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Abstract: We consider high-dimensional location test problems in which the num-

ber of variables p may exceed the sample size n. The classical T 2 test does not

work well because the contamination bias in estimating the covariance matrix grows

rapidly with p. Unlike most existing remedies abandoning all the correlation in-

formation, the method developed here is to make use of them in a practical and

efficient way. Our method, called composite T 2 test, consists of two steps. The

first step is to sequentially select K variables which have the largest correlation

among all combinations of K elements from the remaining variables. The second

step is to construct p/K T 2 test statistics and combining them together. Under

mild conditions, the proposed test statistic is asymptotically normal, and allows

the dimensionality to almost exponentially increase in n. This test inherits cer-

tain appealing features of the classical T 2 test and does not suffer from large bias

contamination. Due to incorporating much correlation information, the proposed

test can delivery more robust performance than existing methods in many cases.

Simulation studies demonstrate the validity of asymptotic analysis.

Key words and phrases: Asymptotic normality, High-dimensional data, Large-p-

small-n, Composite T 2 test.

1. Introduction

Assume that X1, · · · ,Xn are independent and identically distributed ran-

dom p-vectors from distribution F (x − µ) located at p-variate center µ. The

classic one sample testing problem is

H0 : µ = 0 versus H1 : µ ̸= 0. (1.1)

Such a hypothesis test plays an important role in a number of statistical problems.

A classic method is the Hotelling T 2 test statistic T 2 = nX̄
T
Σ̂

−1
X̄ where X̄

is the sample mean vector and Σ̂ is the sample covariance matrix. However,

Hotelling T 2 test cannot be applied to the so-called large-p-small-n paradigm

(p > n− 1) due to the singularity of Σ̂. A natural idea is replacing the singular
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sample covariance matrix Σ̂ with its nonsingular diagonal matrix (Srivastava,

2009; Park and Ayyala, 2013) or identity matrix (Bai and Saranadasa, 1996; Chen

and Qin, 2010). However, these tests lose all the information of the correlations

between those variables. Another nature idea is replacing the sample covariance

matrix by those sparse matrix estimators (Bickel and Levina, 2008; Cai and Liu,

2011). However, it is difficult to maintain the signicant level for those modified

test statistics (Feng, Zou and Wang, 2015a) because of the contamination bias,

which grows rapidly with p. Chen et al. (2011) propose a regularized Hotelling’s

T 2 test, nX̄
T
(Σ̂ + λIp)

−1X̄, λ > 0, by stabilizing the inverse of the sample

covariance matrix. However, the size and power of their test are deeply impacted

by the choice of λ and the sparsity of Σ.

To overcome these problems, we propose another novel test, called composite

T 2 test by the following two steps. The first step is to sequentially select K vari-

ables which have the largest correlation among all combinations of K elements

from the remaining variables. We group the variables in many blocks and let

the correlation between those blocks be rather small. And then we construct

p/K Hotelling T 2 test statistics and combining them together. The asymptotic

normality of the proposed test can be derived under some very mild condition-

s. We allows the dimensionality to almost exponentially increase with n. The

information of the correlation between those variables is sufficiently used in our

test procedure. We also derive the formula of the asymptotic relative efficiency

of our test with Park and Ayyala (2013)’s test. Theoretical analysis reveals that

our test performs better in most cases. Simulation studies also demonstrate this

result.

The remainder of the paper is organized as follows. In the next section, the

test statistic is constructed and its asymptotic normality is established. And

the we extend our method to the two sample problem in Section 3. Simulation

comparison is conducted in Section 4. All technical details are provided in the

Appendix.

2. One Sample Problem

2.1. A new test statistic

The classic Hotelling T 2 can not work because the sample covariance matrix
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Σ̂ is not invertible. However, any submatrix of Σ̂ with dimension smaller than

the sample sizes is still invertible. So we can divide the p variables into several

small parts and then sum the Hotelling T 2 test statistics of each part. That is

Wn =
N∑
i=1

T 2
Ai

=
N∑
i=1

nX̄
T
Ai
S−1
Ai

X̄Ai ,

where A1 ∪ · · ·AN = {1, · · · , p}, Ai ∩Aj = ∅ and X̄Ai , SAi are the sample mean

vector and covariance matrix of Xst, t ∈ Ai, s = 1, · · · , n. There are many choices

for the subsets Ai. In practice, we may choose those subsets from some available

prior information. For example, in multi-sensor detection problem, the sensors

located in the same spatial point should be naturally grouped together. When

no preference is given, we suggest to fixe the subsets with the same sizes, i.e.

|Ai| = K = [p/N ], i = 1, · · · , N − 1 and |AN | = p− (N − 1)K. Additionally, we

suggest to choose those strong correlated variables in a same subset and let the

correlations between those subsets are as weak as possible. Next, we will propose

the algorithm to divide the variables.

First, we define some notations. For any symmetric matrixB = (bij) ∈ Rq×q,

define the l1-norm of B is ||B||l1 =
∑

1≤i,j≤q |bij |. For a subset A ⊂ {1, · · · , q},
define BA = (aij) ∈ Rq×q be the corresponding “submatrix” of B based on

subset A, i.e. aij = bij if i, j ∈ A and aij = 0 if i or j ̸∈ A . And for a set

of subsets C = {C1, · · · , Cs}, BC = (cij) ∈ Rq×q denotes the “submatrix” of B

where cij = bij if i, j ∈ Ck, k = 1, · · · , s and otherwise cij = 0.

We consider the following algorithm to divide the variables based on the

matrix R0 ∈ Rp×p.

Algorithm 1

• Step 1. Find the initial subset A1 = argmax
A⊂{1,··· ,p},|A|=K

||R0
A||l1 .

• Step 2. Suppose A1, · · · , Ai has been selected and define the rest set A−i =

{1, · · · , p}\
∪i

k=1Ak. Find Ai+1 = argmax
A⊂A−i,|A|=K

||R0
A||l1 .

• Step 3. Repeat Step 2 by N − 1 times and denote the last subset AN =

A−(N−1).

Remark 1. If we search all the submatrices with size K exhaustively, the

computation burden of Step 1 would be O(pK), which is too complicated for
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high dimensional data. In practice, we suggest to use the following algorithm.

First, we find {a1, a2} = argmax
1≤i<j≤p

|cor(Xli, Xlj)|. Then, we find the k-th vari-

able which has the biggest correlation with {a1, · · · , ak−1} in the remain subsets

{1, · · · , p}\{a1, · · · , ak−1}, i.e. ak = argmax
i∈{1,··· ,p}\{a1,··· ,ak−1}

∑k−1
j=1 |cor(Xli, Xlaj )|.

