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In recent years, effective profile monitoring for discrete response variables, such as binary, multinomial,
ordinal or Poisson variables, has increasingly attracted interest of researchers in the area of statistical
process control. Such quality characteristics are often modeled as special cases of generalized linear mod-
els. The objective of this paper is to try to provide a unified framework for Phase II monitoring of gener-
alized linear profiles of which the explanatory variables can be fixed design or random arbitrary design.
To this end, a new control chart is developed based on the weighted likelihood ratio test, and it can be
readily extended to other generalized profiles or profiles with random predictors if the likelihood func-
tion can be obtained. Numerical results and illustrative example show that the proposed control chart has
satisfactory in-control run length distribution and stands out at early detection.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical profile monitoring has increasingly attracted
researchers’ attention in the area of statistical process control.
Early reviews of work in profile monitoring include Woodall,
Spitzner, Montgomery, and Gupta (2004) and Woodall (2007),
and a recent comprehensive review Woodall and Montgomery
(2014) recommend Noorossana, Saghaei, and Amiri (2011) for a
more up-to-date overview as the chapters in this book were writ-
ten by some of the leading researchers in profile monitoring. For
profile monitoring, one group of monitoring methods are inter-
ested in the case that the response variables are continuous (e.g.,
Huwang, Wang, Xue, & Zou, 2014; Li & Wang, 2010; Zou, Ning, &
Tsung, 2012). At the meantime, it is also quite common to deal
with profile monitoring with discrete response variables. As far
as we know, the pioneering work is Yeh, Huwang, and Li (2009).
Some recent work, such as Amiri, Koosha, and Azhdari (2011),
Noorossana, Aminnayeri, and Izadbakhsh (2013), Noorossana,
Saghaei, Izadbakhsh, and Aghababaei (2013) and Soleymanian,
Khedmati, and Mahlooji (2013), focused on profile monitoring
whose response variables are Poisson, ordinal, multinomial and
binary variables, respectively.
In the case of discrete response variables, the quality
characteristics are often modeled as special cases of generalized
linear models (GLM). Amiri, Koosha, Azhdari, and Wang (2015)
and Shadman, Mahlooji, Yeh, and Zou (2015) provided a unified
framework for Phase I control of generalized linear profiles. Besides
the GLM, other types of models have also been used to represent
profiles, such as simple linear regression (e.g., Aly, Mahmoud, &
Woodall, 2015; Noorossana, Eyvazian, & Vaghefi, 2010; Zhang, Li,
& Wang, 2009), nonlinear regression (e.g., Chang & Yadama,
2010; Paynabar, Jin, & Pacella, 2013), multiple regression (e.g.,
Eyvazian, Noorossana, Saghaei, & Amiri, 2011; Mahmoud, Saad, &
El Shaer, 2015), nonparametric regression (e.g., Chuang, Hung,
Tsai, & Yang, 2013; Qiu, Zou, & Wang, 2010), mixed models (e.g.,
Jensen & Birch, 2009; Koosha & Amiri, 2013), and wavelet models
(e.g., Chicken, Pignatiello, & Simpson, 2009; Lee, Hur, Kim, &
Wilson, 2012). All of the afore-mentioned research, however, only
consider the case in which the explanatory variables are fixed from
profile to profile. Shang, Tsung, and Zou (2011) provided an alumi-
nium electrolytic capacitor example to illustrate the case in which
different profiles often have random explanatory variables and
these variables require careful monitoring as well. The major
objective of this paper is to try to provide a unified framework
for Phase II monitoring of generalized linear profiles of which the
explanatory variables can be fixed design or random arbitrary
design from profile to profile (the monitoring of the explanatory
variables is not concerned). In Phase II, we are interested in
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detecting shifts in the model parameters as quickly as possible,
while in Phase I, the purpose is to check the quality of historical
data and to obtain accurate estimates of the model parameters.

In this paper, we developed a new control chart for generalized
linear profile monitoring, which is based on the weighted likeli-
hood ratio test (WLRT). Our proposed approach can be readily
extended to other general profiles or profiles with random predic-
tors if the likelihood function can be obtained. Other likelihood
ratio test (LRT) based approaches can be found in Shang et al.
(2011), Noorossana, Saghaei, et al. (2013) and Soleymanian et al.
(2013). The exponentially weighted moving average (EWMA)-
GLM control chart proposed by Shang et al. (2011) made use of
all available profile samples up to the current time for estimating
parameters, and different profiles are weighted as in an EWMA
chart. Nevertheless, we found that the EWMA-GLM control chart
has very large short-run false alarms, which renders this chart less
useful and unacceptable in practice. Shewhart-type control charts
(LRT) were proposed by Noorossana, Saghaei, et al. (2013) and
Soleymanian et al. (2013). Another EWMA-type control chart
(LRT-EWMA) was proposed by Soleymanian et al. (2013). It is
shown that the Shewhart-type LRT control charts perform better
at detecting large shifts, while the LRT-EWMA control charts per-
form better at detecting small to medium shifts. However, com-
pared with our WLRT chart, the LRT-EWMA control chart was
not as efficient due to the reason that it only used the current pro-
file samples for estimating parameters, and thus the estimators
would have considerably large bias and variance. Numerical results
show that our proposed WLRT control chart has satisfactory in-
control (IC) run length (RL) distribution and stands out at early
detection, where RL is the number of points that must be plotted
before a point indicates an out-of-control (OC) condition
(Montgomery, 2013).

