

δ λ k Optimal AATS

0.1 0.2 0.5 1 1.5

0.00 400 400 400 400 400 400

1.00 3.12 3.06 2.99 4.16 7.09 2.99

1.25 2.13 2.08 2.09 2.33 3.41 2.05

1.50 1.61 1.64 1.65 1.64 2.03 1.58

1.75 1.37 1.39 1.41 1.33 1.47 1.32

2.00 1.23 1.24 1.26 1.17 1.23 1.17

2.25 1.14 1.15 1.17 1.09 1.10 1.09

2.50 1.08 1.09 1.11 1.04 1.03 1.03

2.75 1.04 1.04 1.06 1.00 0.99 0.99

3.00 1.02 1.01 1.04 0.98 0.97 0.97

IRAATS 1.04 1.04 1.06 1.09 1.28 \

to the two-sided control scheme. However, the only possible obstacle is that
the ATS computation could be much more complicated by too many transient
states in the Markov Chain. There are 4 parameters need to be defined in-
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stead of two in one-sided scheme. So the transient space may be totally large
and out of computation ability. If the state space of each parameter has 10
values, then there will be nearly 104 states in the Markov chain. Currently it
is not easy to invert such a large matrix. In that case, we have to resort to
simulation.

Some other interesting issues about ACUSUM scheme can be pursued in the
future works. For example, the EWMA operator here only acts as a smoother,
but there is no use of it to give a signal. Just as we know, EWMA chart
with large value of λ has similar performance as a Shewhart X̄ chart for large
shifts. It is reasonable to use this good property for evaluating the process
mean level and also giving a signal. Moreover, the VSS, VSSI features added
to ACUSUM are also reasonable to increase the detection performance.

Finally, something important should be noted here: like any literature about
CUSUM or EWMA control charts, our proposed VSI ACUSUM charts make
good detection performance in a boarder range of mean shifts, especially in
small and moderate shifts. Here, we give two suggestions to further improve the
detection for large shifts of our charts: 1. Superimposing a Shewhart control
limit on our VSI ACUSUM chart will make our chart perform more robustly
for both small and large mean shifts, just like combined Shewhart-CUSUM
charts; 2. Another way, using an Markovian-type mean estimator instead of
Equation (6), where the restriction δ ≥ δmin is no longer considered, will help
the EWMA estimator to overcome the steady-state inertia, which may not
lead it to perform well in estimating both small and large mean shifts. A
Markovian-type mean estimator is given by

δ̂i = δ̂i−1 + φ(ai), (14)

where at = Xi − δ̂i−1 is the prediction error and φ(·) is a monotone function.
This type of EWMA mean estimator was first proposed by Yashchin (1995)
for estimating the current process mean subject to abrupt changes and was
suggested by Capizzi and Masarotto (2003) for process monitoring. Based on
the Huber’s score function (Huber (1981)), Shu et al. (2008) suggested using
a new Markovian-type EWMA operator to estimate the process mean level,
where the monotone function φ(·) is given by

φη(a) =


a + (1− r)η, a < −η,

η a, | a| ≤ η,

e− (1− r)η, a > η,

(15)

where η is a constant. It is interesting to note that when η →∞, this EWMA
operator reduces to the regular EWMA statistic without restriction (4). How-
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ever, it is not the main purpose of this paper. By using these two ways above,
it could indeed improve the detection ability at large mean shifts, and at the
same time it may sacrifice the efficiencies for both small and moderate mean
shifts. Therefore, whether suggestion 1 or 2 is used, it could hardly change
the properties of the overall performance on range shifts of our VSI ACUSUM
charts.

