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Abstract: Nonparametric control charts are useful in statistical process control when there is a lack of or limited knowledge
about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new
multivariate self-starting methodology for monitoring location parameters. It is based on adapting the multivariate spatial rank to
on-line sequential monitoring. The weighted version of the rank-based test is used to formulate the charting statistic by incorporating
the exponentially weighted moving average control scheme. It is robust to non-normally distributed data, easy to construct, fast to
compute and also very efficient in detecting multivariate process shifts, especially small or moderate shifts which occur when the
process distribution is heavy-tailed or skewed. As it avoids the need for a lengthy data-gathering step before charting and it does not
require knowledge of the underlying distribution, the proposed control chart is particularly useful in start-up or short-run situations.
A real-data example from white wine production processes shows that it performs quite well. © 2012 Wiley Periodicals, Inc. Naval
Research Logistics 59: 91–110, 2012

Keywords: distribution-free; nonparametric procedure; self-starting; spatial rank; multivariate EWMA; robustness; statistical
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1. INTRODUCTION

In modern quality control, it is common to monitor several
quality characteristics of a process simultaneously (Stoum-
bos et al. [30]). This is called multivariate statistical process
control (MSPC) in the literature and it is the focus of this
article. One of the tasks of MSPC is to detect the change
in a multivariate process location vector of parameters θ as
quickly as possible. It is usually assumed that there are m0

independent and identically distributed (i.i.d.) historical (ref-
erence) observations, x−m0+1, . . . , x0 ∈ R

p, for some integer,
p ≥ 1, and the ith future observation, xi , is collected over
time using the following multivariate location change-point
model

xi

i.i.d.∼
{
μ0 + �εi , for i = −m0 + 1, . . . , 0, 1, . . . , τ ,
μ1 + �εi , for i = τ + 1, . . . ,

(1)

where τ is the unknown change point, μ0 �= μ1, the p-vectors
εi are independent, standardized and centered residuals, all
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having the same unknown distribution, � is a full-rank p×p

transformation matrix and � = ��T > 0 is a scatter matrix.
In traditional parametric settings, it is usual to say that εi

is “standardized” if cov(εi ) = Ip, and it is “centered” if
E(εi ) = 0.

Methods for accomplishing the monitoring task are usu-
ally based on the following quadratic formulation of the test
statistics:

(xi − μ̂0)
T �̂

−1
0 (xi − μ̂0), (2)

where μ̂0 and �̂0 are, respectively the mean vector and covari-
ance matrix estimated from the IC reference sample of size
m0. It is often called a Shewhart χ2 chart when we use

the exact (μ0, �0) instead of (μ̂0, �̂0). In the literature, to
accumulate information from past observations, many MSPC
control charts are constructed in two steps. First, a sequence
of multivariate vectors is constructed in the framework of
a cumulative sum (CUSUM) or an exponentially weighted
moving average (EWMA). Then, the charting statistic takes
the quadratic form of the multivariate vectors in a similar way
to (2), resulting in the multivariate CUSUM (Croisier [5]), the
multivariate EWMA (MEWMA; Lowry et al. [15]) and the
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formulas of multivariate chart with change-point detection
(Zamba and Hawkins [34]).

The above mentioned MSPC research is mostly based on a
fundamental assumption that the process data have multi-
normal distributions. However, it is well recognized that
in many applications, the underlying process distribution is
unknown and not multinormal, so that the statistical proper-
ties of commonly used charts, which were designed to per-
form best under the normal distribution, could potentially be
(highly) affected. Nonparametric or robust charts may be use-
ful in such situations. In the last several years, univariate non-
parametric control charts have attracted much attention from
researchers and a nice overview of this topic was presented by
Chakraborti et al. [2]. See Zou and Tsung [38], Hawkins and
Deng [6] and the references therein for some recent devel-
opment. Some effort has been devoted to robust multivariate
SPC: Liu [14] proposed control schemes based on data-depth;
Qiu and Hawkins [23, 24] suggested a computationally tri-
vial nonparametric multivariate CUSUM procedure based
on the antiranks of the measurement components. Stoumbos
and Sullivan [31] recommended the classical MEWMA chart
because it is robust in the sense that the in-control (IC) run-
length distribution for a continuous non-normal process is
quite close to the distribution for a multinormal process with
the same control limit if the weighting parameter, λ, is small;
finally Qiu [22] proposed a distribution-free multivariate
CUSUM procedure based on log-linear modeling.

Alternatively, Zou and Tsung [39] developed a multivari-
ate sign EWMA (MSEWMA) control chart for monitoring
location parameters. The MSEWMA adapts the multivariate
sign test proposed by Randles [28] to on-line sequential mon-
itoring by incorporating the EWMA scheme, which results
in a nonparametric counterpart of the MEWMA chart. It is
easy to implement because only the multivariate median and
the transformation matrix need to be specified from the ref-
erence dataset before monitoring just like in the MEWMA
chart where only μ0 and �0 need to be estimated rather than
the entire distribution. As shown by Zou and Tsung [39], the
MSEWMA is robust in attaining the IC average run length
(ARL) and is also very efficient in detecting process shifts,
especially small or moderate shifts which occur when the
process distribution is heavy-tailed or skewed.

However, in many applications, m0 is not large and in
some cases it is in fact rather small. For example, Zou and
Tsung [39] applied the MSEWMA chart to two real datasets:
one is from an aluminium electrolytic capacitor manufac-
turing process; the other is the aluminum smelter example
used by Qiu and Hawkins [23]. The number of IC historical
observations used for calibrating the necessary parameters
are only 170 and 95 for these two examples, respectively.
In such situations, there would be considerable uncertainty
in the parameter estimation, which in turn would distort the
IC run-length distribution of the MSEWMA control chart.

For instance, for the traditional univariate EWMA chart with
λ = 0.2, 1500 observations are needed to achieve the desired
level of IC performance (Jones [13]). Even if the control limit
of the chart was adjusted properly to obtain the desired IC
run-length behavior, its out-of-control (OC) run-length would
still be severely compromised (cf., Jones [13]). This is essen-
tially analogous to the estimated parameters problem in the
context of parametric control charts (see Jensen et al. [12] for
an overview). Zou and Tsung [39] used simulated examples
to show that the performances of MSEWMA and MEWMA
are similarly affected when m0 is small and very large Phase
I samples must be collected for both charts to perform as well
as those with known parameters (at least a reference sample of
size 4,000 is required to make MSEWMA or MEWMA attain
the nominal IC ARL for a five-dimensional case like the alu-
minum smelter example). However, gathering such large ref-
erence samples may be costly in practice: it may require time
consuming Phase-I analysis; many OC productions may be
collected in such data-gathering processes; the engineers may
spend lots of time to identify which productions are “good”
based on their prior engineering knowledge and experience
(see the white wine example given in Section 4). Besides,
in many cases, it may not be feasible to wait for the accu-
mulation of sufficiently large calibration samples because
users usually want to monitor the process at the start-up
stages.

In the situation where a sufficiently large reference dataset
is unavailable, self-starting methods that handle sequential
monitoring by simultaneously updating parameter estimates
and checking for OC conditions would be of use (see, e.g.,
Quesenberry [25, 26], Zantek and Nestler [35]). The basic
idea is to construct the so-called Q-statistics using some
transformation so that they are i.i.d. with known probabil-
ity distribution when the process is IC. The self-starting
approach is also more appealing when many characteris-
tics have to be controlled simultaneously, where even larger
Phase I samples than those required in univariate monitor-
ing settings must be collected to reduce the variability in the
parameter estimates (c.f., Champ et al. [3]). The multivariate
self-starting control charts have been developed accordingly,
see Quesenberry [27], Sullivan and Jones [32], and Hawkins
and Maboudou-Tchao [7]. However, they are all based on
the multivariate normality assumption and thus they may not
be robust and effective for heavy-tailed or skewed process
distributions. In particular, Hawkins et al. [9] and Zamba
and Hawkins [34] proposed approaches based on change-
point models for on-line monitoring that can also be seen as
self-starting methods. The key idea embodied in the these
approaches is to utilize dynamic control limits which can
be found by simulating a conditional probability expres-
sion. This method has been successfully extended by Zhou
et al. [36], Zou and Tsung [38] and Hawkins and Deng [6] to
univariate nonparametric control charts.
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In this article, motivated by Zou and Tsung’s [39] use of
spatial sign and the self-starting control schemes, we develop
a new multivariate self-starting methodology for monitoring
location parameters. Instead of spatial sign, we use spatial
ranks which will be shown to be more appropriate in a self-
starting monitoring setting. An EWMA control chart is sug-
gested. It has distribution-free properties over a broad class
of population models in the sense that the IC run-length dis-
tribution is (or is always very close to) the nominal one when
the same control limit designed for a multinormal distribu-
tion is used. As it avoids the need for a lengthy data-gathering
step before charting (although it is generally necessary and
advisable to collect a few preliminary stable observations
by a Phase-I analysis) and it does not require knowledge
of the underlying distribution, the proposed control chart
is particularly useful in start-up or short-run situations. The
remainder of this article is organized as follows: our proposed
methodology is described in detail in Section 2; its numeri-
cal performance is thoroughly investigated in Section 3; we
demonstrate the method in Section 4 using a real-data exam-
ple from wine production processes; finally several remarks
in Section 5 conclude the article. Some technical details are
provided in the Appendix.

2. METHODOLOGY

Our proposed methodology is described in five parts. In
Section 2.1, a brief introduction to the concept of spatial signs
and ranks and the construction of the MSEWMA control chart
is presented. In Sections 2.2–2.3, a self-starting multivari-
ate nonparametric charting scheme combined with spatial
rank tests is derived. Its computational issues are addressed
in Section 2.4. Some practical guidelines for choosing the
control limits are discussed in Section 2.5.