Now we summarize some abbreviated expressions used in this
paper for easy reference.
IC
 in-control

OC
 out-of-control

RL
 run length

ARL
 average run length

SDRL
 standard deviation of the run length

RMI
 relative mean index

CED
 conditional expected delay

EWMA
 exponentially weighted moving average

MEWMA
 multivariate exponentially weighted moving

average

GLM
 generalized linear models

LRT
 likelihood ratio test

WLRT
 weighted likelihood ratio test
The remainder of this paper is organized as follows. Our pro-
posed methodology is described in detail in Section 2, including
the statistical model and WLRT control chart. Section 3 is devoted
to comparing the performance of five methods: WLRT, EWMA-GLM
(Shang et al., 2011), LRT (Noorossana, Saghaei, et al., 2013;
Soleymanian et al., 2013), LRT-EWMA (Soleymanian et al., 2013)
and multivariate EWMA (MEWMA) (Soleymanian et al., 2013)
charts. An illustrative example is given in Section 4. Section 5 con-
cludes this paper and gives further discussion. The algorithm for
obtaining the maximumweighted likelihood estimator is summar-
ized in Appendix A.

2. The proposed WLRT scheme

In this section, we closely follow the notation and formulation
used in Dobson (2002) to briefly discuss the generalized linear pro-
files. We assume that the observations are independent within and
between profiles.

2.1. The statistical model

At any time point t, for the ith profile, our statistical model has
three components:

1. Response variables eY i ¼ ðYi1; . . . ;YiNÞT share the same distribu-
tion from the exponential family with a canonical form,
f ðyij;hijÞ ¼ exp½yijbðhijÞ þ cðhijÞþ dðyijÞ�; i¼ 1; . . . ; t; j¼ 1; . . . ;N;

where bð�Þ; cð�Þ and dð�Þ are known functions and hij’s are the
parameters of the exponential family of distributions.

2. Explanatory variables
eXi ¼
XT

i1

..

.

XT
iN

0BB@
1CCA¼

xi11 . . . xi1p

..

. ..
.

xiN1 . . . xiNp

0BB@
1CCA;

where XT
ij ¼ ðxij1; . . . ; xijpÞ; i ¼ 1; . . . ; t; j ¼ 1; . . . ;N, can be com-

bined linearly with a coefficient vector b ¼ ðb1; . . . ; bpÞT (where

p < N) to form the linear predictor gij ¼ XT
ijb.

3. A monotone link function gð�Þ such that
gðlijÞ ¼ gij ¼ XT
ijb; i ¼ 1; . . . ; t; j ¼ 1; . . . ;N;

where lij ¼ EðYijÞ.

Here, the explanatory variables eXi can be fixed design or ran-
dom design from profile to profile. We suppose b changes from
bIC to another unknown value bOC immediately after an unknown
time point s, which suffices to test the following hypotheses

H0 : b ¼ bIC ;

H1 : b– bIC ;

�
at each time point. Note that bIC can be assumed known for Phase II
monitoring.

2.2. Some existing work

From Dobson (2002), we know that, for the ith profile, the log-
likelihood function is

liðbÞ ¼
XN
j¼1

½yijbðhijÞ þ cðhijÞ þ dðyijÞ�:

To obtain the maximum likelihood estimator of b, we can use the
following estimating equation

bðmÞ
i ¼ bðm�1Þ

i þ ½Jðm�1Þ
i ��1

Uðm�1Þ
i ;

where bðmÞ
i is the vector of estimates of b at the mth iteration,

½Jðm�1Þ
i ��1

is the inverse of the information matrix, Uðm�1Þ
i is the vec-

tor of score. When the difference between successive approxima-

tions bðm�1Þ
i and bðmÞ

i is sufficiently small, bðmÞ
i is taken as b̂

(maximum likelihood estimator of b).
Now we briefly review the LRT, LRT-EWMA and MEWMA

control charts, which were proposed by Soleymanian et al.
(2013) to monitor binary response profiles in Phase II. In fact, the
LRT monitoring statistic can be expressed as

LRTi ¼ 2½liðb̂iÞ � liðbICÞ�; i ¼ 1;2; . . . :



Table 1
k values such that kð1� kÞk < e.

k e

10�4 10�5 10�6 10�7 10�8 10�9 10�10

0.05 122 167 211 256 301 346 391
0.1 66 88 110 132 153 175 197
0.2 35 45 55 66 76 86 96

180 D. Qi et al. / Computers & Industrial Engineering 94 (2016) 178–187
Soleymanian et al. (2013) first normalized the values of LRTi

(here, termed NLi), and then calculated the statistic of LRT-
EWMA control chart by

LEi ¼ kNLi þ ð1� kÞLEi�1; i ¼ 1;2; . . . :

where k represents the smoothing parameter and LE0 ¼ 0.
The MEWMA monitoring statistic can be calculated using three

steps. We first calculate the following variable

Zi ¼ ðeXT
i W eXiÞ

1=2ðb̂i � bICÞ;
where W is an n� n diagonal matrix (see details in Soleymanian et
al., 2013). Then, we calculate the following statistic

Ei ¼ kZi þ ð1� kÞEi�1; i ¼ 1;2; . . . :

Finally, the MEWMA monitoring statistic can be calculated by

Mi ¼ ET
i Ei:

We will leave the brief review of EWMA-GLM (Shang et al.,
2011) control chart in the next subsection to emphasize the differ-
ences of it and our proposed control chart.