Denote the result subset by A
′
1. Though A

′
1 is a little different from A1, the

computation burden is only O(p2). We also use the same algorithm in Step 2.

We found that this algorithm also have good performance in practice.

Define An1, · · · , AnN be the result selected sets by the above algorithm based

on the sample correlation matrix R̂. Then the test statistic Wn can be rewrote

as

Wn = nX̄
T
Σ̂

−1
OK

n
X̄,

where OK
n = {An1, · · · , AnN}. However, there are still some drawbacks of Wn.

Even when p is small, there is no explicit form of the expectation of Wn under

the null hypothesis. When p gets larger, there will be a non-negligible bias term

because Σ̂OK
n

is not independent of X̄ and the sample mean and variance is only

root-n consistent (Feng et al., 2015b).

Similar to Feng and Sun (2015), we consider the following test statistic based

on the leave out method (abbreviated as CT hereafter)

Tn =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

XT
i Σ̂

(i,j)

OK
ij

−1

Xj , (2.1)

where Σ̂
(i,j)

, R̂(i,j) are the corresponding sample covariance and correlation ma-

trixs of {Xk}k ̸=i,j , respectively. And OK
ij is the corresponding selected sets based

on R̂(i,j) by Algorithm 1. Now Xi, Σ̂
(i,j)

OK
ij

and Xj are independent from each

other and then the expectation of Tn is exactly zero under the null hypothe-

sis. So the bias-correction procedure is not needed for Tn. And the asymptotic

normality of Tn is easily established in the next subsection.

2.2. Theoretical results

Like Bai and Saranadasa (1996) and Chen and Qin (2010) did, Xi’s come

from the following multivariate model:

Xi = Γzi + µ for i = 1, · · · , n, (2.2)
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where each Γ is a p×m matrix for some m ≥ p such that ΓΓT = Σ, and {zi}ni=1

are m-variate independent and identically distributed random vectors such that

E(zi) = 0, var(zi) = Im, E(z4il) = 3 +∆, E(z8il) = m8 ∈ (0,∞),

E(zα1
ik1

zα2
ik2

· · · zαq

ikq) = E(zα1
ik1

)E(zα2
ik2

) · · ·E(z
αq

ikq),
(2.3)

whenever
∑q

k=1 αk ≤ 8 and k1 ̸= k2 · · · ̸= kq. The data structure (2.3) generates

a rich collection of Xi from zi with a given covariance. We need the following

conditions: as n, p → ∞,

(C1) ϖmin = min1≤k≤N ϖk > ω, ϖk = min
A⊂{1,··· ,p}\{Ao

1∪···∪Ao
k−1}

|A|=K,A̸=Ao
k

λAo
k
−λA

σA+σAo
k

where ω is

a positive constant and λA = ||RA||l1 . σ2
A is the asymptotic variance of

√
n||R̂A||l1 .

(C2) tr(Λ4
K) = o(tr2(Λ2

K)), whereΛK = Σ1/2Σ−1
OKΣ

1/2 andOK = {Ao
1, · · · , Ao

N}
is the selected sets based on the true correlation matrix R.

(C3) µTΣ−1
OKΣΣ−1

OKµ = o(n−1tr(Λ2
K)) and (µTΣ−1

OKµ)
2 = o((log p)−1/2n−3/2tr(Λ2

K)).

(C4) log p = o(n).

Condition (C1) is a technical condition to make the partition in Algorithm

1 identifiable. To appreciate Condition (C2), consider the simplest case K = 1.

(C2) then becomes tr(R4) = o{tr2(R2)}, which is similar to Condition (3.7)

in Chen and Qin (2010). Let λ1 ≤ · · · ≤ λp be the eigenvalues of ΛK and

νk =
∑p

i=1 λ
k
i . (C2) becomes ν4 = o(ν22). If all eigenvalues of ΛK are bound-

ed, ν4 = O(p) and ν2 = O(p). So (C2) is trivially true. And (C3) becomes

||µ||2 = O(n−1p1/2), which can be viewed as a high-dimensional version of the

local alternative hypotheses.

Proposition 1 Under the Conditions (C1)-(C4), we have

P

 ∩
1≤i<j≤n

{
OK

ij = OK
} = 1−O(n3/2pK+1e−nω2/2).

Proposition 1 shows that the probability of
∪

1≤i<j≤n{OK
ij ̸= OK} is expo-

nentially small as n, p → ∞.
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Theorem 1 Under conditions (C1)-(C4), we have

Tn − µTΣ−1
OKµ√

2n−2tr(Λ2
K)

L−→ N(0, 1).

To construct test procedure, we propose the following ratio-consistent estimator

of tr(Λ2
K),

̂tr(Λ2
K) =

1

2P 4
n

∗∑
(Xi1 −Xi2)

T ̂
Σ

(i1,i2,i3,i4)

OK
i1,i2,i3,i4

−1

(Xi3 −Xi4)

× (Xi1 −Xi4)
T ̂
Σ

(i1,i2,i3,i4)

OK
i1,i2,i3,i4

−1

(Xi3 −Xi2), (2.4)

whereOK
i1,i2,i3,i4

is the selected sets based on ̂R(i1,i2,i3,i4) and ̂Σ(i1,i2,i3,i4), ̂R(i1,i2,i3,i4)

are the corresponding sample covariance and correlation matrix of {Xk}k ̸=i1,i2,i3,i4 ,

respectively. Through this article, we use
∑∗ denote summations over distinct in-

dexes. For example, in ̂tr(Λ2
K), the summation is over the set {i1 ̸= i2 ̸= i3 ̸= i4},

for all i1, i2, i3, i4 ∈ {1, · · · , n} and Pm
n = n!/(n−m)!.

Proposition 2 Under the conditions (C1), (C2) and (C4), as n, p → ∞,

̂tr(Λ2
K)

tr(Λ2
K)

p→ 1.

This result suggests rejectingH0 with α level of significance if Tn/

√
2n−2 ̂tr(Λ2

K) >

zα, where zα is the upper α quantile of N(0, 1).

Next, we discuss the power properties of the proposed test. According to

Theorem 1, the power under the local alternative (C3) is

βCT (µ) = Φ

−zα +
µTΣ−1

OKµ√
2n−2tr(Λ2

K)

 ,

where Φ(·) is the standard normal distribution function. So the performance of

our proposed test relies certainly upon the choice of K. Obviously, the optimal

choice of K is the maximizer of βCT . But it is infeasible because µ is unknown.