2.1. A Review of Spatial Signs, Ranks and MSEWMA

As is well known, the definitions of univariate signs and
ranks are based on the ordering of the data. However, a natural
ordering of the data points does not exist in the multivariate
case. The multivariate concepts of a spatial sign and a spatial
rank have been developed accordingly in the literature, see a
recent book Oja [20] for a comprehensive introduction. Some
key points are given in the following. In one dimension, the
sign of an observation is basically its direction (+1 or −1)
from the origin. In higher dimensions, in this spirit, the spatial
sign function is defined as

U(x) =
{||x||−1x, x �= 0,

0, x = 0,

where ||x|| = (xT x)1/2 is the Euclidean length of the vector
x. The function value is just a direction (a point in the unit

p-sphere) whenever x �= 0. Applying the spatial sign function
to the empirical distribution given by data points x1, . . . , xn

produces the so-called spatial sign vectors ui = U(xi ).
Clearly, in the univariate case, it reduces to the classical sign
statistic sgn(xi), where sgn(·) is the sign function.

Furthermore, in one dimension, the (observed) rank of xi

can be expressed as Ri = ∑n
j=1 I (xi ≥ xj ) and the so-called

centered rank is

R∗
i ≡ 2

n

[
Ri − n + 1

2

]
= 2

n

n∑
j �=i

I (xi ≥ xj ) − 1

= 1

n

n∑
j=1

sgn(xi − xj ).

The spatial rank for the vector observation xi can be defined
in a similar manner, say the average of the spatial signs of
pairwise differences,

ri = RE(xi ) = 1

n

n∑
j=1

U(xi − xj ),

where RE(·) denotes the empirical spatial rank function. Intu-
itively speaking, ri reflects the relative magnitudes of xi in
the data.

In the literature, the theoretical (population) spatial rank
function of the vector x (with respect to distribution F ) is
defined accordingly by replacing the average with expecta-
tion in RE(·), say

RF (x) = Ey[U(x − y)],
where y is distributed according to F . The notation Ey[·]
means that the expectation is taken with respect to the ran-
dom vector y. RF (xi ) can also be regarded as the asymptotic
version of RE(xi ) (n → ∞) only if xj ’s are distributed
as F . For a spherical distribution F , it can be shown that
RF (x) = qF (r)u (Theorem 4.3 in Oja [20]; see also (A.1)
in the Appendix), where r = ||x||, u = U(x), and qF (r) is
a scalar function depending on F . Because qF (r) is a scalar,
the direction of RF (x) is just u and thus gives the direction
of x from the center of F (or the data cloud in the sample
version). As ||u|| = 1, qF (r) can be regarded as the length
of RF (x), describing the distance between this point and the
center. Moreover, by noting

|qF (r)|2 = |qF (r)|2uT u = ||RF (x)||2
≤ Ey[UT (x − y)U(x − y)] = 1,

we know |qF (r)| ≤ 1. Thus, the spatial rank lies in a
unit p-sphere. For other distributions, the decomposition
RF (x) = qF (r)u may not hold, but the above geometrical
illustration is essentially correct (Möttönen and Oja [18]). For
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Figure 1. (a–c) The scatterplot for a random sample of size 50 from N2(0, I2) with scatterplots for corresponding spatial signs and ranks;
(d–f) The scatterplot for the data in (a) with shifted first component (shifted by 1) with scatterplots for corresponding spatial signs and ranks.

illustration, Figs. 1a–c show the scatterplot for 50 bivariate
observations from N2(0, I2) with the corresponding bivari-
ate spatial signs and (theoretical) ranks. The data points are
then shifted by 1 in the first component, and the correspond-
ing behavior of the data, spatial signs and theoretical spatial
ranks with F being still N2(0, I2) are shown in Figs. 1d–f,
respectively.

The spatial signs and ranks have been used for testing and
estimation in various multivariate location and scatter prob-
lems. A nice overview of this topic and related references have
been prepared by Oja and Randles [19] and again Oja [20].
Similar to their univariate counterparts, the spatial signs or
ranks based methods have been shown to be quite robust for
various distributions since those methods use the direction
of observations from the origin and/or the relative magni-
tudes rather than the original magnitudes of observations.
Zou and Tsung [39] proposed an affine-invariant EWMA
control chart, a MSEWMA chart, which adapts one of the
most powerful and robust multivariate sign tests proposed by
Randles [28] to tackle the on-line monitoring problem assum-
ing m0 is sufficiently large or equivalently the distribution of
observations is known. Instead of assuming cov(εi ) = Ip

and E(εi ) = 0 in constructing the multivariate sign test, one
reformulates the location model (1) through xi = θ + T−1εi

in which εi is “standardized” if cov(U(T(x − θ))) = p−1Ip,
and it is “centered” if E[U(T(x − θ))] = 0. Note that
cov(U(εi )) = p−1Ip and E[U(εi )] = 0 are roughly (from

the viewpoint of matching the first two moments) saying that
the direction of εi is spherically distributed (this is called
spherical direction family; see Chapter 2 in Oja [20]), while
the requirement of cov(εi ) = Ip and E[εi] = 0 means (not
strictly) that the error εi is spherically distributed. Spherical
direction family is a broader class of population than spher-
ical distribution and thus the test which is developed and
applicable under this distributional assumption is generally
more robust than traditional tests designed for spherical error
distributions (Randles [28]).

The basic idea of spatial sign based test is: under null
hypothesis and mild conditions, the expectation of the (trans-
formed) sign vector equals (or approximates) to zero, whereas
it will be away from zero under alternatives (See Figs. 1b
and 1e). To this end, in a MSEWMA chart, first we find the
solution to the sample equations (̂θ0, T̂0) based on m0 IC
historical observations,

1

m0

0∑
i=−m0+1

(
T(xi − θ)

||T(xi − θ)||
)

= 0,

1

m0

0∑
i=−m0+1

(
T(xi − θ)(xi − θ)T TT

||T(xi − θ)||2
)

= 1

p
Ip,

where T is a p × p upper triangular positive-definite matrix
with a one in the upper left-hand element (see Tyler [33] or
Randles [28] for detailed discussion). By supposing that m0

Naval Research Logistics DOI 10.1002/nav
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is large enough, we may conveniently use an asymptotic ver-
sion of (̂θ0, T̂0), say (θ0, T0). Then, we transform xt to obtain
the unit vector vt through

vt = U(T0(xt − θ0)).

Next, we define an EWMA sequence

wt = (1 − λ)wt−1 + λvt ,

where the initial vector, w0, is usually taken to be zero.
Finally, the MSEWMA chart triggers a signal if

Qt = 2 − λ

λ
pwT

t wt > L,

where L > 0 is a control limit chosen to achieve a specific
IC ARL.

Similar to the classical MEWMA chart, the MSEWMA
requires estimating the IC parameters (̂θ0, T̂0) from histor-
ical sample of size m0. As mentioned in the introduction,
an estimation problem in using MSEWMA with insufficient
reference data (m0 is small) would result in rather unsatis-
factory run-length performance. Following a similar idea to
self-starting schemes, we could consider replacing the esti-
mators (̂θ0, T̂0) with an updating version. For example, we
could use m + t − 1 samples to estimate the parameters up
to time point t . However, this seems computationally infea-
sible for MSEWMA because estimating (θ0, T0) involves a
complicated iterative routine. Although computing power has
improved dramatically and it is computationally trivial to per-
form a one-time estimation from the historical data by using
some efficient algorithms (c.f., Hettmansperger and Randles
[10]), for on-line process monitoring, repeated iterative pro-
cedures require a considerable amount of computing time
at each sample point and worse still the computational effort
grows linearly with t . Thus, such a method is obviously unde-
sirable in practice. Note that the spatial-rank is automatically
centered (see Section 2.2). There is no need to estimate the
in-control location parameter by using spatial-ranks which
would greatly facilitate the construction of control charts.
Therefore, rather than spatial signs, we are interested in tack-
ling problem (1) with spatial ranks instead, which well serves
the self-starting purpose as we will detailly show in the next
section.

2.2. A Theoretical Spatial Rank-Based EWMA
Control Chart

Recall model (1) and the associated notation. In what fol-
lows, we elaborate on the individual observation model. The
extension to the group case is presented later. Problem (1) is
closely related to nonparametric statistical tests of hypothe-
ses for the one-sample or multiple-sample location problems.

Hence, to facilitate the derivation of the proposed charting
statistic, we start by assuming that the underlying IC distrib-
utionF(x−μ0) is completely known (equivalentlym0 is large
enough), where F(·) represents a continuous p-dimensional
distribution “located” at the vector μ.

Given a random observed vector x ∼ F(x − μ), we want
to test the null hypothesis, H0, that μ = μ0 against the alter-
native hypothesis H1 that μ �= μ0. By definition, it is easy to
see that under H0,

ExEy[U(x − y)] = −ExEy[U(y − x)] = −EyEx[U(y − x)]
= −ExEy[U(x − y)],

where the last equality comes from the fact that x and y
are identically distributed (i.e., F(· − μ0)). Consequently,
Ex[RF (x)] = 0 under H0. However, under H1 in which the
location parameter of x is not μ0, Ex[RF (x)] is generally not
zero (see Chapter 4 in Oja [20] for some discussion). Refer
to Figs. 1c and 1f for graphical illustrations. Thus, the test
statistic

RT
F (x){cov[RF (x)]}−1RF (x)

is a reasonable candidate for testing. When H0 is true, this
test statistic should be small. A large value leads to rejecting
the null hypothesis. It can be easily verified that the test sta-
tistic is invariant under orthogonal transformation under H0

in the sense that its value stays the same if we transform the
data x to �x for any orthogonal matrix �. Unlike the classi-
cal Hotelling’s T -square test statistic, it is unfortunately not
affine invariant (if its value stays the same if the data x is
transformed to Dx for any full-rank matrix D we call it an
affine invariant test). This is rather unappealing because, for
example, the P -value would depend on the chosen coordinate
system.

An affine-invariant modification of the test can be achieved
through

QRF = RT
F (Mx){cov[RF (Mx)]}−1RF (Mx), (3)

where S = (MT M)−1 is any scatter matrix (a symmetric
p×p matrix Sy ≥ 0 is a scatter matrix if it is affine equivari-
ant in the sense that SAx+b = ASxAT for all random vectors
x, all full-rank p × p-matrices A and all p-vectors b). The
classical scatter matrix, namely the the covariance matrix
cov(x) = E[(x − E(x))(x − E(x))T ], say � in model (1),
serves as the simplest one. In other words, M = �−1. We
will use this simple transformation to construct our charting
scheme. The transformation matrix T used in the MSEWMA
scheme, which is known as “Tyler’s transformation or inner
standardization” (Tyler [33], Oja [20]), is another one of
the most popular affine-equivalent transformations. However,
as mentioned earlier, obtaining this type of transformation
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requires iterative procedures and thus is not considered in
our proposal.