2.3. The WLRT control chart

Similar to Qi, Li, Zi, and Wang (in press), up to time point t, the
weighted-log-likelihood function can be derived as

wltðbÞ ¼
Xt

i¼0

wiliðbÞ ¼
Xt

i¼0

wi

XN
j¼1

½yijbðhijÞ þ cðhijÞ þ dðyijÞ�
( )

; ð1Þ

where the weights w0 ¼ ð1� kÞt ; wi ¼ kð1� kÞt�i
; i ¼ 1; . . . t, and

k 2 ð0;1Þ is a smoothing parameter. Here, the observations of

ðeX0; eY 0Þ can be viewed as pseudo ‘‘sample”, which are chosen from

the IC dataset. We can obtain the ðeX0; eY 0Þ from Phase I study or by
simulation such that the difference between b̂0 (maximum likeli-
hood estimator of b) and bIC is small. In Sections 3 and 4, we obtain

the ðeX0; eY 0Þ by simulation, and the random seeds are chosen as
8417 and 123, respectively. Then, we can calculate l0ðbÞ based on

ðeX0; eY 0Þ.
Including the weight w0 and the observations of eY 0 in Eq. (1)

has its own merit:

� It ensures that all of the weights sum to one.
� It confirms that the IC run length distribution of our chart pro-
posed below is satisfactory.

Obviously, wltðbÞ makes full use of all available samples up to
the current time point t, and the more recent samples receive more
weight. An analogous idea, which does not include w0 and the
pseudo ‘‘sample”, has been used by Shang et al. (2011) for binary
profile monitoring. Shang et al. (2011) expanded the WLRT statis-
tics to asymptotically equivalent Wald-type charting statistics
using standard Taylor’s expansion.

Given the value of k, we can express the WLRT statistic as

Wt ¼ 2½wltðb̂tÞ �wltðbICÞ�; ð2Þ
where b̂t ¼ argmaxb wltðbÞ is the maximum weighted likelihood
estimator of b, which can be obtained using the algorithm shown
in Appendix A. When the WLRT statistic in Eq. (2) is larger than a
prespecified upper control limit, we can declare the model para-
meter b has deviated from the nominal value, which means the pro-
cess is OC.

Now we summarize the implementation of our proposed WLRT
scheme for profile monitoring as follows:
1. Obtain the upper control limit for theWLRT control chart by the
bisection searching algorithms to achieve the desired IC average
run length (ARL). The ARL is the average number of points that
must be plotted before a point indicates an OC condition
(Montgomery, 2013).

2. Begin monitoring the profiles in Phase II. After obtaining the
new observations, we calculate the monitoring statistics Wt

using Eq. (2), and then plot them on the control chart until
Wt is larger than the upper control limit.

3. After detecting the shift, we identify and remove the root
causes, and then monitor the profiles continuously.

It is worth more detailed explanations that, the proposed WLRT
control chart used all the profile data upper to the time t (including
the IC and OC profile data), but different from the LRT-EWMA con-
trol chart, the WLRT chart only estimated one b̂t rather than esti-
mating b̂1; . . . ; b̂t for different profiles. The LRT-EWMA control
chart uses the current profile samples for estimating parameters,
while the WLRT control chart gives more weight to more recent
samples, which ensures that there is no over-reliance on the most

recent data. Let k be a sufficiently large integer such that kð1� kÞk
close to zero. As t increase, the weights w1;w2; . . . will be close to
zero sequentially. In fact, when t is sufficiently large, we only use
the most recent k sets of OC profile data to estimate b̂t , which
ensures that b̂t is close to bOC .

To alleviate the computation burden, when t 6 k, we make use
of all available samples up to the current time point t to estimate b̂t

and calculate Wt . Otherwise, we only use the most recent k sets of
sample profile observations, say the observations of

ð eXi ; eYiÞ; i ¼ t � kþ 1; . . . ; t, to estimate b̂t and calculate Wt . It is

worth pointing out that, if eXt�kþ1 ¼ � � � ¼ eXt , thenPt
i¼t�kþ1wiJi ¼ ½1� ð1� kÞk�Jt . Some k values such that

kð1� kÞk < e for given e are given in Table 1. We will choose the
small positive value e as 10�7 for simplicity in the next section.

3. Performance comparisons

In this section, we compare the proposed WLRT control chart
with four alternative methods, EWMA-GLM (Shang et al., 2011),
LRT (Noorossana, Saghaei, et al., 2013; Soleymanian et al., 2013),
LRT-EWMA (Soleymanian et al., 2013) and MEWMA (Soleymanian
et al., 2013), to demonstrate the effectiveness of our approach.

Following Amiri et al. (2015) and Shadman et al. (2015), we
focus on the Poisson profile in this Section. Similar to Shadman
et al. (2015), we assume that the Poisson profiles are as follows:

a. Response variables Yij’s are independent Poisson random
variables, j ¼ 1; . . . ;10.

b. Explanatory variables Xij such that

� when the design points are fixed

Xi1; Xi2; � � � ; Xi10ð Þ ¼ xi11 xi21 � � � xi10;1
xi12 xi22 � � � xi10;2

� �
¼ 1 1 � � � 1

0:1 0:2 � � � 1:0

� �
:



Table 2
IC comparisons.

h ARL0 SDRL Qð:10Þ Median Qð:90Þ F30

EWMA-GLM0.05 9.90756 370 520 2 154 1040 0.355
EWMA-GLM0.2 11.60040 370 409 4 239 922 0.183
LRT 11.89143 370 369 38 258 850 0.083
LRT-EWMA0.05 0.68820 370 348 63 261 813 0.022
LRT-EWMA0.2 1.47790 370 370 43 256 850 0.069
MEWMA0.05 0.31650 370 338 57 268 826 0.030
MEWMA0.2 1.55000 370 353 43 265 839 0.068
WLRT0.05 0.22710 370 369 47 255 853 0.055
WLRT0.2 1.22170 370 371 40 257 845 0.075

λ = 0.05

.5 .5

λ = 0.2
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� Otherwise, for the ith profile, nine different design points
randomly take values in the above equation.
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Fig. 1. The in-control cumulative distribution function curves for the Poisson
profiles along with Geometric distribution (with expectation 370).
c. The log link function such that gðlijÞ ¼ logðlijÞ ¼ XT
ijb, where

lij ¼ EðYijÞ.