For simplicity, we only illustrate the procedure with K = 2 in the subsequent

theoretical results.
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Remark 2. In practice, if we know some knowledge of the correlation be-

tween those variables, we need to combine them together. In this case, we do

not need to divide the variables by Algorithm 1. For example, if we know some

genes express a trait together, we should combine them in a subset. Otherwise,

we suggest to use Algorithm 1 in Section 2.1. The choice of K in practice de-

serves some further studies. Generally speaking, when the correlations between

those variables are strong, we need to use a large K. However, when correla-

tions between those variables are weak, large K may cause so many meaningless

estimators of correlations in Σ̂
(i,j)

OK
ij
. So a small K is preferable. See some more

information in the simulation studies.

In contrast, Park and Ayyala (2013) showed that the power of their tests

(abbreviated as PA hereafter) are

βPA(µ) = Φ

(
−zα +

µTD−1µ√
2n−2tr(R2)

)
.

where D is the diagonal matrix of Σ. It is difficult to propose a theoretical

comparison between our proposed test with Park and Ayyala (2013)’s tests under

general settings. For simplicity, we consider Σ = R = (aij),a2k−1,2k = a2k,2k−1 =

ρ, k = 1, · · · , p2 and the others are all zeros. In this case, ΣOK = Σ, ΛK = Ip.

And then, the power of our test is

βCT (µ) = Φ

−zα +

1
1−ρ2

∑ p
2
k=1

(
µ2
2k−1 + µ2

2k − 2ρµ2k−1µ2k

)√
2n−2p

 .

And the power of PA test is

βPA(µ) = Φ

(
−zα +

∑p
k=1 µ

2
k√

2n−2p(1 + ρ2)

)
.

We consider the following representative cases for µ = (µ1, · · · , µp):

(1) µk = δ, k = 1, · · · , p. Then the asymptotic relative efficiency is

ARE(CT,PA) =

√
1 + ρ2

1 + ρ
.

When ρ < 0,

√
1+ρ2

1+ρ > 1 and then our proposed test is more powerful than

PA test. When ρ > 0,

√
1+ρ2

1+ρ < 1 and then PA test performs better. This
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ARE has a positive lower bound of
√
2
2 when ρ > 0, whereas it can be

arbitrarily large if ρ is close to −1.

(2) µ2k−1 = δ, µ2k = −δ. In this case, the asymptotic relative efficiency is

ARE(CT,PA) =

√
1 + ρ2

1− ρ
.

Thus, similar to case (1), when ρ > 0, our proposed test is more powerful

than PA test and vice versa. This ARE has a positive lower bound of
√
2
2

when ρ < 0, whereas it can be arbitrarily large if ρ is close to 1.

(3) µ2k−1 = δ, µ2k = 0, k = 1, · · · , p2 . Then the asymptotic relative efficiency is

ARE(CT,PA) =

√
1 + ρ2

1− ρ2
.

When ρ = 0 or R = Ip, these two tests are equivalently powerful from the

asymptotic viewpoint. Otherwise, the proposed test would be preferable.

(4) µk is independent from N(0, δ), δ > 0. Then, by the law of large numbers,

p−1

p
2∑

k=1

(
µ2
2k−1 + µ2

2k − 2ρµ2k−1µ2k

) a.s→ δ, p−1
p∑

k=1

µ2
k
a.s→ δ.

Thus, Then the asymptotic relative efficiency is the same as the case (iii),

i.e.

ARE(CT,PA) =

√
1 + ρ2

1− ρ2
.

3. Two Sample Problem

In this section, we extend our proposed test to the two sample case (Chen

and Qin 2010; Cai et al. 2014; Feng et al. 2015b; Gregory et al. 2015). Let

Xij , j = 1, · · · , ni, i = 1, 2, be independent p-dimensional multivariate random

vectors from the diverging factor model (2.3) with mean µi and unknown common

covariance matrix Σ.

We extend the test statistic Tn in (2.1) to the two sample case

Qn =
1

n1n2(n1 − 1)(n2 − 1)

∑
1≤i1 ̸=i2≤n1

∑
1≤j1 ̸=j2≤n2

(X1i1 −X2j1)
T ̂
Σ

(i1,i2,j1,j2)

OK
i1,i2,j1,j2

−1

(X1i2 −X2j2),

(3.1)



COMPOSITE T 2 TEST 9

where ̂Σ(i1,i2,j1,j2), ̂R(i1,i2,j1,j2) is the corresponding pooled sample covariance ma-

trix and correlation matrix of the sample {X1k}k ̸=i1,i2 and {X2l}l ̸=j1,j2 , respec-

tively. And OK
i1,i2,j1,j2

is the selected sets based on ̂R(i1,i2,j1,j2) by Algorithm

1.

Next, we also can show the asymptotic normality of Qn. Define n = n1 +

n2 and n1
n → κ ∈ (0, 1). In this case, we consider the following alternative

hypothesis:

(C5) (µ1−µ2)
TΣ−1

OKΣΣ−1
OK (µ1−µ2) = o(n−1tr(Λ2

K)) and ((µ1−µ2)
TΣ−1

OK (µ1−
µ2))

2 = o((log p)−1/2n−3/2tr(Λ2
K)).

Theorem 2 Under the conditions (C1), (C2), (C4) and (C5), as n, p → ∞, we

have

Qn − (µ1 − µ2)
TΣ−1

OK (µ1 − µ2)√
2(n−1

1 + n−1
2 )2tr(Λ2

K)

L−→ N(0, 1).

For simplicity, we only use the first sample to estimate tr(Λ2
K) by (2.4). And

then we reject H0 with α level of significance if Qn/

√
2(n−1

1 + n−1
2 )2 ̂tr(Λ2

K) > zα.

4. Simulation

4.1. One Sample problem

4.1.1 Large-p-small-n case

Here we report a simulation study designed to evaluate the performance of

our proposed test (abbreviated as CT2 with K = 2 and CT5 with K = 5). We

compare our test with the methods proposed by chen et al.(2011) (abbreviat-

ed as RHT) and Park and Ayyala (2013). We consider the following different

covariance matrices:

(I) Σ = (σij), σii ∼ U(0, 1), i = 1, · · · , p and σij = 0 for i ̸= j;

(II) Σ = (σij), σ2k−1,2k = σ2k,2k−1 = 0.8, k = 1, · · · , p/2 and σii = 1, i =

1, · · · , p;

(III) Σ = (σij), σ2k−1,2k = σ2k,2k−1 = −0.8, k = 1, · · · , p/2 and σii = 1, i =

1, · · · , p;

(IV) Σ = (σij), σij = 0.8|i−j|;
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(V) Σ = (σij), σij = (−0.8)|i−j|;

(VI) Σ = (σij), σij = 0.2 for i ̸= j and σii = 1, i = 1, · · · , p.

