Supplemental file

In this supplemental file, some technical details, including the Theorem 1 and its proof, and the approximation to the null steady-state distribution of the CUSUM statistic, are provided.

Appendix

Theorem 1 The test $D_{\text {GOF }}$ has the same detection boundary as the statistic $H C_{n}^{*}$ for $\beta \in$ $(0,1)$.

Proof. We denote by $G(\cdot)$ the cumulative distribution function (CDF) of X_{i} under H_{1}. The proof of this theorem is divided into three parts which are stated by the following three lemmas respectively.

Lemma 1 Under $H_{0}, Z_{C} / c_{n} \xrightarrow{p} 0$ provided $c_{n} /\left(\log n \log _{2} n\right) \rightarrow \infty$.

Proof. The idea of the proof comes essentially from the proof of Theorem 3.1 in Jager and Wellner (2007). By the probability integral transformation, we can, without loss of generality, suppose F_{0} is the uniform on $[0,1]$. In this situation, Z_{C} becomes

$$
\begin{equation*}
Z_{C}=2 n \int_{0}^{1}[u(1-u)]^{-1} K\left(F_{n}(u), u\right) d u \tag{A.1}
\end{equation*}
$$

where

$$
K(x, y)=\left\{x \ln \left(\frac{x}{y}\right)+[1-x] \ln \left(\frac{1-x}{1-y}\right)\right\} .
$$

Set $a_{n}=n^{-1} \log n$ and write

$$
Z_{C}=2 n\left(\int_{0}^{a_{n}}+\int_{a_{n}}^{1-a_{n}}+\int_{1-a_{n}}^{1}\right)[u(1-u)]^{-1} K\left(F_{n}(u), u\right) d u \equiv \Delta_{1}+\Delta_{2}+\Delta_{3}
$$

Firstly, we show that $\Delta_{1} / c_{n} \xrightarrow{p} 0$. To show this, fix $\epsilon>0$ and choose $\lambda=\lambda_{\epsilon}$ so large that

$$
P\left(\left\|F_{n}(u) / u\right\|_{0}^{1}>\lambda\right)<\epsilon,
$$

where $\left\|F_{n}(u) / u\right\|_{a}^{b} \equiv \sup _{a \leq u \leq b}\left(F_{n}(u) / u\right)$ and the above result comes from Lemma 2 in Wellner (1978). On the event $\left\|F_{n}(u) / u\right\|_{0}^{1} \leq \lambda$ we have

$$
\begin{aligned}
\Delta_{1} / c_{n} & =\frac{2 n}{c_{n}} \int_{0}^{a_{n}}(1-u)^{-1} \frac{F_{n}(u)}{u} \log \frac{F_{n}(u)}{u} d u+o(1) \text { a.s. } \\
& \leq \frac{2 n}{c_{n}} \int_{0}^{a_{n}} \frac{F_{n}(u)}{u} \log \frac{F_{n}(u)}{u} d u(1+o(1)) \\
& \leq \lambda \log \lambda \cdot \frac{2 n}{c_{n}} a_{n} \rightarrow 0
\end{aligned}
$$

since $c_{n} / \log n \rightarrow \infty$.
By symmetry, $\Delta_{3} / c_{n} \xrightarrow{p} 0$ immediately. Thus, it remains to show $\Delta_{2} / c_{n} \xrightarrow{p} 0$. Note that $\left\|K\left(F_{n}(u), u\right)\right\|_{0}^{1}$ is the well-known Berk-Jones goodness-of-fit test statistic. By Theorem 1.1 in Wellner and Koltchinskii (2003), it can be easily seen that

$$
\begin{equation*}
\frac{n\left\|K\left(F_{n}(u), u\right)\right\|_{0}^{1}}{\log _{2} n} \xrightarrow{p} 1 . \tag{A.2}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
\Delta_{2} / c_{n} & \leq \frac{2 n\left\|K\left(F_{n}(u), u\right)\right\|_{0}^{1}}{c_{n}} \int_{a_{n}}^{1-a_{n}} \frac{1}{u(1-u)} d u \\
& =4 n c_{n}^{-1}\left\|K\left(F_{n}(u), u\right)\right\|_{0}^{1}\left(\log n-\log _{2} n\right)(1+o(1)) \xrightarrow{p} 0, \tag{A.3}
\end{align*}
$$

which completes the proof of this lemma.
This lemma tells us that Z_{C} grows to infinity very slowly under the null hypothesis. Furthermore, by Lemma 5 in the Appendix A. 3 of the supplemental file, we know $D_{\mathrm{GOF}}=$ $Z_{C}+O\left(\log n \log _{2} n\right)$. Thus, a convenient critical point for rejecting the null hypothesis is when $D_{\mathrm{GOF}}>\log ^{2} n$ and the test is accordingly $T_{\text {new }}=I\left(D_{\mathrm{GOF}}>\log ^{2} n\right)$.