A naive method that comes to mind for on-line monitor-
ing is to use the current individual observation to construct
the QRF in (3). However, this would be very inefficient in
the case of moderate or small changes since it completely
ignores the past observations. As an alternative, we consider
the EWMA-type control chart. Define an EWMA sequence

wt = (1 − λ)wt−1 + λRF (Mxt ),

where w0 = 0. The charting statistic is given by

QRF

t = 2 − λ

λ
wT

t {cov[RF (Mx)]}−1wt ,

in which we use the fact that cov(wt ) ≈ λcov[RF (Mx)]/
(2 − λ). We call this method the theoretical rank-based
EWMA (TREWMA) control chart. After some derivations
(please refer to the Appendix for the proofs), we have the
following proposition which says that if the data points are
rotated, or if they are reflected around a p − 1 dimensional
hyperplane, or if the scales of measurement are altered, the
value of the charting statistic stays the same.

PROPOSITION 1: The IC run-length distribution of the
TREWMA chart is affine and shift invariant.

The invariant property here is in the sense that for any
p × p nonsingular matrix D and constant vector b, the run-
length distribution of the TREWMA chart stays the same if
the IC observations are distributed as Dx+b. This property is
intuitively appealing because it ensures that the performance
of TREWMA is the same for any initial variance-covariance
and location.

When the process is IC, the TREWMA shares a good fea-
ture with its parametric counterpart MEWMA and nonpara-
metric counterpart MSEWMA. That is, under some specific
error distributions, the Q

RF

t process is a Markov chain and
the IC ARL of TREWMA can be calculated via the Markov
chain approximation. We summarize these results into the
following proposition.

PROPOSITION 2: Suppose that εt follows a spherical
distribution, under the IC model,

1. The Q
RF

t process is a Markov chain.
2. The run-lengths of TREWMA can be approximately

calibrated through a one-dimensional Markov chain
approach.

The spherical assumption here is only used for theoretical
derivation, but in practice we do not need to impose such

a condition. This proposition is particularly useful in deter-
mining the control limit of the chart, because the IC ARL
of TREWMA for a given spherical distribution can be calcu-
lated via the Markov chain model similar to what Runger and
Prabhu [29] and Zou and Tsung [39] have done. However, this
seems to be marginally interesting to us because TREWMA
still requires a large number of IC historical datasets. How-
ever, due to its simplicity, it is straightforward to extend
TREWMA to a more practical situation where m0 is small
or just larger than p + 1. We will later see that Proposition 2
is still useful because the control limit of TREWMA serves
as a good starting point for finding the control limits for its
generalized form.

2.3. An Empirical Spatial Rank-Based EWMA
Control Chart

Recall model (1) in which we only have m0 reference
samples before the start of monitoring rather than the IC dis-
tribution. In this situation, we may obtain an empirical spatial
rank-based EWMA scheme by replacing the unknown quan-
tities with the historical sample, say m0 + t −1 observations,
at the time point t . Specifically, according to the definition of
spatial rank introduced in Section 2.1, we apply the empirical
spatial rank function to the t th future observations xt

RE(M̂t−1xt ) = 1

m0 + t − 1

t−1∑
j=−m0+1

U(M̂t−1(xt − xj )),

(4)

where Ŝt−1 = (M̂T
t−1M̂t−1)

−1 is just the sample covariance
matrix based on m0 + t − 1 observations,

Ŝt−1 = 1

m0 + t − 1

t−1∑
j=−m0+1

(xj − x̄t−1)(xj − x̄t−1)
T ,

and x̄t−1 is the sample mean of those m0 + t − 1 observa-
tions. Besides, we may see from the proof of Proposition 2
that under the IC and the spherical distribution assumption

cov[RF (Mx)] = E[||RF (Mxt )||2]Ip/p.

Hence, to ease the computational effort and sequentially
update the estimate of E[||RF (Mxt )||2], we suggest using

Ê[||RF (Mxt )||2]

≈
⎡⎣ 0∑

j=−m0+1

||R̃E(M̂0xj )||2 +
t−1∑
j=1

||RE(M̂j−1xj )||2
⎤⎦

/(m0 + t − 1), (5)
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where

R̃E(M̂0xj ) = 1

m0

0∑
k=−m0+1

U(M̂0(xj − xk)).

Obviously, (5) is a natural moment estimator which com-
bines the information of m0 historical observations and
t − 1 on-line observations up to time point t . Accordingly,
ĉov[RE(M̂t−1xt )] ≈ Ê[||RF (Mxt )||2]Ip/p.

Based on the empirical quantities above, we propose the
following empirical spatial rank EWMA charting statistic

QRE

t = (2 − λ)p

λξt

||vt ||2, (6)

where

vt = (1 − λ)vt−1 + λRE(M̂t−1xt ),

v0 = 0 and ξt ≡ Ê[||RF (Mxt )||2]. Once Q
RE

t exceeds some
control limit L, the control chart triggers a signal. Hence-
forth, this chart is referred to as the SREWMA chart for
abbreviation.

Next, we present some asymptotic but insightful proper-
ties regarding the SREWMA charting statistic, which could
justify the validity of its construction to a certain degree.

PROPOSITION 3: Under the IC model,

1. cov(RE(Mxt ), RE(Mxk)) = 0 for any k �= t .
2. Suppose the assumption in Proposition 2 holds. As

λ → 0 and λt → ∞, Q
RE

t

d−→ χ2
p.

The first part of this proposition tells us that if M̂t ’s are
close enough to the true M, RE(M̂t−1xt ) are approximately
mutually uncorrelated. As a result, our SREWMA sequence
accumulates information as self-starting charts with exact
Q-statistics in a general sense. The second part reveals that
the marginal distributions of charting statistics are the same
in an asymptotic viewpoint which allows us to use a fixed (not
varying with the time point t) control limit L for SREWMA
given the nominal IC ARL, m0 and λ. Our simulation results
shown in the next section concur with these asymptotic analy-
sis that the IC run-length distributions of SREWMA charts
behave similarly to those of EWMA charts with known IC
parameters.

Before proceeding, we must determine the transformation
matrix M̂k used in SREWMA. Although any matrix that sat-
isfies Ŝk = (M̂T

k M̂k)
−1 will suffice for transforming the xt

to achieve the affine-invariant property, one choice is partic-
ularly attractive—the triangular Cholesky inverse root of Ŝk .
Take M̂T

k as an upper triangular matrix. With this choice, the

computation of SREWMA is extremely fast because of the
rank-one update feature of the Cholesky decomposition.

To end this subsection, we note that when a group of g

observations {xi1, . . . , xig} are taken sequentially from the
process at each time point, the SREWMA chart can be read-
ily defined in a similar way to (6). It amounts to extending
the empirical spatial rank to the group case at time point t ,

R
g

E,t = 1

(m0 + t − 1)g2

t−1∑
j=−m0+1

g∑
l=1

g∑
k=1

U(M̂t−1(xtk − xj l)).

2.4. Computational Issues

Fast implementation is important and some computational
issues deserve our careful examination. For the proposed
chart, computing the charting statistic Q

RE

t requires a con-
siderable amount of computing time. In this part, we pro-
vide some updating formulas, which can greatly simplify the
computation.

Write the total sum of squares at time t as

(m0 + t )̂St = (m0 + t − 1)̂St−1 + αββT ,

where α = (m0 + t − 1)/(m0 + t) and β = (xt − x̄t−1). The
Plackett updating formulas give a fast rank-one update of the
inverses of the symmetric matrix Ŝt ,

[(m0 + t )̂St ]−1 = [(m0 + t − 1)̂St−1]−1 − α
γ γ T

1 + αβT γ
,

where γ = [(m0 + t − 1)̂St−1]−1β. Furthermore, observing

that 1 + αβT γ > 0 (since Ŝ−1
t−1 is positive-definite), we

can obtain M̂t by the rank-one downdating Cholesky fac-
torization. Such an algorithm is quite efficient and reliable in
practice with a computational effort of O(p2). Subroutines
or functions for this algorithm are available in most statis-
tical software packages. In our numerical studies, we use
the subroutine “DLDNCH” in the IMSL package of Visual
Fortran 6.5.

In addition,

ξt+1 = m0 + t − 1

m0 + t
ξt + ||RE(M̂t−1xt )||2/(m0 + t). (7)

Therefore, the calculation of Q
RE

t can be operated in a
“recursive” way. Of course, we should emphasize that, it is
not exactly recursive because there is no recursive expression
for calculating RE(M̂t−1xt ). That is, the computational effort
of calculating RE(M̂t−1xt ) grows sequentially with time t .
Computing power has improved dramatically and it is compu-
tationally trivial to implement the SREWMA chart by using
the formulas given above.
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2.5. Practical Guidelines

2.5.1. On Choosing the Smoothing Weight, λ

In general, a smaller λ leads to a quicker detection of
smaller shifts (c.f., e.g., Lucas and Saccucci [16], Prabhu
and Runger [21]). This applies also to SREWMA. From the
simulation results shown in Section 3, unlike its parametric
counterpart in which λ should be carefully chosen to balance
the robustness to non-normality and the detection ability to
various shift magnitudes (c.f., Stoumbos and Sullivan [31]),
the SREWMA chart is quite robust under IC with any small
weight. The exceptions are very skewed distributions and
high dimensional cases (e.g., for a ten-dimensional multi-
variate gamma distribution with shape parameter 1, using
λ ≥ 0.1 would result in considerably large biases in IC ARLs;
see Section 3 for details). In the very skewed situations, the
SREWMA also requires a relatively smaller λ to achieve the
nominal IC ARL as the parametric self-starting chart does.
However the choice is much easier because the deteriorat-
ing effect of non-normality on its IC ARL is much slighter
than that on its parametric counterparts. Based on our simu-
lation results, we suggest choosing λ ∈ [0.05, 0.1], which is
a reasonable choice in practice, and using λ ∈ [0.025, 0.05]
when there is evidence that the underlying distribution is very
skewed.