(VII) Σ = (σij), σij = 0.9 for i ̸= j and σii = 1, i = 1, · · · , p.

And we consider three distributions for X: (a) Multivariate Normal distribution

N(µ,Σ); (b) Multivariate t-distribution MT (µ,Σ, 5); (c)Multivariate chisquare

distribution X = µ + Σ−1/2Z, where Z = (Zij)1≤i,j≤p, Zij is distributed from

centered χ2
4. For the alternative hypothesis, we consider two patterns for µ =

κ(µ1, · · · , µp). Random cases:

(i) all the components are distributed from N(0, 1), i.e. µi ∼ N(0, 1), i =

1, · · · , p;

(ii) randomly half of components are distributed from N(0, 1) and the others

are zeros;

(iii) randomly [0.05p] components are distributed from N(0, 1) and the others

are zeros.

Fixed cases:

(iv) all the components are equal to one, i.e. µi = 1, i = 1, · · · , p;

(v) µ2k−1 = 1, µ2k = −1, k = 1, · · · , p/2;

(vi) µ2k−1 = 1, µ2k = 0, k = 1, · · · , p/2;

(vii) µi = 1, i = 1, · · · , [0.05p] and the others are zeros.

To make the power comparable among the configurations of H1, the coefficient κ

is selected so that the signal-to-noise µTΣ−1µ = 1.5 throughout the simulation.

And (n, p) = (30, 100) or (40, 200).

Tables 4.1-4.3 report the simulation results of the three tests under different

distributions and scenarios of µ in the one-sample case. We observe that both

PA test and our test have reasonable sizes in most of cases. However, the RHT

test can not control the empirical size very well, especially when the correlations

between the variables are large. Chen et al. (2011) use the shrinkage estimator

(Σ̂+λIp)
−1 to estimate the inverse of covariance matrixΣ−1 in their test statistic.
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Thus, if the difference between Σ and λIp is very small, RHT performs very well,

such as Case (I). However, if Σ is not very sparse, the power of the RHT test

is smaller than the other tests in Cases (IV)-(VI). When R = Ip, our test CT2

performs similar to PA test. Next, we consider the four sparse models (II, III, IV,

V) in the following analysis. In the random cases, our test is more efficient than

the PA test. And our test CT2 performs better than PA test in the fixed cases (vi)

and (vii), which is consistent with the theoretical result (3) in subsection 2.2. For

the fixed case (iv), the PA test performs a little better than our test CT2 when

the correlation between the variables is positive. However, when the correlation

between those variables is negative, the power of our test is significantly larger

than the PA test. It is consistent with the theoretical result (1) in subsection 2.2.

Similarly, the performance of our test CT2 and PA test is consistent with the

theoretical result (2) under the fixed case (v). Finally, we consider the model (VI)

i.e. strong correlation between all the variables. Our test CT2 outperforms the

PA test in all cases under model (VI). These results demonstrate the advantage

of our method. Next, we compare our two tests, CT2 and CT5. They performs

similarly when R = Ip. For the model (II) and (III), CT2 outperforms CT5 in

most cases because CT5 need to estimate many meaningless correlations between

those variables in the subset Ai. However, for the model (IV)-(VII), CT5 is more

powerful than CT2 in most cases because CT2 lose some information between the

correlation of variables. It shows that the choice of K depends on the structure of

Σ and the alternative hypothesis. The choice of K deserves some further studies.

All these results together suggest that the CT test is quite robust and efficient

in testing the shift of locations, especially when there are strong correlations

between all variables. If the correlation between all variables is not large, our

test will outperform PA test when the direction of location shift contrary to the

correlation between the variables and vice versa. If the direction of location shift

is random (random cases (i), (ii), (iii)), our test is also more efficient than the

PA test.

4.1.2 Large-n-small-p case

In this subsection, we consider large-n-small-p case to compare our test CT2

with the classic Hotelling’s T 2 test (abbreviated HT hereafter) and PA test. All

the settings are the same as Section 4.1.1 except n = 50, p = 4. Here we only
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Table 4.1: Empirical sizes and power (%) comparisons under the multivariate normal

distribution in the one sample case

PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5

Random Cases

Model size (i) (ii) (iii)

n = 30, p = 100

(I) 5.1 5.2 5.1 5.3 70 65 72 75 73 69 72 69 69 63 72 67

(II) 4.7 4.3 4.9 6.2 20 15 79 48 20 16 77 51 20 16 76 41

(III) 4.3 4.5 4.4 3.9 20 18 79 51 21 18 79 57 21 17 78 57

(IV) 7.1 1.2 6.1 6.2 10 2.5 31 42 10 2.3 30 55 10 2.6 29 45

(V) 4.7 1.4 4.7 5.4 10 4.1 30 51 10 3.7 29 52 9.5 3.1 31 48

(VI) 7.1 1.3 6.3 3.8 21 23 43 61 23 17 44 57 22 23 45 56

(VI) 5.6 0.4 4.6 4.6 6.4 22 7.3 29 6.1 20 6.5 33 5.3 31 5.6 31

n = 40, p = 200

(I) 6.1 4.5 5.3 5.2 71 61 71 77 72 65 72 69 71 61 72 73

(II) 6.3 2.1 4.2 3.9 20 13 79 55 19 13 79 53 18 13 78 55

(III) 6.2 4.2 4.1 4.1 20 14 80 54 20 14 77 47 18 12 79 45

(IV) 7.4 1.3 6.1 4.8 10 1.3 30 51 9.3 2.2 29 37 10 1.2 29 50

(V) 4.3 2.4 5.4 4.7 9.6 2.1 29 45 9.2 3.1 30 46 11 2.3 30 48

(VI) 7.1 1.1 6.6 6.2 15 14 31 55 16 11 33 37 15 1.7 33 52

(VI) 4.6 0.1 4.3 4.9 8.3 12 9.5 20 4.6 0.4 5.0 19 6.1 15 6.9 24

Fixed Cases

(iv) (v) (vi) (vii)

