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ABSTRACT

In recent years, effective monitoring of queueing systems has
increasingly attracted attention of researchers in the area of statistical
process control. Most existing works in the literature, however, did
not consider the data autocorrelation, nor rigorously evaluate the
performance. In this paper, considering the data autocorrelation, a
control chart based on the weighted likelihood ratio test (WLRT) is
proposed to efficiently monitor the utilization of queueing systems,
particularly the M/M/1 queueing system. Our approach can be readily
extended to other general queueing systems if the likelihood function
can be obtained. Numerical results and illustrative example show that
the performance of the proposed WLRT chart is quite satisfactory.
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1. Introduction

In the literature, extensive research on queueing systems has been done to estimate the
system parameters based on the queueing observations (Chowdhury & Mukherjee, 2013;
Clarke, 1957; Ross, Taimre, & Pollett, 2007). In the recent years, statistical monitoring the
parameters of queueing systems, such as the utilization, the service rate and the arrival rate,
has increasingly attracted attention of researchers. Undoubtedly, such detection methods
can be further used to assist root cause identification and decision-making for service-
operation improvement. There are, however, several challenges to develop the statistical
process control (SPC) methods in the queueing systems (Chen, Yuan, & Zhou, 2011;
Chen & Zhou, 2014). (1) The observations collected from queueing systems are only
partially available in many situations (Pickands & Stine, 1997). (2) The observations from
queueing systems are often autocorrelated (Hendricks & McClain, 1993; Reynolds, 1968).
Regrettably, ignoring the date autocorrelation may influence the monitoring performance
effectively (Tsung, Zhao, Xiang, & Jiang, 2006). (3) The distribution of the observations
from queueing systems is often highly skewed (Shore, 2006).

The relevant research on this topic can be generally divided into two groups, depending
on whether the data autocorrelation is considered. In the first group that ignored the auto-
correlation, various control charts have been developed, focusing on the partial sampling
scheme (e.g. Bhat, 1987; Bhat & Rao, 1972; Shore, 2006). The partial sampling scheme here
implies that we can only observe the queue length Qn after departure epoch, while the
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complete sampling scheme implies that we should observe both queue length and system
times at arrival and departure epochs. Compared with the complete sampling scheme,
the partial sampling scheme is easy and/or inexpensive. Chen et al. (2011) proposed an
analytical method based on Markov Chain model to evaluate the efficacy of the WZ chart
(Bhat & Rao, 1972) and the nL chart (Shore, 2006). In the second group that considered
the autocorrelation, Chen and Zhou (2014) proposed the cumulative sum (CUSUM)
scheme to monitor typical queueing systems, in particular the M/M/1 queueing system,
for partial sampling scheme and the complete sampling scheme, respectively. Noting that
the performance of the CUSUM chart might deteriorate if the real out-of-control (OC)
parameters were far from the designated region, Chen and Zhou (2014) suggested using
the multiple CUSUM charts with different design parameters or the generalized likelihood
ratio (GLR) chart. Nevertheless, the GLR chart cannot be updated recursively and has to be
computed by maximizing the likelihood ratio with respect to all possible change locations,
which may lead to significant increasing of computational load.

Note that all of the aforementioned research ignored the fact that recent data may carry
more up-to-date information. Many researchers have shown that giving higher weights
to recent data can lead to better monitoring performance, which makes the exponentially
weighted moving average (EWMA) charts (e.g. Lucas & Saccucci, 1990; Robert, 1959; Su,
Shu, & Tsui, 2011; Zi, Zou, Zhou, &Wang, 2013; Zou and Tsung, 2010) be widely applied.
In general, for EWMA-type control charts, a small value of smoothing parameter leads to
better detection of small shifts (e.g. Lucas & Saccucci, 1990; Zhou, Zou, Wang, & Jiang,
2012). Moreover, there is no clear winner between the CUSUM chart and the EWMA
chart. For example, Han, Tsui, Ariyajunya, and Kim (2010) compared the performance
of the CUSUM and EWMA charts when the observations follow the Poisson distribution
and the results showed that the CUSUM charts were superior in dealing with a large shift
with a later change in time while the EWMA charts outperformed the CUSUM charts in
situations with a small shift and an early change in time.