Appendix: The Markov model for computing the ARL and ATS of
VSI ACUSUM

Here, g is the warning line which decides the next sampling interval corre-
sponding to the current sample reading, h is the upper control limit, h∗ could
be chosen small enough and δmax be large enough to approximate the values
of ATS. Then the transition space L: [ h∗, h ]× [ δmin, δmax ] can be divided into
two subregions, L1: [ h∗, g ]× [ δmin, δmax ] and L2: ( g, h ]× [ δmin, δmax ]. Assume
that the number of states along axis δ̂ over the range [ δmin, δmax ] is mδ, along
axis C over the range [ h∗, g ] is mc1 and along the range [ g, h ] is mc2. Then the
width of each segment of axis δ̂, denoted by wδ, is 2( δmax − δmin )/( 2mδ − 1 ),
except the width of the first segment is wδ/2. Similarly, the width of each seg-
ment of axis C over the range [ h∗, g ], denoted by wc1, is 2( g−h∗ )/( 2mc1−1 ),
except the width of the first segment is wc1/2; the width over the ranger [ g, h ],
denoted by wc2, is ( h− g) /mc2. The states along the axis C and δ̂ are labeled
respectively as i = 1, 2, ..,mc1, mc1 + 1, ...,mc1 + mc2 and j = 1, 2, ...,mδ. The
center points of state i along the axis C and state j along the axis δ̂ are de-
noted by vc(i) and vδ(j). Therefore, the in-control region L is divided into a
number of N = ( mc1 + mc2 )×mδ two-dimensional rectangles.

Let f ( i,j ),( m,n ) be the transition probability of ( C, δ̂ ) from state ( i, j ) to state
( m, n ). Define

Uc(i, m, n) =
{

vc(m)−max [ 0, vc(i) ] +
wc

2

}
h

(
vδ(n)

2

)
+

vδ(n)

2
,

Lc(i, m, n) =



{
vc(m)−max [ 0, vc(i) ]− wc

2

}
h
(

vδ(n)
2

)
+ vδ(n)

2
, m 6= 1,

−∞ , m = 1,

Uδ(j, n) =
1

r
{ vδ(n)− (1− r) vδ(j) + wδ(n)/2 } ,

16



Lδ(j, n) =


1
r
{ vδ(n)− (1− r) vδ(j)− wδ(n)/2 } , n 6= 1,

−∞ , n = 1.

Then, when m 6= 1 and n 6= 1, the transition probability f(i,j)(m,n) can be
evaluated as follows

f(i,j)(m,n) = Pr( Ct ∈ state m, δ̂t ∈ state n | Ct−1 ∈ state i, δ̂t−1 ∈ state j )

≈Pr{ vc(m)− wc(m)

2
< max [ 0, vc(i) ] +

Xt − vδ(n)
2

h(vδ(n)
2

)
≤ vc(m)

+
wc(m)

2
, vδ(n)− wδ(n)

2
< (1− r) vδ(j) + rXt ≤ vδ(n) +

wδ(n)

2
}

= Pr{Lc(i, m, n) < Xt ≤ Uc(i, m, n) , Lδ(j, n) < Xt ≤ Uδ(j, n)}

= Pr {max [ Lc(i, m, n) , Lδ(j, n) ] < Xt ≤ min [ Uc(i, m, n) , Uδ(j, n) ] } .

Similarly, we obtain

f(i,j),(m,n) =


Pr{Lδ(j, n) < Xt ≤ min [ Uc(i, m, n), Uδ(j, n) ] }, m = 1, n 6= 1,

P r{Lc(i, m, n) < Xt ≤ min [ Uc(i, m, n), Uδ(j, n) ] }, m 6= 1, n = 1,

P r{Xt ≤ min [ Uc(i, m, n), Uδ(j, n) ] }, m = 1, n = 1.

Therefore, the VSI ACUSUM can be viewed as an two-dimensional Markovian
process with transition matrix R, which is an N×N matrix:

R[(i−1)mδ+j, (m−1)mδ+n] = f(i,j),(m,n),

And then, the zero-state ARL and ATS of the VSI ACUSUM procedure can
be evaluated by the following equations:

ARL = π
′

0 · (I−R)−1 · 1,

ATS = π
′

0 · (I−R)−1 · t,
where 1 is a column vector with all its elements are 1, and t is also a column
vector whose element is either t1 or t2, π0 is any initial probability vector of
states and I is an identical matrix. Moreover, the steady state ATS and AATS
can be obtained by:

ATS = π
′

s · (I−R)−1 · t,
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AATS = π
′

s · {(I−R)−1 − I

2
} · t,

where πs is the steady state probability, which can be obtained by π
′
s · R =

π
′
s. For more detailed information about CUSUM procedure’s ARL and ATS

computation, see Brood and Evans (1972).
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