Assume further that the IC parameters bIC is ð1;1ÞT , while the
OC profile parameter at ith sample profile is equal to

bi ¼
bIC ; i ¼ 1; . . . ; s;
bOC ¼ bIC þ D; i ¼ sþ 1; . . . ;

�
where D ¼ ðd1r1; d2r2ÞT ; d1 – 0 or d2 – 0, and
r1 ¼ 0:35181; r2 ¼ 0:50947 are the standard deviation of the max-
imum likelihood estimator of the profile parameters.

3.1. Comparisons when design points are fixed

For a relatively fair comparison, we adjust the control limits of
different charts to make their IC ARL (termed ARL0) as close as 370
by convention. In comparison of various candidate control charts,
ARL is very important and also popular used criterion (Li, Zou,
Gong, & Wang, 2014). When the process is IC, a chart with a larger
ARL0 indicates a lower false alarm rate than other charts. When the
process is OC, a chart with a smaller OC ARL (termed ARL1) indi-
cates a better detection ability of process shifts than other charts.
Hereafter, we use the notation h to denote the control limit coeffi-
cients, and obtain all results in this section based on 5000 replica-
tions. A Fortran program is also available from the authors upon
request.

We first study IC performance comparison. Zhou, Zou, Wang,
and Jiang (2012) pointed out that the IC run length distribution
is considered to be satisfactory if it is close to the geometric distri-
bution (Hawkins & Olwell, 1998) or more generally its variation is
less than that of a geometric distribution. We use notation Qð:10Þ
and Qð:90Þ to respectively denote the 10th and 90th percentile of
the marginal distribution of the run length. We also study the
false-alarm rate for the first 30 observations, F30 ¼ PrICðRL 6 30Þ,
where PrICðRL 6 30Þ denotes the probability of run length being
less than or equal to 30 when the process is IC. Note that when
the run length distribution is geometric, the standard deviation
of the run length (SDRL) should be approximately equal to ARL0,
and Qð:10Þ, Median, Qð:90Þ and F30 are about 38, 256, 850 and
0.080 respectively. The IC comparison results are shown in Table
2. Fig. 1 presents the cumulative distribution function of IC run-
length distributions of the different charts considered when
t 6 100.

Theoretically, the IC run length distribution of a Shewhart-type
chart is the geometric distribution. The IC run length distribution
of an EWMA-type chart with larger smoothing parameter will be
closer to the geometric distribution. It is obvious from Table 2
and Fig. 1 that the IC run length distribution of the LRT chart is
the most close to the geometric distribution. In addition, the IC
performances of the EWMA-GLM, LRT-EWMA, MEWMA and WLRT
charts depend on the smoothing parameter, i.e., charts with larger
parameters perform better. These findings are consistent with the
literature. We can also find that the EWMA-GLM control chart has
very large short-run false alarms. For example, F30 can be as large
as 0.183 when k ¼ 0:2, and 0.355 when k ¼ 0:05. Consequently, the
EWMA-GLM control chart is not acceptable in terms of run length
distribution because excessive false alarms at early runs will make
the detection results unreliable. Moreover, the probabilities of very
long runs would decrease, which will lead to the EWMA-GLM con-
trol chart having quite small ARL1 compared to the LRT, LRT-
EWMA, MEWMA and WLRT charts. However, this ‘‘advantage” is
mainly due to very large short-run false alarms, which is consistent
with Zhou et al. (2012). Following Zhou et al. (2012), we will also
consider the ‘‘true” detection capability as another criterion for
the OC performance comparison.

Then, we study the OC performance comparison. For the zero
state (shift occurs at s ¼ 0), we compare the ARL1, the ‘‘true”
detection capability and the relative mean index (RMI). The
‘‘true” detection capability of a chart is reflected by the quantity
ct , where

ct ¼ PrOCðRL 6 tÞ � PrICðRL 6 tÞ:
Here, ct is a reasonable index for OC comparison given that the RL
distributions of some charts are far away from geometric, and a
control chart with a larger value of ct is considered better (Zhou
et al., 2012). In order to assess the overall performance of different



Table 3
Comparisons of ARL1 for the Poisson profiles (s ¼ 0).