Lemma 2 Suppose that ε_{n} and μ_{n} satisfy the sparse regime and $r>\rho^{*}(\beta)$ in (??). Then the test $T_{\text {new }}$ satisfies

$$
P_{H_{0}}\left(T_{\text {new }}=1\right)+P_{H_{1}}\left(T_{\text {new }}=0\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Proof. By Lemma 1, $P_{H_{0}}\left(T_{\text {new }}=1\right) \rightarrow 0$ is obvious. As in Donoho and Jin (2004), we examine the cases $r>(1-\sqrt{1-\beta})^{2}$ and $r<\beta / 3$ separately; those two cases overlap and together cover the full region $1 / 2<\beta<1, r>\rho^{*}(\beta)$.

For the first case, since $(r+\beta) /(2 \sqrt{r})<1$, we can pick a constant $q<1$ such that $\max \{(r+\beta) /(2 \sqrt{r}), \sqrt{r}\}<\sqrt{q}<1$. As argued by Donoho and Jin (2004), under H_{1}, $\#\left\{i: p_{i} \leq n^{-q}\right\} \sim \operatorname{Binomial}\left(n, L_{n} n^{-\left[\beta+(\sqrt{q}-\sqrt{r})^{2}\right]}\right)$, where $L_{n} n^{-\left[\beta+(\sqrt{q}-\sqrt{r})^{2}\right]} \gg n^{-q}$; here L_{n} is a logarithmic term that does not significantly contribute to the argument. Accordingly, $[(i-1) / n] / p_{(i)} \gg 1$ for those p-values $p_{(i)} \leq n^{-q}$.

Note that

$$
\begin{aligned}
D_{\mathrm{GOF}} & \geq \sum_{i=1}^{n}\left\{\log \left[\frac{F_{0}\left(X_{(i)}\right)^{-1}-1}{n / i-1}\right]\right\}^{2} I\left(F_{0}\left(X_{(i)}\right) \geq i / n\right) \\
& =\sum_{i=1}^{n}\left\{\log \left[\frac{p_{(i)}}{\frac{i-1}{n}}\right]-\log \left[\frac{1-p_{(i)}}{1-\frac{n-i+1}{n}}\right]\right\}^{2} I\left(p_{(i)}<(i-1) / n\right) \\
& \geq \sum_{i=1}^{\#\left\{i: p_{i} \leq n^{-q}\right\}}\left\{\log \left[\frac{p_{(i)}}{\frac{i-1}{n}}\right]+O_{p}\left(n^{-\left[\beta+(\sqrt{q}-\sqrt{r})^{2}\right]}\right)\right\}^{2} \sim L_{n} \operatorname{Binomial}\left(n, L_{n} n^{-\left[\beta+(\sqrt{q}-\sqrt{r})^{2}\right]}\right) .
\end{aligned}
$$

By Chebyshev's inequality, $P_{H_{1}}\left(D_{\mathrm{GOF}}<\log ^{2} n\right) \rightarrow 0$ as $1-\beta-(\sqrt{q}-\sqrt{r})^{2}>0$. We conclude that D_{GOF} is able to separate H_{0} and H_{1} in this range.

Now, suppose that $r<\beta / 3$ and then $r<1 / 4$. Similar to (A.1), we can rewrite Z_{C}^{+}as

$$
\begin{equation*}
Z_{C}^{+}=2 \int_{0}^{1}[u(1-u)]^{-1} n K^{+}\left(F_{n}(u), u\right) d u \tag{A.4}
\end{equation*}
$$

where $F_{n}(u)=n^{-1} \sum_{i=1}^{n} I\left(Y_{i} \leq u\right), Y_{i} \equiv 1-\Phi\left(X_{i}\right)$ i.i.d. $F=1-G\left(\Phi^{-1}(1-\cdot)\right.$) (with the Y_{i} 's taking values in $\left.[0,1]\right)$, and $K^{+}\left(F_{n}(u), u\right)=K\left(F_{n}(u), u\right) I\left(F_{n}(u) \geq u\right)$. From Lemma 7.3 in Jager and Wellner (2007), the convergence