2.5.2. On the m0

Although the SREWMA chart is a self-starting scheme in
the sense that it can be implemented at the start-up of a process

(as long as m0 ≥ p + 2 to make the estimator M̂0 available),
we believe that starting testing with an m0 that is too small
is not a good idea. An m0 that is too small would result in a
severe “masking-effect” if a short-run change occurs. Rather,
we suggest that a practitioner should gather a modest number
of observations through a Phase-I study to obtain at least an
initial verification that the process is actually stable, and only
then should the practitioner start the formal SREWMA chart.
Such a stage of collecting a reasonable number of observa-
tions before monitoring is essentially similar to the so-called
“warm-up” process introduced by Hawkins and Deng [6].
In the warm-up process, control charts update the parame-
ter estimation or accumulate the information of IC processes
but do not signal. We suggest collecting at least m ≥ 2p

(of course the more the better) historical observations before
monitoring. Our empirical results show that to obtain a satis-
factory monitoring performance it may require at least 50-100
IC observations (say, m0+τ ≥ 50; of course this number also
depends on the dimensionality) before the change actually
occurs.

2.5.3. On the Control Limits

Proposition 2 reveals that the control limits of TREWMA
for spherical distributions can be obtained by using a Markov

chain method. However, for the SREWMA, the Markov chain
method is not feasible unless m0 is very large. When m0 is
small, given Q

RE

i , i < t , the conditional distribution of Q
RE

t

for small t is considerably different from the steady-state con-
ditional distribution. Hence, the control limits of SREWMA
depend not only on λ and the nominal IC ARL, but also on
the number of observations we have collected before the start
of monitoring. In fact, this characteristic is shared by the pro-
cedures based on dynamic change-point detection and the
self-starting schemes without formal i.i.d Q-statistics. See
Zou et al. [40] and Zou and Tsung [38] for discussions. Cer-
tainly, this would not produce any difficulty in constructing
the SREWMA chart but an extra parameter, m0, should be
added when searching for the control limit.

Table 1 provides the control limits of the SREWMA chart
for various commonly used combinations of m0, λ, p and IC
ARL’s obtained using simulations with a multinormal distrib-
ution. The simulation results to be shown in Section 3 demon-
strate that the IC run-length performance of SREWMA is
quite robust under various process distributions including
very skewed distributions. Therefore, the control limits tabu-
lated in Table 1 can be used for any continuous distribution.
The control limits of TREWMA can be used as a good start-
ing point for the searching procedure since the control limits
for small values of m0 do not differ much from those of
TREWMA. Our empirical results show that for m0 ≥ 200,
the control limits of SREWMA and TREWMA are almost the
same for λ ≤ 0.1 and p ≤ 20. Hence, in those situations, we
recommend directly using the control limits of TREWMA
(which are exactly the same as those of MSEWMA and
are given in Table 1 by Zou and Tsung [39] with the most
commonly used parameters).

To end this section, we summarize the detailed steps for
implementing the SREWMA as follows. The Fortran code
for implementing the proposed scheme, including the pro-
cedures for finding the control limits, are available from the
authors upon request.

The SREWMA Control Chart

1. Choose the desired IC ARL and smoothing parame-
ter, λ. Determine the control limit, L, given m0, λ

and IC ARL.
2. Based on the historical sample {x−m0+1, . . . , x0}, cal-

culate the sample covariance matrix Ŝ0 and obtain the
corresponding M̂0 by Cholesky factorization. Then,
compute

∑0
j=−m0+1 ||R̃E(M̂0xj )||2 in (5).

3. Start monitoring the process and obtain product
observations, xt , sequentially. For a new observation,
compute RE(M̂t−1xt ) in (4) and obtain the charting
statistic, Q

RE

t , given by (6).
4. If Q

RE

t exceeds the control limit, the control chart
triggers an alarm; Otherwise, using the rank-one
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Table 1. The control limits of the SREWMA chart for ARL0 = 200, 370, and 500 under p-variate distributions with the standard multinormal
distribution.

m0 IC ARL λ p = 2 p = 3 p = 4 p = 5 p = 7 p = 10 p = 15 p = 20

10 200 0.1 8.172 10.139 11.934 13.604 16.682
0.05 7.182 9.077 10.811 12.452 15.396
0.025 5.832 7.566 9.219 10.707 13.470

370 0.1 9.399 11.433 13.375 15.121 18.336
0.05 8.590 10.602 12.546 14.229 17.322
0.025 7.308 9.255 11.070 12.687 15.675

500 0.1 10.006 12.088 14.062 15.851 19.149
0.05 9.297 11.343 13.299 15.046 18.235
0.025 8.019 10.051 11.957 13.646 16.700

20 200 0.1 8.263 10.276 12.122 13.848 17.095 21.600 28.748
0.05 7.226 9.186 10.986 12.696 15.784 20.098 26.666
0.025 5.866 7.654 9.319 10.814 13.795 17.744 23.858

370 0.1 9.467 11.554 13.538 15.327 18.686 23.306 30.557
0.05 8.634 10.711 12.659 14.407 17.647 22.094 29.004
0.025 7.352 9.336 11.157 12.827 15.927 20.236 26.900

500 0.1 10.062 12.188 14.200 16.021 19.449 24.145 31.476
0.05 9.358 11.443 13.424 15.220 18.535 23.089 30.109
0.025 8.084 10.126 12.032 13.796 16.937 21.397 28.150

40 200 0.1 8.297 10.328 12.197 13.992 17.307 21.957 29.207 36.355
0.05 7.269 9.233 11.055 12.815 15.971 20.464 27.366 34.163
0.025 5.894 7.729 9.400 10.958 13.970 18.081 24.589 30.910

370 0.1 9.525 11.603 13.635 15.458 18.873 23.656 31.057 38.218
0.05 8.674 10.767 12.740 14.547 17.835 22.470 29.622 36.501
0.025 7.374 9.392 11.235 12.946 16.113 20.525 27.363 33.880

500 0.1 10.128 12.244 14.275 16.151 19.612 24.455 31.935 39.110
0.05 9.393 11.507 13.500 15.352 18.723 23.409 30.722 37.616
0.025 8.120 10.173 12.107 13.908 17.100 21.657 28.649 35.257

downdating Cholesky factorization suggested in
Section 2.4 to obtain the updating estimator of M,
say M̂t . Also, update Ê[||RF (Mxt )||2] by (7). Then,
continue to collect new observations.

3. PERFORMANCE ASSESSMENT

We present some simulation results in this section regard-
ing the performance of the proposed SREWMA chart and
compare it with some other procedures in the literature.
All the results in this section are obtained from 10,000
replications unless indicated otherwise.

Comparing the SREWMA procedure with alternative non-
parametric methods turned out to be difficult due to the lack
of an obvious comparable method. This is because most of
the approaches in the literature were designed for the cases
where sufficient historical observations are available to accu-
rately estimate the IC distribution of observations or some
IC parameters. See Zou and Tsung [39] for some discussions
and reviews. Thus, we consider the parametric self-starting
multivariate EWMA (denoted as SSEWMA) control chart
proposed by Hawkins and Maboudou-Tchao [7] which was
designed under the normality assumption (Brown et al. [1]).
Zamba and Hawkins’s [34] change-point procedure does not
require known parameters either, but we do not consider

it here for the following two reasons: the difference in the
way a charting statistic is constructed may distract our focus
from the present robustness consideration and our simulation
shows that the change-point detection procedure performs
worse than the SSEWMA chart with a small smoothing
parameter from the robustness viewpoint.

Following the robustness analyses of Stoumbos and Sul-
livan [31] and Zou and Tsung [39], we consider the follow-
ing distributions: (i) multinormal; (ii) multivariate t with ζ

degrees of freedom, denoted as tp,ζ ; (iii) multivariate gamma
with shape parameter ζ and scale parameter 1, denoted as
Gamp,ζ . In addition, the following distribution is involved
in the comparison: (iv) in each observed vector, the first
[p/2] measurement components are i.i.d. t distributed with
ζ1 degrees of freedom and the other p − [p/2] measure-
ment components are i.i.d. chi-square distributed with ζ2

degrees of freedom. The reason for considering this distrib-
ution is that unlike (i)–(iii), its marginal distributions are not
all the same. The number and variety of covariance matrices
and shift directions are too large to allow a comprehensive,
all-encompassing comparison. Our goal is to show the effec-
tiveness, robustness and sensitivity of the SREWMA chart,
and thus we only choose certain representative models for
illustration. Specifically, for the first three distribution cases,
the covariance matrix �0 = (σij ) is chosen to be σii = 1 and
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Figure 2. Hazard curves for SREWMA and SSEWMA with λ = 0.05, p = 5, m0 = 10, and ARL0 = 200: (a) IC multinormal;
(b) IC multivariate t ; (c) OC multinormal; (d) OC multivariate t .

σij = 0.5|i−j |, for i, j = 1, 2, . . . , p. For brevity, a shift of
size δ in only the first component is used, i.e., xi + δe1 with
e1 = (1, 0, . . . , 0)T . We conducted some other simulations
with various shift types and the results show that the general
conclusions given below do not change.

3.1. The Run-Length Distribution of SREWMA

First, we study SREWMA’s IC run-length distribution.
As recognized in the literature, it is often insufficient to
summarize run-length behavior by ARL, especially for self-
starting control charts (cf., Jones [13]). As an alternative,
here we use the hazard function H1(r)/H2(r) recommended
by Hawkins and Maboudou-Tchao [7], where H1(r) is the
probability that the run-length equals r and H2(r) is the
probability that the run-length equals r or a larger number.
Note that if the run-length follows a geometric distribution,

the corresponding hazard is a constant whose inverse is
the ARL.