In this paper, we focus on developing a new control chart based on the weighted
likelihood ratio test (WLRT) (Zhou et al., 2012) and comparing it with the CUSUM
chart (Chen & Zhou, 2014). Henceforth, the proposed control chart is called WLRT chart
for short. Here, we use the WLRT chart rather than the traditional EWMA chart for
the following two reasons. On the one hand, Chen and Zhou (2014) have obtained the
log-likelihood functions for both the partial and complete sampling schemes in M/M/1
queueing system. Hence, we can extend the log-likelihood functions to the weighted log-
likelihood functions and thendevelop theWLRTchart.On the other hand, theWLRTchart
can be readily extended to more general types of queues if we can obtain the likelihood
function according to queueing theory. Although we focus on the partial sampling scheme
in the M/M/1 queueing system, we can follow the similar procedure for the complete
sampling scheme. By our results, we find that, compared with the CUSUM charts, the
WLRT chart has more satisfactory IC run-length distribution and stands out at early
detection.

The rest of this paper is organized as follows. In the next section, the statistical model
and the WLRT chart for M/M/1 queueing system are introduced. The following section is
devoted to comparing the performance of fivemethods:WLRT,WZ (Bhat&Rao, 1972),nL
(Chen et al., 2011), CUSUM and GLR (Chen & Zhou, 2014) charts. Finally, an illustrative
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example and our conclusions are given. The proofs of some properties of the proposed
control chart are deferred to Appendix 1.

2. The proposedWLRT chart

2.1. WLRT chart

The M/M/1 queueing system is a Poisson-input, exponential-service, single-server queue
(Gross & Harris, 1998). We use λ,μ and ρ to denote, respectively, the arrival rate, the
service rate and the utilization, where ρ = λ

μ
. We suppose ρ changes from ρ0 to another

unknown value ρ1 immediately after an unknown departure epoch τ , which suffices to test
the following hypotheses {

H0 : ρ = ρ0,
H1 : ρ �= ρ0,

after each departure epoch.
Since the queue lengths Qn−1 and Qn are dependent due to the queueing dynamic, we

observe the number of arrivals during the nth service period

An = Qn − Qn−1 + 1 − Zn−1,

where Zn−1 is an indicator variable which equals 1 if Qn−1 = 0 and equals 0 otherwise.
According to queueing theory, A′

ns are independent and identically distributed (iid)
variables and

Pr{An = k} = 1
1 + ρ

·
(

ρ

1 + ρ

)k
, k = 0, 1 . . . .

After any departure epoch N , the weighted log-likelihood function can be derived as

lN (ρ) = ln ρ ·
N∑
n=0

wnAn − ln (1 + ρ) ·
N∑
n=0

wn(An + 1), (1)

where theweightsw0 = (1−θ)N ,wn = θ(1−θ)N−n, n = 1, . . .N , such that
∑N

n=0 wn = 1,
which are similar to those in Qiu, Zou, and Wang (2010) and Zhou et al. (2012), and
θ ∈ (0, 1) is a smoothing parameter. Includingw0 andA0 in Equation (1) has its ownmerit,
because A0 can be viewed as a pseudo ‘sample’, and is chosen as ρ0 here, as E(An) = ρ0
under the null hypothesis.

Given the value of θ , we can obtain themaximumweighted likelihood estimate (MWLE)
of ρ

ρ̂N = argmax
ρ

lN (ρ) =
N∑
n=0

wnAn. (2)

Furthermore, we can express the WLRT statistic as

WN = 2[lN (ρ̂N ) − lN (ρ0)] = 2
[
ρ̂N · ln ρ̂N (1 + ρ0)

ρ0(1 + ρ̂N )
− ln

1 + ρ̂N

1 + ρ0

]
. (3)

When theWLRT statistic in (3) is larger than a prespecified upper control limit (UCL), we
can declare the system utilization ρ has deviated from the nominal value, which means the
system is OC.
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In practice, decreases in the service rate and/or increases in the arrival rate are of most
interests. Thus, a one-sided WLRT+ chart is desirable. For this purpose, we can develop a
one-sided chart for the hypotheses

{
H0 : ρ = ρ0,
H1 : ρ > ρ0.

Following Zhou et al. (2012), by substituting ρ̃N = ρ̂NI(ρ̂N > ρ0) + ρ0I(ρ̂N ≤ ρ0) (Shu,
Jiang, & Wu, 2012) into (3), the monitoring statistic can be modified by

W+
N = WNI(ρ̂N > ρ0),

whenW+
N is larger than a UCL, the corresponding control chart generates OC signal.

2.2. Properties ofWLRT chart

By some simple algebra (see Appendix), we get the following properties immediately.