$$
\sup _{n^{-4 r} \leq u \leq n^{-4 r_{0}}}\left|\frac{F_{n}(u)}{u}-1\right| \xrightarrow{p} 0
$$

holds, provided that $0<\rho^{*}(\beta)<r<\beta / 3$ and $0<r_{0}<r<1 / 4$. Thus, by part (ii) of Lemma 7.2 in Jager and Wellner (2007), it follows that for $n^{-4 r} \leq u \leq n^{-4 r_{0}}$, we have

$$
2 n K^{+}\left(F_{n}(u), u\right)=n\left(\frac{\left(F_{n}(u)-u\right)^{+}}{\sqrt{u(1-u)}}\right)^{2}\left(1+o_{p}(1)\right),
$$

Hence, by letting $r_{0}=r-[4 \log n]^{-1}$

$$
\begin{aligned}
Z_{C}^{+} & \geq \int_{n^{-4 r}}^{n^{-4 r_{0}}}[u(1-u)]^{-1} n\left(\frac{\left(F_{n}(u)-u\right)^{+}}{\sqrt{u(1-u)}}\right)^{2}\left(1+o_{p}(1)\right) d u \\
& \equiv n\left(\frac{\left(F_{n}\left(u^{*}\right)-u^{*}\right)^{+}}{\sqrt{u^{*}\left(1-u^{*}\right)}}\right)^{2}\left(1+o_{p}(1)\right)
\end{aligned}
$$

for some u^{*} satisfying $u^{*} \in\left(n^{-4 r}, n^{-4 r_{0}}\right)$. The remaining proof is essentially the same as the proof of Theorem 1.2 in Donoho and Jin (2004; pp. 976) and the only difference is that we use some $r^{*} \in\left(r_{0}, r\right)$ rather than r. However, by noting that $r^{*}=r+o(1)$ and the result follows immediately with the fact that $Z_{C} \geq Z_{C}^{+}$and Lemma 8 .

Lemma 3 Suppose that ε_{n} and μ_{n} satisfy the dense regime and $r<\rho^{*}(\beta)$ in (??). Then the test $T_{\text {new }}$ satisfies

$$
P_{H_{0}}\left(T_{\text {new }}=1\right)+P_{H_{1}}\left(T_{\text {new }}=0\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Proof. The proof of this lemma is essentially similar to that of Theorem 7 in Cai et al. (2011) but some details may differ much. Recall the expression of $D_{\text {GOF }}$ in (A.4).

Let $u_{n}=\bar{\Phi}(1)+[\log n]^{-1}$. It can be seen that

$$
\begin{aligned}
E\left[F_{n}(\bar{\Phi}(1))-\bar{\Phi}(1)\right] & =\varepsilon_{n}\left[\bar{\Phi}\left(1-\mu_{n}\right)-\bar{\Phi}(1)\right] \sim C n^{-\beta} \mu_{n} \\
\operatorname{var}\left[F_{n}(\bar{\Phi}(1))-\bar{\Phi}(1)\right] & =O\left(n^{-1}\right),
\end{aligned}
$$

and hence $F_{n}(\bar{\Phi}(1)) / \bar{\Phi}(1) \xrightarrow{p} 1$. By the second-order Taylor expansion (similar to the proof of Lemma A. 4 in Donoho and Jin 2004), we have for $\bar{\Phi}(1) \leq u \leq u_{n}$,

$$
2 n K^{+}\left(F_{n}(u), u\right)=n(1-\bar{\Phi}(1))\left(\frac{F_{n}(u)-u}{\sqrt{u(1-u)}}\right)^{2}\left(1+o_{p}(1)\right)
$$

and correspondingly

$$
\begin{aligned}
Z_{C}^{+} & \geq \int_{\bar{\Phi}(1)}^{u_{n}}[u(1-u)]^{-1} n(1-\bar{\Phi}(1))\left(\frac{F_{n}(u)-u}{\sqrt{u(1-u)}}\right)^{2}\left(1+o_{p}(1)\right) d u \\
& \sim L_{n} n\left(\frac{F_{n}\left(u^{*}\right)-u^{*}}{\sqrt{u^{*}\left(1-u^{*}\right)}}\right)^{2}\left(1+o_{p}(1)\right) \equiv L_{n} W_{n}^{2}\left(u^{*}\right)\left(1+o_{p}(1)\right)
\end{aligned}
$$