ðd1; d2Þ LRT EWMA-GLM LRT-EWMA MEWMA WLRT

k ¼ 0:05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

(0.2,0) 201(199) 18.9(19.8) 67.2(71.3) 125(102) 153(151) 95.5(72.3) 365(366) 26.4(17.4) 44.8(39.6)
(0,0.2) 202(209) 18.3(19.3) 64.3(67.8) 124(100) 154(152) 79.2(55.7) 265(255) 26.1(17.3) 45.1(39.5)
(0,0.25) 151(152) 11.8(11.5) 35.0(35.8) 81.9(61.7) 102(99.7) 45.5(25.9) 130(123) 18.4(10.6) 27.5(22.4)
(0.31,0) 106(107) 8.31(7.22) 20.0(19.4) 52.4(35.2) 62.9(58.5) 31.6(15.7) 70.8(61.6) 13.5(6.82) 17.5(13.2)
(0.2,0.2) 64.0(65.7) 5.55(4.28) 10.5(9.21) 31.5(18.2) 33.2(29.3) 20.1(7.71) 28.7(21.2) 9.74(4.19) 10.8(7.05)
(0.5,0) 33.9(33.8) 3.77(2.62) 5.90(4.49) 18.4(8.87) 16.3(12.5) 13.9(4.20) 14.1(8.24) 7.10(2.63) 6.89(3.65)
(0.32,0.32) 16.1(15.4) 2.65(1.62) 3.62(2.44) 11.3(4.87) 8.47(5.55) 10.1(2.50) 8.29(3.63) 5.34(1.73) 4.76(2.15)
(0,0.7) 10.6(10.2) 2.20(1.27) 2.90(1.77) 8.76(3.56) 6.24(3.73) 8.67(1.89) 6.58(2.49) 4.63(1.38) 3.98(1.63)
(0.44,0.44) 5.30(4.72) 1.69(0.86) 2.06(1.11) 5.78(2.22) 3.89(2.08) 6.84(1.30) 4.77(1.45) 3.65(0.99) 3.02(1.07
(0.59,0.59) 2.03(1.45) 1.21(0.44) 1.35(0.57) 3.23(1.13) 2.10(0.97) 4.96(0.76) 3.21(0.74) 2.61(0.64) 2.09(0.62)
(1.0,1.0) 1.01(0.08) 1.00(0.02) 1.00(0.03) 1.22(0.41) 1.02(0.15) 3.00(0.21) 1.99(0.16) 1.49(0.50) 1.07(0.26)

RMI 6.679 0.00 0.993 3.795 3.920 2.932 5.882 0.779 0.930

NOTE: Standard deviations are in parentheses.
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Fig. 2. The ‘‘true” detection capability for the Poisson profiles (k ¼ 0:05). The legend in the last plot is applicable for all the others.
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charts, we compare the RMI values. The RMI index of a control
chart, suggested by Han and Tsung (2006), is defined as

RMI ¼ 1
M

XM
l¼1

ARLDl �MARLDl
MARLDl

;

where M is the total number of shifts considered, ARLDl is the ARL1
of the given control chart when detecting a parameter shift of mag-
nitude Dl, and MARLDl is the smallest among all ARL1 values of the
charts considered when detecting the shift Dl. A control chart with a
smaller RMI value is considered better in its overall performance
(Zhou et al., 2012). As for the steady state, we compare the condi-
tional expected delay (CED) (Kenett & Zacks, 1998; Lee & Jun,
2012) as the detection ability depends on the time point of the
change (Sonesson & Bock, 2003). The CED is defined by

CED ¼ E½RL� sjRL > s�:
A control chart with a smaller CED value is considered better

than another one. The comparisons of ARL1 and RMI values are
reported in Table 3.

From Table 3, we can see that the EWMA-GLM (k ¼ 0:05) chart
outperforms other competitors considering the overall perfor-
mance. Additionally, the LRT control chart performs better at
detecting large shifts, while the LRT-EWMA, MEWMA and WLRT
control charts perform better at detecting small to medium shifts.



Table 4
The ARL of WLRT chart with different k (s ¼ 0).

ðd1; d2Þ k ¼ 0:05 k ¼ 0:2

k ¼ 122 256 391 35 66 96

(0,0) 368.68(366.19) 369.86(368.53) 369.86(368.53) 369.05(370.83) 369.82(371.28) 369.82(371.28)
(0.2,0) 26.354(17.418) 26.354(17.418) 26.354(17.421) 44.795(39.551) 44.795(39.551) 44.788(39.546)
(0,0.2) 26.060(17.260) 26.060(17.260) 26.060(17.260) 45.047(39.441) 45.064(39.475) 45.064(39.475)
(0,0.25) 18.362(10.631) 18.362(10.631) 18.362(10.631) 27.450(22.351) 27.455(22.368) 27.455(22.368)
(0.31,0) 13.481(6.815) 13.481(6.815) 13.481(6.814) 17.489(13.197) 17.489(13.197) 17.489(13.197)
(0.2,0.2) 9.735(4.192) 9.735(4.192) 9.735(4.191) 10.842(7.047) 10.842(7.047) 10.842(7.047)
(0.5,0) 7.098(2.630) 7.098(2.630) 7.098(2.630) 6.887(3.648) 6.887(3.648) 6.889(3.648)
(0.32,0.32) 5.339(1.725) 5.339(1.725) 5.339(1.725) 4.761(2.148) 4.761(2.148) 4.761(2.148)
(0,0.7) 4.632(1.381) 4.632(1.381) 4.632(1.381) 3.982(1.628) 3.982(1.628) 3.981(1.628)
(0.44,0.44) 3.647(0.993) 3.647(0.993) 3.647(0.993) 3.020(1.069) 3.020(1.069) 3.020(1.069)
(0.59,0.59) 2.614(0.642) 2.614(0.642) 2.614(0.642) 2.091(0.620) 2.091(0.620) 2.091(0.620)
(1.0,1.0) 1.489(0.500) 1.489(0.500) 1.489(0.500) 1.071(0.257) 1.071(0.257) 1.071(0.257)

NOTE: h is same as Table 2, standard deviations are in parentheses.

Table 5
Comparisons of CEDs for the Poisson profiles (s ¼ 50).