P1. ρ̂N can be updated recursively

ρ̂N = ρ̂N−1 · (1 − θ) + θ · AN , (4)

where the initial value is ρ̂0 = ρ0 based on A0 and w0 defined above.
P2.

E(ρ̂N ) = ρ, Var(ρ̂N ) = (ρ + ρ2)

N∑
n=1

w2
n. (5)

P3. Under null hypothesis, we have

ρ̂N − ρ0√
(ρ0 + ρ2

0)
∑N

n=1 w2
n

→d N(0, 1), (6)

as θN → ∞ and θ → 0.
P4. WLRT statisticWN < UCL (the system is in-control (IC)) is essentially equivalent

to
a < ρ̂N < b, (7)

where a, b (a < ρ0 < b) are the real roots of the equationWN = UCL.

The property P1 ensures that the computational load will decrease significantly for our
WLRT chart due to the recursive representation. And the property P4makes our proposed
WLRT chart look like the traditional EWMAchart, because ρ̂N admits the classical EWMA
updating formulas.

3. Performance comparisons

In this section, we demonstrate the effectiveness of our approach through Monte Carlo
simulations (Li, Zou, Gong, & Wang, 2014). The IC run-length distribution, the ‘true’
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detection capability, the average run length (ARL), the average number of samples (ANOS)
and the relative mean index (RMI) are five criteria used for the performance comparison.
Here, the IC run-length distribution can be considered satisfactory if it is close to the
geometric distribution (Hawkins & Olwell, 1998; Zhou et al., 2012). The ‘true’ detection
capability of a chart is reflected by the quantity γN , where

γN = PrOC(RL ≤ N) − PrIC(RL ≤ N).

A control chart with a larger value of γN is considered better (Zhou et al., 2012). The ARL is
the average number of points thatmust be plotted before a point indicates anOC condition
(Montgomery, 2013). In comparison of various candidate control charts, ARL or ANOS is
very important and also a popularly used criterion. When the process is IC, a chart with
a larger IC ARL (termed ARL0) or ANOS (termed ANOS0) indicates a lower false alarm
rate than other charts. When the process is OC, a chart with a smaller OC ARL (termed
ARL1) or ANOS (termed ANOS1) indicates a better detection ability of process shifts than
other charts. The RMI (Han & Tsung, 2006) values can be considered as the average of all
relative efficiency values, and a control chart with a smaller RMI value is considered better
in its overall performance (Zhou et al., 2012).

As mentioned by some researchers (Borror, Champ, & Rigdon, 1998; Chen et al., 2011;
Qiu&Li, 2011; Zhou et al., 2012), a critical issue iswhether it is possible and straightforward
to find design parameters that ensure the specified IC performance when the data are
discrete. By simulation, we find the WLRT+ chart’s ARL0 can always be attained quite
closely if θ ≤ 0.2. In order to simplify the UCL calculation for practitioners, the simulated
UCLs of the WLRT+ chart for different smoothing parameters, obtained from 100,000
replications are reported in Table 1. A Fortran program is also available from the authors
upon request.

In the scenario with ARL0 = 370 and ρ0 = 0.5, the following simulation is applied to
determine the control limit of WLRT+ chart. The control limits of WLRT+ chart in other
scenarios follow the similar way. To generate the simulated data, we suppose Q0 = 0,
which indicates the monitored system starts from an empty queue, and which is common
in practice (Chen et al., 2011). We assume further that the arrival rate λ = 0.5 and the
service rate μ = 1.0. Given the UCL, we generate random observation Qn’s and calculate
the monitor statistic W+

N ’s until W+
N > UCL. Then, we obtain the run length (RL). We

repeat this procedure 100,000 times and record the values of RL in each repetition to use
the bisection searching algorithms to find the control limit such that ARL0 is about 370.

Hereafter, we use the notation h to denote the control limit coefficients, and obtain
all results in this section based on 100,000 replications. For a relatively fair comparison,
we adjust the control limits of different charts to make their ARL0 or ANOS0 as close as
possible. We first compare the one-sided WLRT+ chart with nL, WZ and CUSUM charts
under the assumption that the process change occurs at the same time as the monitoring
starts. Two scenarios with the IC utilization ρ0 = 0.5 and ρ0 = 0.7 are considered.