Figures 2a and 2b show the IC hazard functions of the
SREWMA and SSEWMA charts for a multinormal distrib-
ution and a tp,5 distribution, respectively, based on 250,000
replications, with p = 5, IC ARL = 200 (denoted as ARL0),
λ = 0.05 and m0 = 10. From the plots, we can see that the
IC hazard of SREWMA is initially around zero, then surges
to around 0.005 = 1/200 before stabilizing. Except for short
run-lengths, the geometric distribution is an excellent fit of
the IC run-length for the SREWMA chart, just as it is for
the classical Shewhart chart with known parameters. These
results reflect that the ARL is indeed a suitable summary
of the IC run behavior of the SREWMA because from the
ARL, any quantity such as a moment or a percentile, can be
approximately calculated (the geometric distribution is fully
characterized by its average). In comparison, the IC hazard
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Table 2. ARL and SDRL values with multinormal distributions.

SREWMA SSEWMA

λ = 0.1 λ = 0.05 λ = 0.1 λ = 0.05

τ = 40 τ = 40 τ = 90 τ = 40 τ = 40 τ = 90

δ ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

p = 5 0.50 94.8 137 68.6 103 43.4 51.0 86.6 133 62.4 93.2 38.6 45.4
0.75 36.5 65.11 26.3 34.0 19.9 13.1 35.1 67.4 25.1 34.0 18.4 11.9
1.00 16.2 20.91 15.4 11.7 13.4 6.39 15.7 22.1 14.7 10.2 12.4 6.31
1.50 8.18 3.79 9.52 4.08 8.67 3.31 7.22 3.67 8.59 3.90 7.70 3.19
2.00 6.09 2.27 7.42 2.83 6.84 2.37 5.11 2.10 6.25 2.60 5.65 2.15
3.00 4.62 1.46 5.80 2.02 5.36 1.69 3.37 1.22 4.26 1.63 3.83 1.36
4.00 4.12 1.24 5.22 1.76 4.81 1.48 2.63 0.90 3.36 1.25 3.01 1.03

p = 10 0.50 116 164 81.7 119 56.1 74.2 103 145 73.0 101 50.6 65.0
0.75 52.6 95.4 33.2 47.5 24.7 20.8 44.6 74.7 30.4 38.6 22.5 16.0
1.00 21.9 38.4 18.2 14.9 15.7 7.91 19.4 27.7 17.2 13.1 14.7 7.71
1.50 9.26 4.83 10.5 4.72 9.81 3.80 8.63 4.61 9.84 4.51 8.83 3.76
2.00 6.61 2.60 7.97 3.14 7.49 2.65 5.89 2.48 7.14 2.92 6.46 2.50
3.00 4.72 1.54 5.91 2.10 5.57 1.79 3.80 1.36 4.82 1.77 4.37 1.50
4.00 4.02 1.23 5.09 1.74 4.79 1.48 2.93 0.99 3.79 1.36 3.40 1.11

of SSEWMA performs similar to that of SREWMA for the
normal distribution (Fig. 2a), but is significantly larger than
the inverse of the nominal IC ARL (0.005) for the tp,5 dis-
tribution (Fig. 2b). This indicates that the false alarm rate of
SSEWMA would be larger than the desire one if the con-
trol limit obtained under multivariate normal assumptions is
used for a distribution with heavy-tails like tp,5. Moreover, the
sample mean and the sample standard deviations of the run-
length (SDRL) of SREWMA are, respectively, 200 and 188
for (i) Np(0, �) and 198 and 183 for (ii) tp,5, which are quite
close and further confirm that the SREWMA chart works well
under this set of IC conditions. We conducted some other
simulations with various combinations of λ, IC ARL, m0 and
p to check whether the above conclusions are true in other
settings. The simulation results show that the SREWMA
chart performs quite satisfactorily under these other settings
as well.

The OC hazards shown in Figs. 2c and 2d are a shift of 1.5
standard deviations from the first component of the Np(0, �)

and tp,5 data respectively, introduced after τ = 90 IC observa-
tions. Any series in which a signal occurs before the (τ +1)th

observation is discarded (c.f., Hawkins and Olwell [8]). These
hazard curves are far from constant, and indicate that the OC
run-length distribution of SREWMA is tight and unimodal.
The hazards of the two charts present similar pattern. The
SREWMA seems to have larger hazards for the tp,5 distribu-
tion, leading to quicker detection in short runs. In this setting,
the ARL and SDRL are respectively 8.69 and 3.36 for the
multinormal distribution and 9.84 and 4.12 for the multivari-
ate t distribution. In both situations the SDRLs are much
smaller than the ARL.

3.2. Comparisons Between SREWMA and SSEWMA

In this subsection, the SREWMA and SSEWMA charts
are compared in terms of OC ARL. Because a similar con-
clusion holds for other cases, throughout this section, we
only present the results when the ARL0 = 200 for illus-
tration. Results with other commonly used ARL0s, such as
370 or 500, are available from the authors upon request. A
low-dimensional case with p = 5 and a higher-dimensional
case with p = 10 are involved for each distribution case.
We fix m0 = 10 and 20 for p = 5 and 10, respectively.
This setting satisfies the requirements for starting SREWMA
and SSEWMA (m0 ≥ p + 2). For an OC ARL comparison,
we consider the steady-state ARL (SSARL). To evaluate the
SSARL behavior of each chart, any series in which a signal
occurs before the (τ + 1)th observation is discarded.

We first consider the multinormal distribution. The simu-
lation results for the SREWMA and SSEWMA charts with
λ = 0.05 and λ = 0.1 are presented in Table 2. Besides
the ARLs, the corresponding SDRLs are also included in
this table to give a broader picture of the run-length distri-
bution. Apart from the parameters above, the performance
of self-starting charts depends on the choice of τ . We con-
sider τ = 40 and 90. From this table, we observe that the
SSEWMA chart has superior efficiency as we would expect,
since the parametric hypothesis is the correct one in this case.
The SREWMA chart also performs quite satisfactorily and
the difference between SSEWMA and SREWMA is small,
even when p is large. It should be pointed out that the effi-
ciency of SSEWMA becomes even more superior when δ

is quite large, say δ ≥ 3. For example, the SSEWMA has
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Table 3. IC ARL values with multivariate t distributions tp,ζ .

SREWMA SSEWMA

λ λ

ζ 0.1 0.05 0.025 0.1 0.05 0.025 0.01

p = 5 3 168 (0.16) 185 (0.07) 192 (0.04) 71.3 (0.64) 109 (0.45) 146 (0.27) 179 (0.11)
4 178 (0.11) 193 (0.04) 198 (0.01) 93.6 (0.53) 133 (0.33) 168 (0.16) 188 (0.06)
5 186 (0.07) 196 (0.02) 202 (0.01) 109 (0.45) 148 (0.26) 178 (0.11) 190 (0.05)
7 188 (0.06) 196 (0.02) 201 (0.01) 134 (0.33) 170 (0.15) 187 (0.06) 196 (0.02)

10 194 (0.03) 200 (0.00) 201 (0.01) 151 (0.24) 179 (0.10) 189 (0.05) 203 (0.01)
15 196 (0.02) 200 (0.00) 200 (0.00) 173 (0.14) 189 (0.05) 197 (0.02) 198 (0.01)

p = 10 3 147 (0.26) 177 (0.12) 185 (0.08) 54.5 (0.73) 87.0 (0.56) 126 (0.37) 166 (0.17)
4 165 (0.18) 185 (0.07) 193 (0.03) 71.7 (0.64) 111 (0.45) 149 (0.25) 182 (0.09)
5 170 (0.15) 187 (0.06) 196 (0.02) 85.3 (0.57) 128 (0.36) 162 (0.19) 187 (0.06)
7 181 (0.09) 193 (0.04) 197 (0.02) 107 (0.46) 149 (0.25) 176 (0.12) 194 (0.03)

10 184 (0.08) 194 (0.03) 198 (0.02) 132 (0.34) 164 (0.18) 182 (0.09) 194 (0.03)
15 194 (0.03) 201 (0.01) 199 (0.01) 150 (0.25) 177 (0.12) 189 (0.05) 196 (0.02)

The relative deviation of each IC ARL from the nominal one is in parentheses.

an ARL that is only 4% smaller than that of the SREWMA
in detecting a shift size δ of 0.75, although the advantage
increases to 25–30% when the shift size δ is 4.0. The phe-
nomenon parallels the findings of Zou and Tsung [39] who
compared the parametric and nonparametric non-self-starting
charts.

Next, the multivariate t distribution and the multivariate
gamma distribution are considered. We firstly evaluate the
IC ARL values which are tabulated in Tables 3 and 4. For
clearer comparisons, we also list the relative deviation of
each IC ARL from the nominal one in parentheses, which
is calculated as |ARL − 200|/200. As before, various cases
with different combinations of dimensionality, λ and degrees
of freedom ζ are considered. From the tables, we can see that
the SREWMA is quite robust to the heavy-tailed and skewed

distributions as long as λ is not too large (i.e., λ ≤ 0.1). Its
IC ARL is always quite close to the nominal one even for the
extremely non-normal and high-dimensional distributions of
t10,3 and Gam10,1. In comparison, the SSEWMA usually has
a large bias in the IC ARL and the degradation becomes more
pronounced as the dimensionality increases. For a very small
ζ , even with λ = 0.01, the SSEWMA chart cannot maintain
a desired IC ARL.

Now, we turn to Tables 5 and 6, which give OC ARL values
with multivariate t observations with five degrees of freedom
(tp,5) and with multivariate gamma observations with three
degrees of freedom (Gamp,3), respectively. In these tables, we
fix m0+τ = 100 for each comparison scenario for simplicity.
For the SREWMA chart, the value of λ is chosen to be 0.05 or
0.025. For a fair comparison, the SSEWMA with λ = 0.01

Table 4. IC ARL values with multivariate gamma distributions Gamp,ζ .