ðd1; d2Þ LRT EWMA-GLM LRT-EWMA MEWMA WLRT

k ¼ 0:05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

(0.2,0) 201(200) 35.4(23.3) 77.4(72.1) 107(100) 151(151) 98.7(72.9) 364(367) 29.7(19.4) 44.8(40.4)
(0,0.2) 201(208) 35.0(23.3) 74.3(67.5) 107(98.9) 151(151) 80.1(57.8) 261(253) 29.3(19.1) 44.3(40.5)
(0,0.25) 152(152) 24.3(14.0) 42.1(37.2) 68.8(61.4) 98.6(99.3) 47.7(27.6) 127(120) 21.0(11.7) 27.7(22.8)
(0.31,0) 106(108) 17.7(8.92) 25.2(20.2) 43.0(36.4) 60.4(57.8) 33.9(16.4) 69.6(61.8) 15.9(8.14) 17.9(13.7)
(0.2,0.2) 64.2(65.1) 12.7(5.69) 14.3(9.78) 24.2(17.8) 31.5(29.1) 21.9(8.48) 28.4(21.5) 11.5(5.37) 11.2(7.46)
(0.5,0) 34.1(34.5) 9.25(3.87) 8.72(4.82) 13.5(8.79) 15.1(12.5) 15.5(4.98) 14.4(8.59) 8.50(3.65) 7.23(3.94)
(0.32,0.32) 16.5(16.2) 6.93(2.68) 5.71(2.66) 8.07(4.71) 7.86(5.76) 11.2(3.34) 8.58(3.81) 6.47(2.57) 4.99(2.32)
(0,0.7) 10.8(10.5) 5.94(2.23) 4.71(2.02) 6.20(3.53) 5.67(3.85) 9.49(2.69) 6.76(2.69) 5.55(2.16) 4.15(1.85)
(0.44,0.44) 5.28(4.68) 4.71(1.66) 3.53(1.37) 4.07(2.12) 3.42(2.03) 7.66(1.99) 4.97(1.65) 4.42(1.64) 3.13(1.24)
(0.59,0.59) 2.03(1.45) 3.36(1.13) 2.39(0.79) 2.30(1.06) 1.89(0.92) 5.55(1.34) 3.33(0.91) 3.15(1.10) 2.18(0.75)
(1.0,1.0) 1.01(0.08) 1.86(0.57) 1.28(0.45) 1.06(0.24) 1.01(0.12) 3.31(0.75) 1.94(0.45) 1.76(0.57) 1.19(0.39)

RMI 3.332 0.365 0.559 1.176 1.697 1.523 3.067 0.242 0.163

NOTE: Standard deviations are in parentheses.

D. Qi et al. / Computers & Industrial Engineering 94 (2016) 178–187 183
We can also find that the performance of the LRT-EWMA, MEWMA
and WLRT control charts depend on the smoothing parameter, i.e.,
charts with smaller parameter k perform better for detecting small
shifts, while those with larger parameter k perform better for
detecting larger shifts. Fig. 2 presents the ‘‘true” detection capabil-
ity ct of the different charts considered when t 6 100. We can see
that, when t is small, the EWMA-GLM chart outperforms the other
four charts in the sense that its ct curve increases much faster. But
this advantage diminishes quickly as t becomes large due to its
very large false alarms. In general, the WLRT chart performs better
than the MEWMA chart, and the MEWMA chart performs better
than the LRT-EWMA and LRT charts. We can also find that, the
LRT chart performs worst at detecting small and medium shifts.

Recall that we recommend to use the most recent k sets of pro-
file observations when t > k. Table 4 shows that, when the integer
k is sufficiently large, it has little effect on the performance of the
WLRT chart. Table 5 provides the comparison results of CEDs. We
discard any series in which a signal occurs before the ðsþ 1Þth
observation. This action coincides with the proposals presented
by Zhou et al. (2012) and Hawkins and Olwell (1998). We only pre-
sent the CED’s results when s ¼ 50 for illustration purpose, and a
similar conclusion holds for other cases. It is clear that the perfor-
mance of the WLRT chart is satisfactory, especially when the shifts
are small.

3.2. Comparisons when design points are not fixed

In this subsection, we consider the case in which the explana-
tory variables are not fixed from profile to profile. Note we will,
here, not focus on the monitoring of the explanatory variables
themselves. If it is concerned instead, we need change the
weighted-log-likelihood function in Eq. (1) correspondingly. To
generate the values of the explanatory variables, we first generate
an integer j from a discrete uniform distribution over the integers
from 1 to 10. Then, we delete the corresponding jth design point Xij

from the ten design points Xi1;Xi2; . . . ;Xi10. In this way, we get nine
different design points. By similar ways, we get other number of
different design points. Here, we use the same control limits as
those in Table 2. We only present the OC comparison results when
s ¼ 0 and s ¼ 50 in Tables 6 and 7 respectively for illustration pur-
pose. We find that the performance of the WLRT chart with para-
meter k ¼ 0:05 is still satisfactory, especially when the shifts are
small.

Finally, we consider the effects of the number and values of
design points on our WLRT control chart. The ARL performances
of WLRT chart depending on different number of design points
are given in Table 8. The first 50 design points used in Table 8
based on 1 simulation run are shown in Fig. 3. From Table 8, the
performance is better when the number of design points is
larger.

4. Illustrative example

In this section, we adopt and extend the multinomial logistic
regression model discussed by Goeman and le Cessie (2006) as
an illustrative example. In the production processes, no product
is created quite the same as the others due to the machine equip-
ment, material, environment, operator, and some other reasons



Table 6
Comparisons of ARL1 when the design points are not fixed (s ¼ 0).