In the scenario with ρ0 = 0.5, we only compare the WLRT+ chart with CUSUM chart
because Chen and Zhou (2014) have revealed that the CUSUM chart outperforms the nL
and WZ charts in this scenario. The comparisons of the IC run-length distribution and
the ‘true’ detection capability when N ≤ 100 are shown in Figures 1 and 2, respectively.
It is obvious from Figure 1 that the IC run-length distribution of our proposed WLRT+
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Table 1. Simulated UCL values of WLRT+ chart.

ARL0
ρ0 200 300 370 500 800 1000 2000 5000

θ = 0.025
0.3 0.02511 0.03551 0.04123 0.05001 0.06406 0.07089 0.09228 0.12057
0.5 0.02498 0.03539 0.04126 0.04979 0.06394 0.07089 0.09193 0.11996
0.7 0.02494 0.03523 0.04104 0.04961 0.06344 0.07011 0.09163 0.11968
0.9 0.02504 0.03520 0.04091 0.04950 0.06362 0.07047 0.09176 0.11985

θ = 0.05
0.3 0.08285 0.10679 0.11950 0.13824 0.16775 0.18185 0.22569 0.28293
0.5 0.08247 0.10634 0.11898 0.13743 0.16645 0.18008 0.22299 0.28000
0.7 0.08177 0.10570 0.11852 0.13716 0.16648 0.17998 0.22368 0.28088
0.9 0.08257 0.10578 0.11821 0.13678 0.16605 0.18003 0.22350 0.28060

θ = 0.1
0.3 0.23917 0.28966 0.31567 0.35388 0.41470 0.44349 0.53398 0.65111
0.5 0.23400 0.28481 0.31181 0.35114 0.41263 0.44172 0.53134 0.65077
0.7 0.23686 0.28688 0.31347 0.35182 0.41176 0.44058 0.53105 0.64902
0.9 0.23613 0.28597 0.31217 0.35066 0.41034 0.43936 0.52908 0.64858

θ = 0.2
0.3 0.62125 0.72720 0.78392 0.86489 0.99707 1.05945 1.25211 1.50780
0.5 0.62429 0.73068 0.78665 0.86785 0.99454 1.05488 1.24454 1.49919
0.7 0.62190 0.72730 0.78274 0.86331 0.99154 1.05259 1.24511 1.49847
0.9 0.62130 0.72865 0.78339 0.86342 0.99059 1.05164 1.24067 1.49629

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

N

Pr
IC

(R
L

≤
N

)

Geometric
CUSUM0.60
CUSUM0.99
WLRT0.025
WLRT0.2

Figure 1. The in-control CDF curves along with geometric distribution (with expectation 370).

chart is satisfactory compared with the CUSUM chart because the distribution of WLRT+
chart is more close to the geometric distribution. Figure 2 reveals thatWLRT0.025+ stands
out at early detection. In addition, the comparisons of ARL are reported in Table 2. The
exact values of ARL0 are listed in the first row in Table 2, and the corresponding ARL1 for
different shifts in the utilization are summarized in the rest of Table 2. From Table 2, we
can observe that the performance of the CUSUM chart might deteriorate if the real OC
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Figure 2. The ‘true’ detection capability between CUSUM and WLRT+. The legend in the first plot is
applicable for all others.

parameter is far from the design parameter ρd . For instance, when ρ = 0.63, the ARL1
of the CUSUM0.6 chart is 97.7, while it is 107 for the CUSUM0.99 chart. We can also
find that the performance of WLRT+ charts depends on the smoothing parameter, i.e.
charts with smaller parameter θ perform better for detecting small shifts, while those with
larger parameter θ perform better for detecting larger shifts. Additionally, the WLRT+
charts perform slightly better at detecting large shifts compared with the CUSUM charts.
To evaluate overall performance, we also compute the RMI values in Table 2. Considering
the overall performance, WLRT0.025+ outperforms other competitors.

In the scenario with ρ0 = 0.7, we compare theWLRT+ chart with nL, WZ and CUSUM
charts. For thenL chart, nonoverlapping sample sumswith the sample sizen aremonitored.
The WZ chart generates OC signal when the A′

ns are consecutively larger than h for
du observations. Note that the control limits of the WZ charts are similar to those in Chen
et al. (2011), but different from those reported in Bhat and Rao (1972). For the illustration
purpose, we only present the comparisons of the ANOS in Table 3. The first row in Table
3 has the exact values of ANOS0. From Table 3, it can be seen that the performance
of CUSUM chart is better than the nL and WZ charts. This result is consistent with



26 D. QI ET AL.

Table 2. Comparisons of ARL1 when ρ0 = 0.5.