SREWMA SSEWMA

λ λ

ζ 0.1 0.05 0.025 0.1 0.05 0.025 0.01

p = 5 1 173 (0.13) 193 (0.03) 201 (0.01) 71.5 (0.64) 113 (0.44) 150 (0.25) 171 (0.14)
2 185 (0.08) 198 (0.01) 204 (0.02) 103 (0.49) 148 (0.26) 176 (0.12) 188 (0.06)
3 188 (0.06) 200 (0.00) 204 (0.02) 119 (0.40) 163 (0.18) 188 (0.06) 193 (0.04)
5 192 (0.04) 200 (0.00) 204 (0.02) 143 (0.29) 173 (0.14) 194 (0.03) 196 (0.02)

10 197 (0.02) 200 (0.00) 200 (0.00) 163 (0.19) 188 (0.06) 197 (0.02) 198 (0.01)
15 199 (0.01) 200 (0.00) 200 (0.00) 171 (0.14) 189 (0.05) 198 (0.01) 199 (0.01)

p = 10 1 155 (0.23) 189 (0.06) 196 (0.02) 65.7 (0.67) 108 (0.46) 149 (0.26) 176 (0.12)
2 168 (0.16) 191 (0.05) 197 (0.01) 93.6 (0.53) 137 (0.31) 170 (0.15) 187 (0.06)
3 183 (0.09) 198 (0.01) 201 (0.01) 111 (0.45) 153 (0.24) 178 (0.11) 190 (0.05)
5 185 (0.08) 198 (0.01) 198 (0.01) 133 (0.33) 169 (0.15) 186 (0.07) 194 (0.03)

10 193 (0.04) 200 (0.00) 202 (0.01) 157 (0.22) 182 (0.09) 193 (0.03) 201 (0.01)
15 195 (0.02) 201 (0.01) 201 (0.01) 171 (0.14) 187 (0.06) 196 (0.02) 199 (0.01)

The relative deviation of each IC ARL from the nominal one is in parentheses.
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Table 5. ARL and SDRL values with multivariate tp,5 observations.

SREWMA SSEWMA SSEWMA-UA

δ λ = 0.05 λ = 0.025 λ = 0.01 λ = 0.005 λ = 0.05 λ = 0.025

p = 5 0.00 197 (1.84) 202 (1.70) 190 (1.53) 198 (1.24) 200 (1.85) 200 (1.76)
0.50 53.4 (0.68) 45.9 (0.45) 51.1 (0.46) 52.0 (0.41) 73.3 (0.97) 58.4 (0.72)
0.75 23.9 (0.19) 24.7 (0.15) 30.8 (0.21) 33.8 (0.22) 33.7 (0.43) 29.7 (0.25)
1.00 15.6 (0.08) 17.4 (0.09) 22.0 (0.12) 25.1 (0.14) 19.3 (0.14) 19.8 (0.12)
1.50 9.85 (0.04) 11.6 (0.05) 14.5 (0.07) 16.4 (0.08) 10.8 (0.05) 12.3 (0.06)
2.00 7.60 (0.03) 9.16 (0.04) 11.9 (0.05) 12.6 (0.06) 7.64 (0.03) 9.05 (0.04)
3.00 5.78 (0.02) 7.08 (0.03) 7.54 (0.03) 8.75 (0.04) 5.04 (0.02) 5.99 (0.02)
4.00 5.08 (0.02) 6.24 (0.02) 5.91 (0.02) 6.89 (0.03) 3.88 (0.01) 4.64 (0.02)

p = 10 0.00 187 (1.85) 196 (1.69) 190 (1.46) 196 (1.23) 200 (1.84) 200 (1.76)
0.50 73.2 (1.00) 58.4 (0.66) 56.1 (0.49) 59.6 (0.46) 99.0 (1.27) 69.9 (0.84)
0.75 32.3 (0.37) 30.5 (0.21) 35.4 (0.24) 39.9 (0.25) 47.4 (0.61) 36.8 (0.32)
1.00 19.3 (0.12) 20.8 (0.11) 25.7 (0.14) 29.9 (0.16) 25.8 (0.27) 23.6 (0.15)
1.50 11.4 (0.05) 13.3 (0.06) 17.0 (0.08) 20.0 (0.09) 13.4 (0.07) 14.3 (0.07)
2.00 8.48 (0.03) 10.2 (0.04) 12.7 (0.06) 15.3 (0.07) 9.28 (0.04) 10.6 (0.04)
3.00 6.14 (0.02) 7.56 (0.03) 8.78 (0.04) 10.8 (0.05) 5.99 (0.02) 7.02 (0.03)
4.00 5.19 (0.02) 6.43 (0.02) 6.92 (0.03) 8.53 (0.04) 4.59 (0.02) 5.44 (0.02)

Standard errors are in parentheses.

or 0.005 is considered to ensure the nominal IC ARL can
be attained. To appreciate the pros and cons of SREWMA
with respect to SSEWMA under OC models, we consider
an SSEWMA chart with the same value of λ as SREWMA
but its control limit is adjusted to make the IC ARL equal
to the nominal one. The corresponding ARL results with
λ = 0.05 and 0.025 are given in the columns labeled with
SSEWMA-UA (UA means unbiased-ARL). Note that such a
charting scheme with adjustment is only for comparison use
in our simulations but not applicable in practical applications
since the error distribution is usually unknown as we claimed
before.

The results in the two tables are similar: The SREWMA
chart is more efficient in detecting the small and moderate
shifts than the SSEWMA chart in the sense that even when
the value of λ is much larger than that of the SSEWMA,
the OC ARLs of the SREWMA are generally smaller than
those of the SSEWMA in most of cases. When λ is small, the
SSEWMA chart is robust to non-normality under the IC situa-
tion; however, its ability to detect moderate and large shifts is
largely compromised. In particular, the SREWMA with λ =
0.025 performs almost uniformly better than the SSEWMA
with λ = 0.005, and the difference is quite remarkable. In
addition, it can be readily seen that the SSEWMA chart is

Table 6. ARL and SDRL values with multivariate Gamp,3 observations.

SREWMA SSEWMA SSEWMA-UA

δ λ = 0.05 λ = 0.025 λ = 0.01 λ = 0.005 λ = 0.05 λ = 0.025

p = 5 0.00 200 (1.83) 203 (1.72) 193 (1.55) 199 (1.26) 200 (1.84) 200 (1.76)
0.50 61.9 (0.77) 52.9 (0.58) 56.9 (0.54) 56.7 (0.49) 80.9 (1.08) 62.1 (0.72)
0.75 28.7 (0.27) 28.4 (0.20) 33.9 (0.26) 36.5 (0.25) 39.6 (0.55) 33.9 (0.30)
1.00 17.9 (0.11) 19.5 (0.11) 24.3 (0.15) 26.7 (0.16) 22.8 (0.20) 22.1 (0.14)
1.50 10.8 (0.05) 12.7 (0.05) 15.6 (0.08) 17.7 (0.09) 12.1 (0.06) 13.4 (0.07)
2.00 8.22 (0.03) 9.87 (0.04) 11.6 (0.06) 13.3 (0.07) 8.43 (0.04) 9.68 (0.04)
3.00 6.12 (0.02) 7.50 (0.03) 7.97 (0.04) 9.26 (0.04) 5.37 (0.02) 6.48 (0.03)
4.00 5.30 (0.02) 6.53 (0.02) 6.18 (0.03) 7.23 (0.03) 4.14 (0.01) 5.00 (0.02)

p = 10 0.00 198 (1.84) 201 (1.70) 187 (1.46) 196 (1.23) 200 (1.84) 200 (1.76)
0.50 88.9 (1.09) 72.0 (0.79) 63.0 (0.60) 63.1 (0.52) 97.1 (1.25) 78.2 (0.97)
0.75 44.1 (0.54) 37.9 (0.33) 39.6 (0.30) 43.9 (0.31) 52.2 (0.73) 41.3 (0.46)
1.00 24.9 (0.24) 24.8 (0.15) 28.4 (0.17) 32.1 (0.19) 29.0 (0.32) 26.2 (0.18)
1.50 13.4 (0.07) 15.3 (0.07) 18.6 (0.10) 21.8 (0.11) 14.2 (0.08) 15.6 (0.08)
2.00 9.73 (0.04) 11.5 (0.05) 13.9 (0.07) 16.5 (0.08) 9.94 (0.05) 11.4 (0.05)
3.00 6.77 (0.02) 8.25 (0.03) 9.5 (0.04) 11.5 (0.05) 6.33 (0.02) 7.52 (0.03)
4.00 5.56 (0.02) 6.88 (0.02) 7.44 (0.03) 9.02 (0.04) 4.76 (0.02) 5.76 (0.02)

Standard errors are in parentheses.
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Table 7. ARL and SDRL values with multivariate mixed-components distributions.

SREWMA SSEWMA SSEWMA-UA

δ λ = 0.05 λ = 0.025 λ = 0.01 λ = 0.005 λ = 0.05 λ = 0.025

p = 5 0.00 195 (1.78) 200 (1.72) 195 (1.54) 197 (1.39) 201 (1.88) 200 (1.77)
0.50 74.7 (0.97) 61.8 (0.67) 62.3 (0.61) 60.8 (0.53) 89.9 (1.20) 70.3 (0.85)
0.75 35.1 (0.38) 33.1 (0.26) 37.2 (0.28) 39.3 (0.27) 43.3 (0.56) 36.9 (0.35)
1.00 21.1 (0.16) 22.3 (0.14) 26.7 (0.16) 29.3 (0.17) 24.7 (0.25) 23.7 (0.15)
1.50 12.2 (0.06) 14.1 (0.06) 17.1 (0.09) 19.4 (0.10) 12.9 (0.07) 14.6 (0.07)
2.00 9.03 (0.04) 10.8 (0.04) 12.8 (0.06) 14.6 (0.07) 8.99 (0.04) 10.5 (0.05)
3.00 6.52 (0.02) 7.99 (0.03) 8.63 (0.04) 10.0 (0.05) 5.77 (0.02) 6.93 (0.03)
4.00 5.53 (0.02) 6.81 (0.02) 6.77 (0.03) 7.88 (0.04) 4.39 (0.02) 5.33 (0.02)

p = 10 0.00 196 (1.91) 198 (1.75) 194 (1.42) 197 (1.18) 200 (1.86) 200 (1.75)
0.50 99.7 (1.23) 80.2 (0.95) 69.8 (0.67) 70.4 (0.58) 105 (1.34) 81.2 (0.95)
0.75 52.3 (0.68) 42.4 (0.38) 43.1 (0.32) 47.1 (0.31) 58.2 (0.81) 45.8 (0.47)
1.00 28.4 (0.26) 27.5 (0.18) 31.4 (0.19) 35.7 (0.21) 32.5 (0.37) 28.8 (0.22)
1.50 15.0 (0.08) 16.8 (0.08) 20.1 (0.10) 23.8 (0.12) 15.9 (0.11) 17.0 (0.09)
2.00 10.7 (0.05) 12.6 (0.05) 15.2 (0.07) 18.0 (0.08) 10.7 (0.05) 12.3 (0.06)
3.00 7.29 (0.03) 8.87 (0.03) 10.4 (0.05) 12.5 (0.05) 6.74 (0.03) 8.11 (0.03)
4.00 5.88 (0.02) 7.27 (0.03) 8.05 (0.03) 9.77 (0.04) 5.08 (0.02) 6.18 (0.02)

Standard errors are in parentheses.

outperformed by the SREWMA chart with the same value of
λ in detecting small or moderate magnitudes of shifts by a
considerable margin, while the SSEWMA is more efficient in
detecting large shifts, such as δ ≥ 3.0. This is understandable
because the SREWMA, which is essentially based on ranks
rather than distances, shares a similar drawback as those rank-
based charts for univariate processes. That is, even though the
shift is quite large, the ranks of the observations may not be
able to grow larger.