ðd1; d2Þ LRT EWMA-GLM LRT-EWMA MEWMA WLRT

k ¼ 0:05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

(0,0) 368(371) 364(520) 367(415) 363(333) 368(370) 335(301) 319(308) 377(368) 369(371)
(0.2,0) 213(216) 21.0(22.4) 78.2(84.4) 134(110) 164(159) 116(91.5) 460(458) 29.5(19.7) 51.0(45.2)
(0,0.2) 208(212) 20.3(22.1) 74.7(79.3) 133(110) 162(157) 95.1(72.5) 312(305) 29.2(19.3) 49.8(44.5)
(0,0.25) 157(158) 13.2(13.1) 40.9(42.6) 90.0(69.1) 111(106) 53.0(32.3) 161(157) 20.6(11.9) 31.2(25.8)
(0.31,0) 114(113) 9.11(8.16) 23.0(22.3) 58.4(40.6) 70.8(66.3) 35.8(18.7) 91.0(83.1) 15.0(7.67) 19.9(15.3)
(0.2,0.2) 71.0(70.9) 6.11(4.78) 12.0(10.8) 34.7(20.3) 38.2(33.7) 22.2(8.81) 34.8(27.0) 10.8(4.69) 12.1(8.06)
(0.5,0) 38.6(38.4) 4.13(2.95) 6.67(5.19) 20.5(10.4) 18.8(14.7) 15.1(4.82) 16.4(10.3) 7.87(2.98) 7.77(4.20)
(0.32,0.32) 18.7(18.2) 2.86(1.80) 4.06(2.82) 12.4(5.56) 9.75(6.65) 10.9(2.85) 9.24(4.39) 5.88(1.93) 5.32(2.45)
(0,0.7) 12.2(12.0) 2.39(1.41) 3.21(2.05) 9.62(3.99) 7.06(4.44) 9.32(2.13) 7.27(2.90) 5.13(1.58) 4.43(1.88)
(0.44,0.44) 6.09(5.42) 1.82(0.95) 2.26(1.25) 6.40(2.51) 4.34(2.42) 7.30(1.43) 5.21(1.67) 4.02(1.12) 3.32(1.20)
(0.59,0.59) 2.31(1.73) 1.27(0.51) 1.45(0.64) 3.52(1.27) 2.31(1.10) 5.26(0.83) 3.45(0.84) 2.87(0.71) 2.28(0.69)
(1.0,1.0) 1.01(0.12) 1.00(0.04) 1.00(0.05) 1.31(0.47) 1.04(0.20) 3.09(0.30) 2.02(0.16) 1.66(0.48) 1.16(0.37)

RMI 6.598 0.00 1.068 3.797 3.944 3.036 6.545 0.823 0.980

NOTE: h is same as Table 2, standard deviations are in parentheses.

Table 7
Comparisons of CEDs when the design points are not fixed (s ¼ 50).

ðd1; d2Þ LRT EWMA-GLM LRT-EWMA MEWMA WLRT

k ¼ 0:05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

(0.2,0) 212(213) 38.5(25.8) 88.9(85.1) 115(108) 162(158) 120(93.1) 459(461) 32.3(21.2) 50.8(45.8)
(0,0.2) 209(208) 38.4(25.6) 84.7(79.6) 115(109) 158(155) 94.6(71.2) 305(301) 31.9(20.9) 49.8(45.7)
(0,0.25) 159(161) 26.5(15.8) 48.8(43.6) 75.1(67.6) 108(106) 55.2(34.1) 161(158) 23.0(13.4) 31.2(26.0)
(0.31,0) 113(113) 19.2(9.96) 28.9(23.2) 48.1(40.6) 67.8(65.5) 39.1(19.8) 89.1(82.6) 17.0(8.97) 19.8(15.5)
(0.2,0.2) 70.2(70.0) 13.7(6.29) 16.2(11.6) 26.8(19.9) 36.2(33.2) 24.4(10.0) 35.0(27.7) 12.3(5.90) 12.3(8.38)
(0.5,0) 38.3(39.3) 9.90(4.14) 9.58(5.68) 15.2(10.3) 17.5(15.0) 17.0(5.79) 17.1(10.6) 9.00(3.90) 7.79(4.53)
(0.32,0.32) 18.9(18.6) 7.39(2.89) 6.26(3.08) 8.89(5.27) 8.93(6.67) 12.2(3.72) 9.55(4.61) 6.90(2.78) 5.34(2.60)
(0,0.7) 12.3(12.4) 6.35(2.39) 5.14(2.33) 6.83(3.91) 6.40(4.51) 10.2(2.95) 7.49(3.17) 5.88(2.32) 4.47(2.02)
(0.44,0.44) 6.03(5.42) 4.99(1.79) 3.80(1.51) 4.47(2.34) 3.89(2.42) 8.23(2.15) 5.34(1.87) 4.70(1.73) 3.32(1.34)
(0.59,0.59) 2.30(1.74) 3.56(1.17) 2.53(0.88) 2.49(1.18) 2.06(1.03) 5.93(1.43) 3.59(1.00) 3.31(1.16) 2.29(0.84)
(1.0,1.0) 1.02(0.12) 1.93(0.61) 1.36(0.49) 1.11(0.31) 1.03(0.17) 3.49(0.79) 2.04(0.47) 1.85(0.59) 1.27(0.44)

RMI 3.320 0.363 0.619 1.202 1.739 1.627 3.534 0.236 0.183

NOTE: h is same as Table 2, standard deviations are in parentheses.

Table 8
The ARL of WLRT chart with different number of design points.