CUSUM WLRT+

ρd = 0.6 0.7 0.85 0.99 θ = 0.025 0.05 0.1 0.2
ρ h = 1.38597 2.09029 2.66849 2.99109 0.04126 0.11898 0.31181 0.78665

0.50 370(339) 369(351) 368(356) 369(362) 370(369) 370(367) 370(368) 370(370)
0.51 320(290) 323(303) 324(311) 327(317) 316(313) 322(318) 329(326) 335(333)
0.55 195(167) 200(181) 207(195) 214(204) 183(175) 197(190) 212(208) 231(230)
0.58 145(118) 148(129) 154(142) 161(152) 132(122) 144(137) 161(157) 180(178)
0.63 97.7(72.9) 98.3(81.2) 103(90.8) 107(98.2) 85.4(75.5) 94.1(86.7) 107(103) 124(122)
0.71 63.1(42.1) 61.5(46.1) 62.6(51.7) 64.9(56.4) 52.4(42.6) 56.8(49.3) 64.5(59.8) 76.2(73.8)
0.91 32.8(18.8) 30.3(19.5) 29.3(21.0) 29.4(22.5) 25.5(18.0) 26.1(20.1) 28.2(24.0) 33.0(30.5)
1.70 11.8(5.91) 10.4(5.67) 9.44(5.67) 9.01(5.70) 8.62(5.23) 8.27(5.38) 8.03(5.72) 8.21(6.54)
3.00 6.13(3.17) 5.48(2.97) 4.87(2.85) 4.60(2.76) 4.53(2.65) 4.28(2.64) 4.06(2.64) 3.91(2.77)
10.0 2.34(1.28) 2.18(1.21) 1.99(1.12) 1.94(1.07) 1.94(1.06) 1.85(1.03) 1.76(0.99) 1.67(0.96)
30.0 1.44(0.68) 1.37(0.64) 1.31(0.58) 1.30(0.56) 1.30(0.56) 1.27(0.54) 1.24(0.51) 1.21(0.48)

RMI 0.244 0.188 0.157 0.160 0.047 0.068 0.113 0.191

Note. Standard deviations are in parentheses.

Table 3. Comparisons of ANOS1 when ρ0 = 0.7.

nL WZ CUSUM WLRT+

n = 5 10 du = 5 15 ρd = 0.75 0.98 θ = 0.025 0.1
ρ h = 40 70 7 4 0.68769 2.20254 0.04104 0.31347

0.70 368 372 365 367 370 370 370 370
0.72 309 311 306 307 294 300 290 309
0.76 222 223 220 220 199 206 187 218
0.80 165 167 165 165 146 149 133 162
0.86 114 117 113 116 103 102 87.9 110
0.91 87.9 90.5 87.2 90.5 81.7 78.3 66.9 83.6
0.99 61.8 64.9 61.6 65.7 60.9 55.7 47.4 57.3
1.31 26.8 30.2 26.6 32.6 30.3 25.1 21.1 22.6
1.64 17.5 21.1 17.4 24.4 20.3 16.2 13.6 13.4
1.99 13.4 17.0 13.3 20.9 15.1 11.8 9.95 9.38
2.71 9.87 13.1 9.89 18.3 10.1 7.84 6.62 6.00

the findings by Chen and Zhou (2014). Moreover, the performance of WLRT0.025+ is
satisfactory compared with other alternative methods.

Finally, we compare the two-sided WLRT chart with GLR chart. Here, we modify the
GLR chart proposed by Chen and Zhou (2014) with ρ̃k

j = 1
j−k+2 when ρ̃k

j = 0, where
ρ̃k
j is the maximum likelihood estimator of the utilization given the observations from the

jth departure to the kth departure. Considering the performance when detecting a small
downward shift, we choose the smoothing parameter θ of the WLRT chart as 0.025. We
adjust their control limits such that theARL0 is around 370 by convention.We suppose that
only the service rateμ changes in different magnitudes which causes the system utilization
ρ in both scenarios to shift from 0.02 to 1.96. The corresponding ARL1 are compared in
Figure 3. From Figure 3, we find that there is no evident difference between these two
charts in their ability to detect small downward shifts in the utilization. Furthermore, the
WLRT0.025 chart performs worse at detecting large downward shifts, but performs better
at detecting medium upward shifts.
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Figure 3. The ARL1 comparison between WLRT and GLR: (a) hWLRT = 0.06179, hGLR = 4.86283;
(b) hWLRT = 0.06158, hGLR = 4.95644. The legend in the plot (a) is applicable for the plot (b).