Table 7 shows the ARL values of the SREWMA and
SSEWMA charts in monitoring a shift in the first compo-
nent of the multivariate mixed-components observations (iv).
Clearly, with an appropriate value of λ, say 0.05 or 0.025, the

SREWMA chart not only attains the desired IC ARL, but it
also outperforms the SSEWMA chart in detecting small and
moderate shifts, and in many cases the advantage is quite
prominent. This demonstrates that the SREWMA chart is
more sensitive to process shifts in non-normal observations,
even for a distribution with different marginals, compared
with the parametric self-starting chart.

In the foregoing examples, we fixed the value of change-
point (τ ) so that the number of IC observations collected
before shifts is one hundred. Next, we study the performance
of SREWMA by varying the values of change-point. To this
end, the case with p = 5 and m = 10 is considered and the
nominal IC ARL is fixed as 200. Figs. 3a and 3b summarize

Figure 3. OC ARL curves with varying τ for SREWMA and SSEWMA and with δ = 1.5, p = 5, m0 = 10, and ARL0 = 200: (a) OC
multinormal; (b) OC multivariate t .
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Table 8. ARL comparison between SREWMA and MSEWMA with λ = 0.05

Normal tp,5 Gamp,3

SREWMA MSEWMA SREWMA MSEWMA SREWMA MSEWMA

p = 5 0.00 199 (1.84) 201 (1.85) 197 (1.84) 199 (1.83) 198 (1.83) 198 (1.78)
0.25 64.9 (0.69) 68.4 (0.57) 76.2 (0.67) 72.9 (0.61) 80.3 (0.69) 82.9 (0.73)
0.50 25.6 (0.15) 28.5 (0.17) 30.1 (0.19) 30.0 (0.19) 34.8 (0.23) 34.4 (0.22)
0.75 15.7 (0.08) 17.3 (0.08) 18.6 (0.10) 18.8 (0.09) 20.4 (0.10) 20.1 (0.10)
1.00 11.4 (0.05) 12.8 (0.05) 13.3 (0.06) 14.0 (0.06) 14.6 (0.06) 14.5 (0.06)
1.50 7.69 (0.03) 9.02 (0.03) 8.81 (0.03) 9.85 (0.04) 9.47 (0.03) 9.90 (0.03)
2.00 6.09 (0.02) 7.51 (0.02) 6.89 (0.02) 8.14 (0.03) 7.32 (0.02) 8.17 (0.03)
3.00 4.79 (0.01) 6.40 (0.02) 5.28 (0.02) 6.82 (0.02) 5.52 (0.02) 6.87 (0.02)
4.00 4.29 (0.01) 6.03 (0.02) 4.62 (0.01) 6.27 (0.02) 4.70 (0.01) 6.35 (0.02)

p = 10 0.00 198 (1.82) 201 (1.78) 197 (1.73) 200 (1.79) 197 (1.73) 199 (1.79)
0.25 73.4 (0.63) 78.1 (0.67) 84.5 (0.74) 83.2 (0.73) 97.0 (0.90) 98.7 (0.91)
0.50 29.8 (0.18) 32.2 (0.20) 34.4 (0.22) 34.7 (0.23) 43.6 (0.31) 44.5 (0.31)
0.75 17.9 (0.09) 19.3 (0.09) 20.6 (0.11) 20.9 (0.11) 25.3 (0.14) 25.6 (0.14)
1.00 12.8 (0.05) 13.9 (0.06) 14.3 (0.07) 15.1 (0.07) 17.6 (0.08) 17.9 (0.08)
1.50 8.45 (0.03) 9.45 (0.03) 9.78 (0.04) 10.3 (0.04) 11.0 (0.04) 11.6 (0.04)
2.00 6.52 (0.02) 7.55 (0.02) 6.76 (0.02) 8.20 (0.03) 8.14 (0.03) 8.96 (0.03)
3.00 4.86 (0.01) 6.00 (0.02) 4.94 (0.01) 6.48 (0.02) 5.62 (0.02) 6.82 (0.02)
4.00 4.24 (0.01) 5.46 (0.01) 4.56 (0.01) 5.80 (0.02) 4.98 (0.01) 6.02 (0.02)

Standard errors are in parentheses.

the ARL curves of the SREWMA and SSEWMA with a
shift δ of 1.5 in the first component for the multinormal
distribution and the t5,5 distribution respectively. The conclu-
sions drawn from these two figures are similar to those from
Tables 3–6, but in addition we can observe the following: a
control chart whose performance is worse would benefit a
lot from an increase in τ . This finding holds for other magni-
tudes of δ, as shown through further simulations (not reported
here).

We conducted other simulations with various correlation
structures, p and IC ARL, to see if the above conclusions
would change. These simulation results (not reported here)
show that the SREWMA chart works well for other corre-
lation structures as well as in terms of its OC ARL, and its
performance continue to be good for other choices of p and
IC ARL.

3.3. Comparisons Between SREWMA and MSEWMA

Although the major benefit of SREWMA is to be in
self-starting situations, it is also important to compare the
SREWMA and MSEWMA charts which can provide bet-
ter understanding of the performance of SREWMA and the
difference between spatial ranks and signs based charting
schemes. As mentioned before, the MSEWMA chart cannot
readily be extended to a self-starting version. To this end, we
compare the two charts by assuming that m0 is sufficiently
large (equivalently, the IC parameters are known), in this
case twenty thousand. In such situations, the SREWMA chart
would essentially reduce to its theoretical counterpart (as the
sequential update could hardly affect the charting statistic),

TREWMA. Because a similar conclusion holds for other
cases, we only present the results with λ = 0.05 for brevity.
Again, the cases p = 5 and 10, are considered and the nomi-
nal IC ARL is fixed as 200. The control limits of both charts
are the same (as justified by Proposition 2 and recommended
in Section 2.5), being 12.646 and 20.288 for p = 5 and 10,
respectively. Table 8 shows the ARL comparison between
SREWMA and MSEWMA under the multivariate normal,
tp,5 and Gamp,3 distributions. From this table, we can see that
both charts can attain the nominal IC ARL for all the three
distributions. For small shifts, the difference between the two
charts is not significant. As the magnitude of shift increases,
the SREWMA tends to perform better than MSEWMA, espe-
cially for δ ≥ 2. For example, the SREWMA generally has
an ARL that is 15–20% smaller than that of the MSEWMA in
detecting a shift size δ of 3.0. This phenomenon is partly due
to the fact that the SREWMA chart incorporates more infor-
mation on the relative magnitudes of vector observations than
the MSEWMA chart which only uses the direction of obser-
vations from the origin. Of course, the SREWMA requires
much more computational effort than MSEWMA.

4. A REAL-DATA APPLICATION

In this section, we demonstrate the proposed methodology
by applying it to a real dateset from a white wine produc-
tion process. The data set contains a total of 4898 observa-
tions, and is publicly available in the UC Irvine Machine
Learning Repository (http://archive.ics.uci.edu/ml/datasets/
Wine+Quality). The data were collected from May 2004
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Figure 4. (a–c) The scatter plots of the white wine data; (d–f) the normal Q-Q plots for variables citric acid (x3), residual sugar (x4), and
sulphates (x10), respectively.

to February 2007 using only protected designation of ori-
gin wine samples that were tested at an official certification
entity, which is an interprofessional organization with the
goal of improving the quality and marketing of Portuguese
“Vinho Verde” wine. The data were recorded by a comput-
erized system, which automatically manages the process of
wine sample testing from producer requests to laboratory
and sensory analysis. For each observation, there are eleven
continuous measurements (based on physicochemical tests)
including fixed acidity, volatile acidity, citric acid, residual
sugar, chlorides, free sulfur dioxide, total sulfur dioxide, den-
sity, pH, sulphates, and alcohol (denoted by x1, x2, . . . , x11,
respectively). A categorical variable, quality, indicating the
wine quality between 0 (very bad) and 10 (excellent) is also
provided based on sensory analysis. The goal of this data
analysis is mainly to model and monitor wine quality based
on physicochemical tests. A more detailed discussion about
this dataset is given by Cortez et al. [4] and the references
therein.

As mentioned by Cortez et al. [4], it is desirable to set
up an on-line detection system to monitor the production
process of Vinho Verde wine to guarantee its quality. A nat-
ural method is to use a univariate control chart to monitor
the (discrete) observations obtained from sensory analysis.
However, those observations usually lag behind the real-time
process and the collection exercise is rather expensive. So,

it would be interesting to consider applying some multivari-
ate control charts to those eleven continuous measurements
collected automatically from physicochemical tests for early
detection of abnormal production.