n = 30, p = 100

(I) 70 5.3 69 70 75 67 73 66 68 28 72 70 72 62 73 72

(II) 94 2.1 79 81 13 10 78 53 21 8.3 79 47 63 44 76 68

(III) 10 5.5 78 49 94 85 78 79 20 10 78 56 10 11 77 43

(IV) 100 0.4 100 99 7.2 1.3 24 35 10 1.3 31 45 59 24 65 57

(V) 7.3 1.3 24 47 100 93 100 99 9.1 2.2 27 45 8.3 3.7 28 41

(VI) 100 1.2 100 100 22 23 45 58 48 13 63 75 24 26 45 64

(VII) 41.6 0.5 41.3 100 5.0 20 6.0 26 5.3 12 6.7 29 6.0 25 7.9 30

n = 40, p = 200

(I) 69 4.7 72 62 73 64 73 71 73 23 75 75 67 65 69 74

(II) 94 1.5 76 77 11 7.4 81 42 19 6.6 78 53 95 84 77 87

(III) 12 4.4 80 56 97 88 79 85 20 10 79 49 11 10 80 39

(IV) 100 1.2 100 98 6.5 1.1 24 43 8.2 1.2 27 50 88 45 85 83

(V) 7.1 2.3 23 45 100 99 100 99 12 2.4 30 53 9.6 2.2 25 43

(VI) 100 1.1 100 100 15 11 32 51 36 5.1 52 65 18 13 34 49

(VII) 54 0.0 53.3 100 6.3 0.7 7.7 19 3.3 0.8 4.8 21 5.2 11 6.5 19
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Table 4.2: Empirical sizes and power (%) comparisons under the multivariate t distri-

bution in the one sample case

PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5

Random Cases

Model size (i) (ii) (iii)

n = 30, p = 100

(I) 5.1 2.2 5.7 4.3 70 53 72 77 69 47 72 69 70 48 72 70

(II) 5.2 0.2 4.4 5.1 20 4.3 74 42 22 5.1 76 47 19 1.8 73 52

(III) 5.4 1.8 4.7 5.3 20 8.1 75 53 23 13 77 49 19 9.1 74 45

(IV) 7.1 0.1 5.3 5.4 11 0.1 30 41 10 0.6 29 39 09 0.7 32 35

(V) 6.3 0.0 5.2 4.7 11 1.5 33 43 09 2.1 32 40 10 0.8 32 45

(VI) 7.2 0.0 5.9 5.9 24 15 47 64 26 12 49 61 26 13 53 57

(VII) 6.3 0.0 6.7 3.9 6.3 3.1 6.3 28 6.0 5.6 5.0 36 3.7 5.3 4.7 29

n = 40, p = 200

(I) 6.1 0.2 4.7 3.9 70 37 73 73 69 34 71 70 67 46 72 73

(II) 6.6 1.3 5.1 4.1 20 3.3 76 49 17 3.2 75 48 19 2.3 75 49

(III) 5.2 0.0 4.7 5.6 19 2.7 73 53 18 3.5 77 54 18 2.8 73 42

(IV) 5.8 0.1 5.8 6.3 09 1.1 33 51 10 1.7 31 35 09 1.1 26 41

(V) 5.7 0.1 5.5 5.9 09 1.5 26 48 10 1.1 29 47 08 1.3 29 40

(VI) 6.5 0.1 6.2 4.1 17 5.3 37 58 17 7.1 41 49 18 5.6 40 65

(VII) 9.7 0.1 9.3 4.1 10 1.5 11 19 5.3 1.8 5.3 18 5.7 1.1 6.0 20

Fixed Cases

(iv) (v) (vi) (vii)

n = 30, p = 100

(I) 69 1.1 72 70 72 57 74 73 71 16 73 69 62 56 69 68

(II) 90 2.3 74 77 11 2.3 75 37 21 2.1 74 53 58 38 72 68

(III) 12 1.7 77 43 89 86 77 81 17 1.4 74 48 12 4.3 73 48

(IV) 99 0.6 98 98 8.4 0.3 27 38 11 0.3 32 39 59 31 64 61

(V) 8.3 1.0 25 35 99 96 99 97 12 1.1 31 48 7.4 2.2 25 38

(VI) 100 0.2 100 99 25 16 50 61 52 7.2 66 73 27 20 51 65

(VII) 42 0.2 41 100 4.7 5.3 4.7 45 8.3 4.8 7.3 38 7.7 4.1 7.7 37

n = 40, p = 200

(I) 69 0.0 71 79 70 35 72 79 69 9.6 73 70 71 29 69 75

(II) 91 0.1 75 78 10 3.6 74 41 19 2.7 75 54 92 70 75 85

(III) 11 0.3 74 43 91 83 75 82 19 1.1 76 47 12 0.0 76 50

(IV) 100 0.4 99 99 6.8 1.1 25 40 09 0.6 29 37 83 48 83 83

(V) 8.5 0.1 26 41 99 100 100 99 10 0.7 29 35 07 0.0 27 39

(VI) 100 0.0 100 100 16 6.2 39 56 36 3.2 51 60 16 5.6 37 58

(VII) 55 0.0 54 100 6.1 1.3 6.9 19 5.3 0.8 5.7 22 4.8 0.5 4.4 21
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Table 4.3: Empirical sizes and power (%) comparisons under the multivariate chisquare

distribution in the one sample case

PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5

Random Cases

Model size (i) (ii) (iii)

n = 30, p = 100

(I) 5.8 3.9 6.8 5.9 67 67 67 59 71 69 69 58 67 66 66 60

(II) 5.1 4.1 6.1 6.3 20 18 72 51 19 12 75 47 18 20 70 44

(III) 4.3 3.3 6.9 4.7 20 17 72 47 18 20 72 43 19 21 71 49

(IV) 5.2 1.1 6.5 6.2 9.3 2.2 30 46 8.6 1.1 28 44 10 3.4 31 51

(V) 5.0 1.0 6.0 6.4 11 3.0 28 43 10 2.6 32 42 10 3.5 29 39

(VII) 6.9 0.2 5.3 5.1 26 23 47 59 23 24 48 54 25 30 45 54

(VI) 5.0 1.3 5.8 4.3 5.0 26 6.2 33 3.1 28 4.3 31 8.3 24 8.7 32

n = 40, p = 200

(I) 5.9 4.7 6.1 6.6 69 58 67 68 72 63 71 73 67 63 66 68

(II) 5.7 5.2 6.9 5.2 19 14 77 47 16 16 75 56 19 16 72 49

(III) 6.0 7.1 6.0 6.8 20 19 73 53 18 19 74 53 19 27 72 46

(IV) 6.1 0.6 6.5 4.3 9.6 2.6 28 52 7.1 2.9 29 47 10 1.9 31 45

(V) 6.0 2.3 6.3 5.2 7.0 1.2 28 41 8.2 2.3 28 45 10 5.1 29 49

(VI) 6.3 1.7 5.8 6.1 14 11 35 46 16 12 34 56 13 11 34 47

(VII) 6.7 0.1 6.3 5.1 5.3 14 5.3 20 7.7 14 9.0 14 4.0 11 4.3 17

Fixed Cases

(iv) (v) (vi) (vii)