4. Illustrative example

In this section, we change the M/G/1 make-to-order production plant model proposed by
Chen and Zhou (2014) into M/M/1 as an illustrative example. The orders arrive according
to a Poisson process with rate λ = 2.0 per day. Each order needs to be transacted in an
integrated machine centre, and only one order can be processed at one time. The service
times are independent and exponentially distributed random variables with rate μ = 3.0,
and the utilization rate when the operation is normal is therefore ρ = 0.67. As mentioned
earlier, in the partial sampling scheme, we only observe queue length after departure
epoch and do not know the system times. We consider the service rate changes from 1/8
per hour to 1/10.8 per hour after departure epoch τ , which means ρ changes from 0.67 to
0.9 correspondingly.

For the illustration purpose, we only compare theWLRT+ chart with theCUSUMchart.
The smoothing parameter θ of theWLRT+ chart is chosen as 0.025. The design parameter
ρd of the CUSUM chart is chosen as 0.9 because the corresponding CUSUM chart has the
smallest ARL1. We compare the conditional expected delay (CED) (Kenett & Zacks, 1998;
Lee & Jun, 2012) due to the detection ability being dependent on the time point of the

Table 4. The CEDs of the control charts.

τ 5 10 50 100 200 300 500 1000 ARL0 UCL

CUSUM 65.9 64.2 60.8 60.7 60.6 60.6 60.3 60.6 369 2.04603
WLRT+ 58.0 57.9 59.4 60.6 60.5 60.8 60.4 60.8 370 0.04090



28 D. QI ET AL.

change (Sonesson & Bock, 2003). We discard any series in which a signal occurs before the
(τ + 1)th observation. The CED comparison results of the WLRT+ and CUSUM charts
are given in Table 4. It is clear that the performance of the WLRT+ chart is satisfactory,
especially when the change time τ is early.

5. Concluding remarks

In this paper, we propose a control chart for monitoring the M/M/1 queueing system. The
proposed chart, termed the WLRT chart, is essentially based on calculating the weighted
log-likelihood ratio test statistics. The proposed WLRT chart is compared with some
existing charts, such as CUSUM, nL and WZ charts, based on the ARL and ANOS.
Moreover, the WLRT charts have more satisfactory IC run-length distribution and stand
out at early detection.

We focus on the partial sampling scheme not only because the observations from
queueing systems are only partially available in many situations, but also we can follow
the similar procedure in the complete sampling scheme. The proposed WLRT chart can
be readily extended to more general types of queues, e.g, M/G/1, only if we can obtain
the likelihood function according to queueing theory, which will be investigated by the
authors in the near future. Future research may also include a self-starting version of the
new chart (Li, Zhang, &Wang, 2010), which is not immediate because the transformation
in Li et al. (2010) is not easy to derive for the queueing systems.
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Appendix 1.
In this appendix, we sketch the proofs of the properties in Section 2.

(1) Apparently, ρ̂N can be updated recursively.
(2) According to queueing theory, we have the following

E(An) = E(E(An|Tn)) = ρ,
Var(An) = Var(E(An|Tn)) + E(Var(An|Tn)) = ρ2 + ρ,

whereTn is the service time corresponding to thenth departure. Thus, we obtain the property
(5) immediately.

(3) It is not difficult to see that ρ̂N−ρ0√
(ρ0+ρ2

0 )
∑N

n=1 w2
n

can be expressed as a linear combination of iid

variables, say

ρ̂N − ρ0√
(ρ0 + ρ2

0 )
∑N

n=1 w2
n

=
∑N

n=1 wn(An − ρ0)

σ

√∑N
n=1 w2

n

,

where σ 2 = Var(An) = ρ0 + ρ2
0 . This, together with

max
1≤n≤N

w2
n∑N

n=1 w2
n

= θ2∑N
n=1 w2

n
→ 0,

give the property (6) by the Hajek–Sidak’s Theorem.
(4) By some simple algebra we get

∂WLRTN

∂ρ̂N
= 2 · ln ρ̂N (1 + ρ0)

ρ0(1 + ρ̂N )
= 2 · ln ρ̂N + ρ0ρ̂N

ρ0 + ρ0ρ̂N
.

It is easy to see that WLRTN is monotonically increasing (decreasing) on the right (left) side
of ρ0. This completes the proof (7).
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