for some u^{*} satisfying $u^{*} \in\left(\bar{\Phi}(1), u_{n}\right)$. Now it suffices to show $P\left(W_{n}\left(u^{*}\right)<L_{n}\right) \rightarrow 0$. By direct calculation, when $r<1 / 2-\beta$

$$
E\left[W_{n}(\bar{\Phi}(1))\right] \sim n^{\gamma}
$$

for some $\gamma>0$ and thus $E\left[W_{n}(\bar{\Phi}(1))\right] / \log n \rightarrow \infty$. It follows immediately from Chebyshev's inequality

$$
\begin{aligned}
P\left(W_{n}\left(u^{*}\right)<L_{n}\right) & =P\left(W_{n}(\bar{\Phi}(1))\left(1+o_{p}(1)\right)<L_{n}\right) \\
& \leq C \frac{\operatorname{var}\left(W_{n}(\bar{\Phi}(1))\right)}{E\left[W_{n}(\bar{\Phi}(1))\right]^{2}} \leq C n^{-2 \gamma} \rightarrow 0,
\end{aligned}
$$

which completes the proof of this lemma.

A. 2 The empirical steady-State distribution of the CUSUM Statistic

Grigg and Spiegelhalter (2008) suggested the following approximation:

$$
H(x ; \mu) \approx \begin{cases}0, & \text { if } \quad x=0 \\ 1-\exp \left\{y_{0}-\sqrt{r^{2}-\left(x-x_{0}\right)^{2}}\right\}, & \text { if } 0<x \leq x_{1} \\ 1-\gamma \exp \{-x\}, & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
\gamma_{0} & =\exp \{-0.651(\mu-0.277)\}+0.031 \mu-0.189, \quad \gamma=\exp \{-0.578(\mu+0.024)\}+0.006 \mu, \\
x_{1} & =0.17 \mu^{2}+1.052 \mu-0.02, \quad \rho_{0}=\log \left(\gamma_{0}\right), \quad \rho=\log (\gamma)-\rho_{0}, \\
u & =\sqrt{x_{1}^{2}+\left(\rho-x_{1}\right)^{2}}, \quad v=\sqrt{2} x_{1}-\rho / \sqrt{2}, \quad \theta=\arcsin (v / u), \\
r & =u /(2 \sin (\pi / 2-\theta)), \quad x_{0}=-r \sin (2 \theta-0.75 \pi), \quad y_{0}=\rho_{0}-r \cos (2 \theta-0.75 \pi) .
\end{aligned}
$$

A. 3 Some technical Lemmas

Define

$$
C_{n}=-2 n \int_{0}^{1} \frac{\log (1-u)}{u} \mathrm{~d} u-\sum_{i=1}^{n}\left(b_{i-1}-b_{i}\right)^{2},
$$

where $b_{i}=i \log \frac{i}{n}+(n-i) \log \left(1-\frac{i}{n}\right)$ for $i=1, \ldots, n-1$ and $b_{0}=b_{n}=0$.

Lemma $4 C_{n}=O(\log n)$.

Proof. Introduce a function

$$
f(x)=x \log (x)+(1-x) \log (1-x)
$$

with $f(0)=f(1)=0$. Since

$$
-2 \int_{0}^{1} \frac{\log (1-u)}{u} \mathrm{~d} u=\int_{0}^{1}\left(\log \frac{1-u}{u}\right)^{2} \mathrm{~d} u
$$

we have

$$
\begin{align*}
C_{n} & =n \int_{0}^{1}\left(\log \frac{1-u}{u}\right)^{2} \mathrm{~d} u-b_{1}^{2}-b_{n-1}^{2}-n^{2} \sum_{i=2}^{n-1}\left(f\left(\frac{i-1}{n}\right)-f\left(\frac{i}{n}\right)\right)^{2} \\
& =2\left[n \int_{0}^{\frac{1}{n}}\left(\log \frac{1-u}{u}\right)^{2} \mathrm{~d} u-b_{1}^{2}\right]+n\left[\int_{\frac{1}{n}}^{1-\frac{1}{n}}\left(\log \frac{1-u}{u}\right)^{2} \mathrm{~d} u-n \sum_{i=2}^{n-1}\left(f\left(\frac{i-1}{n}\right)-f\left(\frac{i}{n}\right)\right)^{2}\right] \\
& \equiv C_{n 1}+C_{n 2} \tag{A.5}
\end{align*}
$$