n = 30, p = 100

(I) 70 4.3 54 57 69 62 69 61 67 30 63 58 64 70 70 67

(II) 93 2.7 81 77 10 7.3 71 45 22 6.3 77 45 57 48 75 57

(III) 12 3.5 79 37 92 73 71 74 18 4.1 81 47 11 11 76 46

(IV) 100 0.2 100 99 08 1.9 24 39 10 0.6 32 44 60 24 67 59

(V) 9.7 1.9 24 47 100 94 100 96 10 1.7 28 40 7.6 2.1 27 49

(VI) 100 0.6 100 100 25 19 47 60 47 12 63 75 28 28 50 67

(VII) 42 0.1 44 100 5.0 21 6.5 27 3.5 13 4.7 39 5.0 20 6.2 35

n = 40, p = 200

(I) 69 5.1 53 49 71 65 70 72 69 30 62 64 67 63 71 62

(II) 94 3.4 81 74 11 8.4 73 49 20 7.2 77 51 90 85 76 81

(III) 12 8.5 79 43 95 79 75 84 21 6.9 82 47 12 12 75 49

(IV) 100 0.6 100 100 06 0.0 23 38 11 0.4 28 47 82 50 87 84

(V) 5.3 2.1 21 39 100 100 100 100 11 2.1 27 47 7.3 2.7 24 41

(VI) 100 0.8 100 100 16 14 34 51 34 14 51 68 15 14 36 45

(VII) 57 0.3 56 100 5.7 9.5 5.3 22 7.7 11 8.4 20 6.1 7.6 7.2 17
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consider the multivariate normal distributions. Table 4.4 reports the simulation

results of the three tests. For model (I)-(III), our test CT2 performs similar to HT

test because of ΣOK = Σ. For the other models, HT test is more powerful than

CT2 test because CT2 test lose the information of some correlation of variables.

CT2 test also outperforms better than PA test for the model (II)-(V) in most

cases, which is consistent with the large-p-small-n case.

Table 4.4: Empirical sizes and power (%) comparisons under the multivariate normal

distribution in the one sample case

PA HT CT2 PA HT CT2 PA HT CT2 PA HT CT2

Random Cases

Model size (i) (ii) (iii)

(I) 6.0 6.0 4.0 33 39 38 38 42 40 36 42 41

(II) 7.0 6.7 6.3 17 43 46 20 42 42 12 43 44

(III) 8.7 6.3 5.7 19 47 49 16 42 42 14 46 46

(IV) 3.0 6.7 3.7 9.6 37 27 12 42 29 8.9 41 28

(V) 8.3 5.0 5.1 9.1 39 27 11 38 26 10 42 28

(VI) 4.7 4.0 4.0 37 40 38 39 42 41 32 40 40

(VII) 6.2 5.2 6.3 6.0 42 25 8.0 41 26 8.3 39 25

Fixed Cases

(iv) (v) (vi) (vii)

(I) 41 43 42 42 42 42 47 46 46 23 44 43

(II) 51 43 43 9.2 35 40 17 41 44 16 41 42

(III) 9.0 37 37 52 41 40 15 41 42 13 46 47

(IV) 58 38 48 6.7 40 25 9.6 41 25 11 43 31

(V) 8.2 41 29 61 40 53 11 41 27 11 37 26

(VI) 58 43 50 33 40 38 38 38 38 45 47 47

(VII) 63 42 59 9.1 45 29 13 42 30 8.4 35 23

4.2. Two Sample problem

In this subsection, we compare out test CT2 with PA test, RHT test, Cai et

al. (2014)’s test (abbreviated as CLX test) and Gregory et al. (2015)’s test (ab-

breviated as GCT test) in two sample case. Here, we only consider the multivari-
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Table 4.5: Empirical sizes and power (%) comparisons under the multivariate normal

distribution in the two sample case

ni size (ii) (vi)

PA RHT CT2 GCT CLX PA RHT CT2 GCT CLX PA RHT CT2 GCT CLX

15 5.3 0.0 4.7 9.6 36 15 3.3 59 24 56 15 2.6 46 24 57

20 6.2 2.1 5.1 8.0 23 17 5.5 73 31 51 18 2.4 72 28 48

30 5.7 1.2 5.6 11 10 27 3.7 97 41 53 26 2.1 96 42 45

ate normal distributions for the two samples, i.e. X1i ∼ N(0,Σ), i = 1, · · · , n1

and X2j ∼ N(µ,Σ), j = 1, · · · , n2. For simplicity, here we only consider the

model (IV) and two cases (ii) and (vi) for µ = κ(µ1, · · · , µp). Now the coefficient

κ is selected so that the signal-to-noise ||µ||2/
√

tr(Σ2) = 0.1. Here we consider

three sample sizes n1 = n2 = 15, 20, 30 and dimension p = 224.

Table 4.5 reports the simulation results of the five tests. The sizes of PA test

and our test are close to the nominal level. Our test is more powerful than PA

test in both (ii) and (vi), which is consistent with the simulation results in the

one sample problem. However, the sizes of RHT test are still smaller than the

nominal level. And then their tests are still not effective under the alternative

hypothesis. The sizes of GCT test are a little larger than the nominal level. And

our test CT2 also outperforms GCT test. The CLX test can not control their

empirical sizes very well in these cases, especially when the sample size is small.

It is difficult to estimate the precision matrix very well when the sample size is

not large. Consequently, their power are meaningless. All these results show that

our CT test is also an efficient method for the two-sample problem.
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5. Appendix

5.1. Proof of Proposition 1

Proof. Define λA = ||RA||l1 and λ̂ij
A is the corresponding estimator based on

the sample {Xk}k ̸=i,j . By the Central Limited Theorem,
√
n
(
λ̂ij
A − λA

)
L−→

N(0, σ2
A) where σ

2
A is the corresponding asymptotic variance. Define ϵ =

(λAo
1
−λA)σAo

1
σA+σAo

1

.