ðd1; d2Þ The number of design points

10 9 8 7 6

(0,0) 370(369) 377(368) 373(358) 367(351) 383(348)
(0.2,0) 26.4(17.4) 29.5(19.7) 33.1(22.5) 38.6(25.9) 45.6(30.4)
(0,0.2) 26.1(17.3) 29.2(19.3) 33.2(22.5) 38.7(26.4) 46.0(30.8)
(0,0.25) 18.4(10.6) 20.6(11.9) 23.4(14.1) 27.3(16.1) 32.4(19.7)
(0.31,0) 13.5(6.82) 15.0(7.67) 17.0(8.90) 19.6(10.0) 23.3(12.4)
(0.2,0.2) 9.74(4.19) 10.8(4.69) 12.2(5.44) 14.0(6.26) 16.5(7.59)
(0.5,0) 7.10(2.03) 7.87(2.98) 8.84(3.39) 10.0(3.83) 11.8(4.67)
(0.32,0.32) 5.34(1.73) 5.88(1.93) 6.60(2.24) 7.52(2.54) 8.76(3.06)
(0,0.7) 4.63(1.38) 5.13(1.58) 5.70(1.82) 6.49(2.11) 7.57(2.53)
(0.44,0.44) 3.65(0.99) 4.02(1.12) 4.47(1.27) 5.05(1.46) 5.86(1.70)
(0.59,0.59) 2.61(0.64) 2.87(0.71) 3.17(0.80) 3.55(0.90) 4.11(1.04)
(1.0,1.0) 1.49(0.50) 1.66(0.48) 1.82(0.43) 1.98(0.43) 2.20(0.51)

NOTE: k ¼ 0:05; s ¼ 0; h is same as Table 2, standard deviations are in parentheses.
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(Chen, Chang, & Chen, 2011). Instead of simply classifying qualities
into conforming and non-conforming, products can be classified
into several classes of quality. Details of the multinomial logistic
regression are referred to Dobson (2002) and Hosmer, Lemeshow,
and Sturdivant (2013), and please refer Böhning (1992) and
Hasan, Zhiyu, and Mahani (2014) as for its algorithm.

Multinomial logistic regression is often used when the response
variable is categorical, with more than two categories. Two
variants exist: one for nominal and one for ordinal scale outcomes.
Here, we consider only the nominal scale version. For ease of
exposition, we will suppress the index ‘‘i” and ‘‘j” which were used
in Section 2. Consider a response variable Y with four categories.
Let p1; . . . ;p4 denote the respective probabilities, with
p1 þ � � � þ p4 ¼ 1. We consider a case with three covariates as
follows

log p2
p1

� �
¼ 2x1 þ dx21;

log p3
p1

� �
¼ 2x2;

log p4
p1

� �
¼ 2x3;

8>>>><>>>>:
where x1; x2 and x3 each takes values �1; 0 and 1. At each time
point t, we obtained a data set of 25 observations which were taken
randomly from each of the 33 ¼ 27 possible combinations of the
three covariate values.

Here, we extend the Newton–Raphson method in Hasan et al.
(2014) to estimate the model parameters, and adjust the control
limits of different charts to make their ARL0 as close as 370 based
on 5000 replicates. The first 20 profiles are generated from the IC
(d ¼ 1) normal operational condition and the remaining profiles
are from the OC (d ¼ 1:6) condition. The smoothing parameter k
is chosen as 0.1 for the LRT-EWMA and WLRT control charts. The
LRT, LRT-EWMA and WLRT control charts are constructed in Fig.
4. From Fig. 4, we can see that the performance of the WLRT chart
is satisfactory.
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Fig. 3. The first 50 design points used in Table 8 based on 1 simulation run.
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Fig. 4. The LRT, LRT-EWMA and WLRT control charts for the multinomial profiles.
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5. Conclusion remarks

In this paper, we proposed a unified framework for Phase II
monitoring of generalized linear profiles. In practical applications,
it is not uncommon to encounter quality characteristics that are
either count data or categorical in nature. Such quality characteris-
tics are often modeled as special cases of generalized linear mod-
els. Thus, statistical process control monitoring is important and
challenging for generalized linear profiles. The proposed control
chart is essentially based on calculating the weighted log-
likelihood ratio test statistics, which can be readily extended to
other general profiles or profiles with random predictors if the like-
lihood function can be obtained. Numerical results show that the
proposed control chart has satisfactory in-control run length distri-
bution and stands out at early detection.

Our proposed scheme assumes that the observations are inde-
pendent within and between profiles. The cases when observations
are dependent, warrant further investigation.
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Appendix A

In this Appendix, we briefly introduce how to estimate b̂t , which
is the maximum weighted likelihood estimator of b. Let
J ¼ Pt

i¼0wiJi and U ¼ Pt
i¼0wiUi. According to Dobson (2002), we

can see, if eX0 ¼ � � � ¼ eXt , then J0 ¼ � � � ¼ Jt , and then J ¼ J1. The
proposed Newton–Raphson approximation for obtaining b̂t pro-
ceeds as follows:

(1) Start with the initial values of b, denoted as bð0Þ.
(2) Calculate JðmÞ and UðmÞ, by using bðmÞ in the mth iteration.
(3) Update the estimation of b as follows:
bðmþ1Þ ¼ bðmÞ þ ½JðmÞ��1
UðmÞ:
(4) Repeat steps (2) and (3) until adequate convergence is
achieved as follows:
kbðmÞ � bðm�1Þk1=kbðm�1Þk1 6 �;

where � is a given small positive value (e.g., � ¼ 10�4) and
kbk1 denotes L1 norm, that is, the sum of the absolute values

of all elements of b. As such, b̂t ¼ bðmÞ is the desired estimator
of b.
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