First consider the term $C_{n 2}$ in (A.5). By using Lagrange mean value theorem

$$
n \sum_{i=2}^{n-1}\left(f\left(\frac{i-1}{n}\right)-f\left(\frac{i}{n}\right)\right)^{2}=\sum_{i=2}^{n-1} n^{-1}\left(\log \frac{\xi_{i}}{1-\xi_{i}}\right)^{2}=\int_{\frac{1}{n}}^{1-\frac{1}{n}}\left(\log \frac{1-u}{u}\right)^{2} \mathrm{~d} u+O\left(n^{-1}\right)
$$

where $\frac{i-1}{n}<\xi_{i}<\frac{i}{n}, 2 \leq i \leq n-2$. Then, we can conclude that the last term of $C_{n 2}$ should be of $O(1)$. Now, rewrite $C_{n 1}$ as follows:

$$
\begin{aligned}
n \int_{0}^{\frac{1}{n}} & \left(\log \frac{1-u}{u}\right)^{2} \mathrm{~d} u-b_{1}^{2} \\
& =n \int_{0}^{\frac{1}{n}}\left(\log \frac{1-u}{u}\right)^{2} \mathrm{~d} u-\left(\log \frac{1}{n}+(n-1) \log \left(1-\frac{1}{n}\right)\right)^{2} \\
& =-\frac{n \int_{0}^{\frac{1}{n}}\left(\log \frac{1-u}{u}\right)^{2} \mathrm{~d} u-\left(\log \frac{1}{n}+(n-1) \log \left(1-\frac{1}{n}\right)\right)^{2}}{\log \frac{1}{n}} \times \log n
\end{aligned}
$$

Introduce another function

$$
g(t)=\frac{\int_{0}^{t}\left(\log \frac{1-u}{u}\right)^{2} \mathrm{~d} u}{t \log t}-\frac{\left(\log t+\frac{1-t}{t} \log (1-t)\right)^{2}}{\log t}
$$

It can be easily checked that $g(t) \rightarrow 1$, as $t \rightarrow 0$. Hence $C_{n 1}=O(\log n)$, which implies that $C_{n}=O(\log n)$.

Lemma 5 Under the assumptions in Theorem 1 and $H_{1}, D_{\mathrm{GOF}}=Z_{C}+O\left(\log n \log _{2} n\right)$.

Proof. Under the conditions, we have $G\left(X_{(i)}\right)<\Phi\left(X_{(i)}\right)$. Accordingly,

$$
\begin{aligned}
D_{\mathrm{GOF}} & =\sum_{i=1}^{n}\left\{\log \left[\frac{\left[\Phi\left(X_{(i)}\right)\right]^{-1}-1}{(n-1 / 2) /(i-3 / 4)-1}\right]\right\}^{2} I_{\left\{\Phi\left(X_{(i)}\right)>(i-3 / 4) / n\right\}} \\
& =Z_{C}-C_{n}-\sum_{i=1}^{n}\left\{\log \left[\frac{\left[\Phi\left(X_{(i)}\right)\right]^{-1}-1}{(n-1 / 2) /(i-3 / 4)-1}\right]\right\}^{2} I_{\left\{\Phi\left(X_{(i)}\right)<(i-3 / 4) / n\right\}} \\
& \leq Z_{C}-O(\log n)-\sum_{i=1}^{n}\left\{\log \left[\frac{\left[G\left(X_{(i)}\right)\right]^{-1}-1}{(n-1 / 2) /(i-3 / 4)-1}\right]\right\}^{2},
\end{aligned}
$$

where we use Lemma 4. By Lemma 1 in Appendix A.1, the last term of the right side of the inequality above is of order $O_{p}\left(\log n \log _{2} n\right)$ because it is essentially distributed as the same as Z_{C} under null hypothesis except the constant C_{n}. The assertion holds immediately.

References:

Wellner, J. A. (1978), "Limit Theorems for the Ratio of the Empirical Distribution Function to the True Distribution Function," Z. Wahrsch. Verw. Gebiete, 45, 73-88.
Wellner, J. A., and Koltchinskii, V. (2003), "A Note on the Asymptotic Distribution of Berk-Jones Type Statistics Under the Null Hypothesis, High Dimensional Probability III (J. Hoffmann-Jørgensen, M. B. Marcus and J. A. Wellner, eds.) 321-332. Birkhäser, Basel.