We have

P
(
λ̂Ao

1
< λ̂ij

A

)
=P

(
λ̂Ao

1
− λAo

1
< λ̂ij

A − λAo
1
, λ̂Ao

1
− λAo

1
> −ϵ

)
+ P

(
λ̂Ao

1
− λAo

1
< λ̂ij

A − λAo
1
, λ̂Ao

1
− λAo

1
< −ϵ

)
≤P

(
λ̂ij
A − λAo

1
> −ϵ

)
+ P

(
λ̂Ao

1
− λAo

1
< −ϵ

)
=Φ

(√
n(λAo

1
− λA − ϵ)

σA

)
+Φ

(
−
√
nϵ

σAo
1

)
=2Φ

(√
n(λAo

1
− λA)

σA + σAo
1

)
≤ 2√

2πnϖ1
e−

nϖ2
1

2 .

Denote OK
ij = (Aij

1 , · · · , A
ij
N ). Thus,

P (Aij
1 ̸= Ao

1) = P

 ∪
A∈{1,··· ,p},|A|=K,A̸=Ao

1

{
λ̂Ao

1
< λ̂ij

A

}
≤ CK

p P
(
λ̂Ao

1
< λ̂ij

A

)
≤

2CK
p√

2πnϖ2
1

e−nϖ2
1/2.

Similarly, we can show that P (Aij
k ̸= Ao

k) ≤
CK

p√
2πnϖ2

k

e−nϖ2
k/2. And then

P

 ∩
1≤i<j≤n

{
OK

ij = OK
} = 1− P

 ∪
1≤i<j≤n

{
OK

ij ̸= OK
}

=1− P

 ∪
1≤i<j≤n

∪
1≤k≤N

{
Aij

k ̸= Ao
k

}
≤1−

n2NCK
p√

2πnϖ2
min

e−nϖ2
min/2 = 1−O(n3/2pK+1e−nω2/2),
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by the condition (C1). �
5.2. Proof of Theorem 1

Proof. According to Proposition 1, we only need to consider the asymptotic

property of T̃n,

T̃n =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

XT
i Σ̂

(i,j)

OK

−1

Xj

=
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

XT
i Σ

−1
OKXj +

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

XT
i

(
Σ̂

(i,j)

OK

−1

−Σ−1
OK

)
Xj

.
=T̃n1 + T̃n2.

Next, we will show that

T̃n1 − µTΣ−1
OKµ√

2n−2tr(Λ2
K)

L−→ N(0, 1). (5.1)

and T̃n2 = op

(√
2n−2tr(Λ2

K)
)
.

T̃n1 =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

(Xi − µ)TΣ−1
OK (Xj − µ) +

2

n

n∑
i=1

µTΣ−1
OK (Xi − µ) + µTΣ−1

OKµ

.
= T̃n11 + T̃n12 + µTΣ−1

OKµ.

It is easy to show that E(T̃n12) = 0 and var(T̃n12) = 4n−1µTΣ−1
OKΣΣ−1

OKµ =

o(2n−2tr(Λ2
K)). So T̃n12 = op(

√
2n−2tr(Λ2

K)). Next, we only need to show the

asymptotic normality of T̃n11. Without lose of generality, we assume µ = 0 here

and after.

Define Vnj = n−1(n − 1)−1
∑j−1

i=1 X
T
i Σ

−1
OKXj , j = 2, · · · , n and Wnk =∑k

i=2 Vni, k = 2, · · · , n. Let Fi = σ{X1, · · · ,Xi} be the σ-field generat-

ed by {Xj}j≤i. It is easy to show that E(Vni|Fi−1) = 0 and it follows that

{Wnk,Fk; 2 ≤ k ≤ n} is a zero mean martingale. Let vni = E(V 2
ni|Fi−1),

2 ≤ i ≤ n and Vn =
∑n

i=2 vni. The central limit theorem (Hall and Heyde

1980) will hold if we can show

Vn

var(Wnn)

p→ 1, (5.2)
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and for any ϵ > 0,

n∑
i=2

n2tr−1(Λ2
K)E

[
V 2
niI(|Vni| > ϵ

√
n−2tr(Λ2

K))|Fi−1

]
p→ 0. (5.3)

It can be shown that

vni =
1

n2(n− 1)2

 i−1∑
j=1

XT
j Σ

−1
OKΣΣ−1

OKXj + 2
∑

1≤j<k<i

XT
j Σ

−1
OKΣΣ−1

OKXk

 .

Then,

Vn

var(Wnn)
=

2

n(n− 1)tr(Λ2
K)

n−1∑
j=1

jXT
j Σ

−1
OKΣΣ−1

OKXj + 2
∑

1≤j<k≤n

XT
j Σ

−1
OKΣΣ−1

OKXk


.
=Cn1 + Cn2.

Simple algebras lead to

E(Cn1) = 1,

var(Cn1) =
4

n2(n− 1)2tr2(Λ2
K)

E

n−1∑
j=1

j2(XT
j Σ

−1
OKΣΣ−1

OKXj)
2 − tr2(Λ2

K)

 .

Define ΓTΣ−1
OKΣΣ−1

OKΓ = (ωkl)1≤k≤l≤m.Under the diverging factor model,

E((XT
j Σ

−1
OKΣΣ−1

OKXj)
2) = E((zTj Γ

TΣ−1
OKΣΣ−1

OKΓzj)
2) = E

( m∑
k=1

m∑
l=1

ωklzjkzjl

)2


=

m∑
k=1

m∑
l=1

m∑
s=1

m∑
t=1

ωklωstE(zjkzjlzjszjt) = (3 + ∆)

m∑
k=1

ω2
kk +

m∑
k ̸=l

ω2
kl

= (2 +∆)

m∑
k=1

ω2
kk + tr(Λ4

K) ≤ (3 + ∆)tr(Λ4
K). (5.4)

Under the condition (C2), E((XT
j Σ

−1
OKΣΣ−1

OKXj)
2) = o(tr2(Λ2

K)). Hence, var(Cn1) →
0 and then Cn1

p→ 1. Similarly, E(Cn2) = 0 and

var(Cn2) =
16

n(n− 1)

tr(Λ4
K)

tr2(Λ2
K)

→ 0.
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implies Cn2
p→ 0. Thus, (5.2) holds. It remains to show (5.3). Since

E

[
Z2
niI

(
|Zni| > ϵ

√
n−2tr(Λ2

K)

)
|Fi−1

]
≤ E(Z4

ni|Fi−1)/(ϵ
2n−2tr(Λ2

K))

we only need to show that

n∑
i=2

E(Z4
ni) = o(n−4tr2(Λ2

K)).

Note that

n∑
i=2

E(Z4
ni) = O(n−4)

n∑
i=2

E

 i−1∑
j=1

ηiηjX
T
i Xj

4 .

which can be decomposed as 3Q+ P where

Q = O(n−8)

n∑
i=2

i−1∑
s ̸=t

E
(
XT

i Σ
−1
OKXsX

T
s Σ

−1
OKXiX

T
i Σ

−1
OKXtX

T
t Σ

−1
OKXi

)
,

P = O(n−8)
n∑

i=2

i−1∑
s=1

E
(
(XT

i Σ
−1
OKXs)

4
)
.

Note that Q = O(n−4)E((XT
i Σ

−1
OKXi)

2) = o(tr2(Λ2
K)) by similar arguments in

(5.4). Next, we consider the part P . Define ΓTΓ = (νkl)1≤k,l≤m.

P = O(n−8)

n∑
i=2

i−1∑
s=1

E
(
(zTi Γ

TΓzs)
4
)
= O(n−8)

∑
i̸=j

E

 m∑
k,l=1

νklzikzjl

4
= O(n−6)

(
m∑
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ν4klE(z4ik)E(z4jl) +
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k ̸=l

m∑
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v2klv
2
stE(z2ik)E(z2is)E(z2jl)E(z2jt)

+ 2
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m∑
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v2ksv
2
ktE(z4ik)E(z2jsz

2
jt) +

m∑
k ̸=l
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s ̸=t

vklvktvstvslE(z2ik)E(z2jl)E(z2is)E(z2jt)

)
.

Note that tr2(Λ2
K) = (

∑
s,t ν

2
st)

2 =
∑

k,l,s,t ν
2
stν

2
kl and

m∑
k,l=1

ν4kl ≤

∑
k,l

ν2kl

2

,

m∑
k=1

m∑
s̸=t

v2ksv
2
kt ≤

∑
k,l

ν2kl

2

,

m∑
k ̸=l

m∑
s ̸=t

v2klv
2
st ≤

∑
k,l,s,t

ν2stν
2
kl,

m∑
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m∑
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∑
k ̸=l
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∑
k,l

ω2
kl = tr(Λ4
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Thus, under the condition (C2), P = o(n−4tr2(Λ2
K)) and then (5.3) follows

immediately. This complete the proof of (5.1).

Next, we will show that T̃n2 = op(
√
n−2tr(Λ2

K)). Obviously, E(T̃n2) = 0.

Here, we only need to show that E(T̃ 2
n2) = o(n−2tr(Λ2

K)). Define ΣOK Σ̂
(i,j)
O

−1

=

(d̂st)1≤s≤t≤p and Ip = (dst)1≤s≤t≤p. By the Central Limit Theorem,
√
n(d̂st −

dst)
L−→ N(0, ζ2st), where ζ2st is the corresponding asymptotic variance. Define

σ2
max = max1≤s≤t≤p ζ

2
st. As n, p → ∞,

P

(
max

1≤s≤t≤p
(d̂st − dst) > 2σmaxn

−1/2(log p)1/2
)

≤
p∑

s=1

p∑
t=1

P
(√

n(d̂st − dst) > 2σmax(log p)
1/2
)

=

p∑
s=1

p∑
t=1

(
1− Φ(2σmaxζ

−1
st (log p)1/2)

)
≤ p2(1− Φ((4 log p)1/2))

≤ p2√
8π log p

e−2 log p → 0.

Thus, max1≤s≤t≤p(d̂st − dst) = Op(n
−1/2(log p)1/2). And then,

E(T̃ 2
n2) ≤ C(log p)1/2n−1/2E(T̃ 2

n1)

≤ C(log p)1/2n−1/2
(
(µTΣ−1

OKµ)
2 + n−2tr(Λ2

K)
)
= o(n−2tr(Λ2

K)).

by the Condition (C3). �
5.3. Proof of Proposition 2

Proof. Similar to Proposition 1, we can show that

P

 ∩
i1,i2,i3,i4

{
OK

i1,i2,i3,i4 = OK
} = 1−O(n7/2pK+1e−nω2/2).

And similar to the argument of T̃n2 in the proof of Theorem 1, we can show that

̂tr(Λ2
K) =

1

2P 4
n

∗∑
(Xi1 −Xi2)

TΣ−1
OK (Xi3 −Xi4)(Xi1 −Xi4)

TΣ−1
OK (Xi3 −Xi2) + op(tr(Λ

2
K))

=
1

P 2
n

∗∑(
XT

i1Σ
−1
OKXi2

)2 − 2

P 3
n

∗∑
XT

i1Σ
−1
OKXi2X

T
i2Σ

−1
OKXi3

+
1

P 4
n

∗∑
XT

i1Σ
−1
OKXi2X

T
i3Σ

−1
OKXi4 + op(tr(Λ

2
K)).
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Then, according to Theorem 2 in Chen, Zhang and Zhong (2010), we can easily

obtain the result. �
5.4. Proof of Theorem 2

Proof. Similar to Proposition 1, we can show that

P

 ∩
i1,i2,j1,j2

{
OK

i1,i2,j1,j2 = OK
} = 1−O(n7/2pK+1e−nω2/2).

And then we have

Qn =
1

n1n2(n1 − 1)(n2 − 1)

∑
1≤i1 ̸=i2≤n1

∑
1≤j1 ̸=j2≤n2

(X1i1 −X2j1)
T Σ−1

OK (X1i2 −X2j2) + op(
√

n−2tr(Λ2
K))

=
1

n1(n1 − 1)

∑
1≤i1 ̸=i2≤n1

XT
1i1Σ

−1
OKX1i2 +

1

n2(n2 − 1)

∑
1≤j1 ̸=j2≤n2

XT
2j1Σ

−1
OKX2j2

− 2

n1n2

n1∑
i1=1

n2∑
j=1

XT
1i1Σ

−1
OKX2j1 + op(

√
n−2tr(Λ2

K)).

Taking the same procedure as Chen and Qin (2010), we can easily obtain the

result. �
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