Under the SPC context of sequentially monitoring the wine
production process, we assume that the standard quality level
is 7 (LV7; as also suggested by Cortez et al. [4]). The sample
correlation matrix of this data (not reported here) contains
several large entries, which demonstrates that the variables
have considerable interrelationships and consequently a mul-
tivariate control chart is likely to be more appropriate than
a univariate control chart. Figs. 4a–4c show the scatter plots
of the raw data for the three measurements, citric acid (x3),
residual sugar (x4), and sulphates (x10), based on a total
of 880 vectors belonging to this level. The joint distribu-
tion of each pair of variables are far from bivariate normal.
The normal Q-Q plots for these three distributions are shown
in Figs. 4d–f, which clearly indicate that the marginals are
not normal either. The Shapiro-Wilk goodness-of-fit tests
for normality conclude that none of these three variables
is normally distributed (all the P-values are smaller than
1 × 10−5). Mardia’s [17] multivariate normality test is also
performed and the P-value is about 4.63 × 10−9. All these
tests together with Figs. 4a–f suggest that the multivariate
normality assumption is invalid and thus we could expect
the nonparametric chart to be more robust and powerful than
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Figure 5. The SREWMA and SSEWMA control charts for monitoring the white wine production process, along with the solid and dashed
horizontal lines indicating their control limits, respectively.

normal-based approaches for this dataset. It is also worth
noting that although it is usually easy to collect observations
from physicochemical tests, obtaining sufficiently large IC
reference sample in this process is difficult: sensory tests
rely mainly on human experts, and thus are rather time-
consuming and expensive. Once a new technology in wine
making is used or some improvements are made in the pro-
duction process, one usually wants to monitor the process
at the start-up stages in which only a small reference sam-
ple (through sensory tests) would be available. Therefore,
self-starting control charts would be more desirable in this
situation.

Next, we assume that we have m0 = 20 historical observa-
tions from LV7 and initially monitored 30 observations from
LV7 and then obtained the LV6 observations sequentially.
Similar to Cortez et al. [4], the location parameter is of the
greatest interest and thus we construct the SSEWMA and
SREWMA control charts to monitor the wine quality. The
IC ARL is fixed at 500, and the values of λ are chosen to be
0.025 and 0.005 for SREWMA and SSEWMA respectively
to ensure their IC robustness to this non-normal data. Figure 5
shows the resulting SREWMA chart (solid curve connecting
the dots) along with its control limit of 22.918 (the solid hor-
izontal line). The corresponding SSEWMA (dashed curve
connecting circles) is also presented in the figure, along with
its control limit of 16.574 (dashed horizontal line). From the
plot, it can be seen that the SREWMA chart exceeds its con-
trol limit from around the 55th observation (the 25th OC
LV6 observation) onwards. This excursion suggests that a
marked step-change has occurred as we intended. In com-
parison, the SSEWMA chart does not give any signal until

the 63-rd observation, which is a delay of eight observations.
Therefore, although requiring more computational effort, the
SREWMA is a reasonable alternative for nonmultinormal
processes if we take its efficiency, convenience and robust-
ness into account. It is worth pointing out here that apart from
quick detecting abnormal changes, isolating the shifted com-
ponents or factors that are responsible for the change is also
a fundamental task of MSPC. In this application, it would
be interesting and helpful to determine which physicochemi-
cal factor(s) are responsible for the change of quality. The
LASSO-based post-signal diagnostic method proposed by
Zou and Qiu [37] could be used after the proposed SREWMA
chart triggers a signal.

5. CONCLUDING REMARKS

In this article, we have proposed a multivariate nonpara-
metric control scheme. This scheme integrates a powerful
multivariate spatial rank test with EWMA process monitor-
ing. It is a self-starting scheme which simultaneously updates
process information and checks for OC conditions. Unlike
parametric or nonparametric control schemes which assume
the parameters or distributions are known before monitor-
ing, this control scheme can be easily implemented even if
the underlying process distribution is unknown and a lengthy
data-gathering step can be avoided. Compared with paramet-
ric self-starting schemes, this scheme is not only much more
robust in IC performance, but it is also generally more sensi-
tive to the small and moderate shifts in location parameters for
skewed and heavy-tailed multivariate distributions. In many
cases, the improvement is quite remarkable. The drawback

Naval Research Logistics DOI 10.1002/nav



108 Naval Research Logistics, Vol. 59 (2012)

of this scheme, which is common to almost all rank-based
(univariate) nonparametric schemes, is that it is not as effi-
cient as parametric schemes for very large shifts because it
only uses the direction of observations from the origin and
the relative magnitudes rather than the original magnitudes of
observations. This disadvantage is mainly due to the trade-off
between robustness and sensitivity.

Hawkins et al.’s [9] change-point scheme for on-line mon-
itoring can also be seen as a self-starting method. Zhou
et al. [36] and Hawkins and Deng [6] extended this strategy
to the nonparametric univariate setting by utilizing the two-
sample Mann-Whitney test statistics. In an ongoing effort,
we are developing a control scheme that integrates sequen-
tial change-point detection with the two-sample spatial rank
test, which might be expected to be more robust in detect-
ing various magnitudes of shifts and in further alleviating the
masking effect with a certain computational effort. Moreover,
the current version of the proposed scheme is designed for
detecting location shifts only. We believe that, after certain
modifications, the proposed method should be able to monitor
both the location and covariance structure (c.f., Huwang et al.
[11]). It would also be of interest to study the performance
of SREWMA in a high-dimensional monitoring environment
and to investigate how to improve its efficiency by using some
variable selection techniques (Zou and Qiu [37]).

APPENDIX: PROOFS

PROOF OF PROPOSITION 1: To prove this proposition is equivalent to
showing that for any p × p nonsingular matrix D and constant vector b, the
charting statistics, QRF

t , based on xt and yt = Dxt +b are the same. In what
follows, we use the subscripts “y” to distinguish the corresponding statistics
or parameters based on the sample yt , i.e., Q

RF
t ,y .

First of all, by Sy = DSDT , ||M(xt − xj )|| = ||My(yt − yj )||. By the
definition of RF (·),

RF (Myyt ) = MyDM−1RF (Mxt ).

Thus, it can be seen that

cov[RF (Myyt )] = (MyDM−1)cov[RF (Mxt )](MyDM−1)T ,

wt ,y = MyDM−1wt .

By the definition of Q
RF
t , the result follows immediately. �

PROOF OF PROPOSITION 2: 1. The distribution ofε is spherically sym-
metrical around the origin if the density function f (ε) of ε depends on ε

through the modulus ||ε||. We can then write

fε(ε) = exp{−ρ(||ε||)},

for some function ρ(·). By the definition of model (1), we know that
M(xt − μ) has a spherically symmetrical distribution as well. It is easy
to see that RF (·) is a location-invariant transformation. Thus, we have

RF (M(xt − μ)) = RF (M(xt )).

Thus, we may use RF (M(xt −μ)) to replace RF (M(xt )) in the construction
of Q

RF
t (although μ is unknown to us in practice, it does not matter in our

theoretical analysis at all).
By Theorem 4.3 of Oja [20], we have

RF (M(xt − μ)) = qF (rt )ut , (A.1)

where rt = ||εt ||, ut = ||εt ||−1εt and qF (r) is a scalar function that depends
on ρ(·) and r . The direction vector ut is uniformly distributed on the p-
dimensional unit sphere, S(1), where S(r) denotes the p-dimensional sphere
of radius r > 0. Moreover, the radius rt and direction ut are independent,
and E(ut ) = 0 and cov(ut ) = Ip/p. It is then easy to see that

cov(RF (M(xt − μ))) = Er

[
q2

F (r)
]
Ip/p,

where Er [·] means that the expectation is taken with respect to the random
variable ||ε||. Thus, Q

RF
t can be re-written as

Q
RF
t = a

Er

[
q2

F (r)
] ||wt ||2,

where a = (2 − λ)p/λ.
Next, we show that the distribution of wt given ||w1||, . . . , ||wt || is uniform

on S(||wt ||). From the distribution of RF (M(x1 − μ)) given by (A.1), this
is true for w1. By the induction assumption, the distribution of wt−1 given
||w1||, . . . , ||wt−1|| is uniform on S(||wt−1||). The conditional distribution
of wt given ||w1||, . . . , ||wt || is thus the same as

(1 − λ)||wt−1||u + λqF (rt )ut ,

where u is on S(1) and is independent of ut . It follows that the condi-
tional distribution of wt is uniform and that wt given ||w1||, . . . , ||wt || is on
S(||wt ||).

Note that

Pr
{
Q

RF
t < l|QRF

1 , . . . , QRF
t−1

}
= Pr

{
a

Er

[
q2

F (r)
] ||λRF (M(xt − μ)) + (1 − λ)wt−1||2

< l

∣∣∣∣QRF
1 , . . . , QRF

t−1

}

= Pr

{
a

Er

[
q2

F (r)
] ||(1 − λ)||wt−1||u + λqF (rt )ut ||2 < l

∣∣∣∣QRF
t−1

}

from which the result follows immediately.
2. By (i), the run-lengths of TREWMA can be approximated by mimick-

ing the procedure used for MSEWMA which is detailed in the Appendix of
Zou and Tsung [39]. The only difference lies in the calculation of transition
probabilities in (A.2). By using again the fact that rt and ut are indepen-
dent, this conditional probability distribution is just the distribution of a sum
of two independent variables whose distributions are explicitly known to
us. Hence, the details are omitted but are available from the authors upon
request. �

PROOF OF PROPOSITION 3: 1. We only prove the result for the case
where k = t + 1, because the proofs for other cases where k > t are similar.
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Note that E[U(M(xt − xj ))] = 0 for j �= t . Denote l = m0 + t − 1 and it
is straightforward to see

cov(RE(Mt−1xt ), RE(Mt xt+1))

= cov

⎛⎝ 1

l

t−1∑
j=−m0+1

U(M(xt − xj )),
1

l + 1

t∑
j=−m0+1

U(M(xt+1 − xj ))

⎞⎠
= 1

l(l + 1)

t−1∑
j=−m0+1

{E[U(M(xt − xj ))U(M(xt+1 − xj ))]

+ E[U(M(xt − xj ))U(M(xt+1 − xt ))]}.

By the assumption that the xt ’s are i.i.d., we have for j ≤ t − 1,

E[U(M(xt − xj ))U(M(xt+1 − xt ))] = −E[U(M(xj − xt ))U(M(xt+1 − xt ))]
= −E[U(M(xt − xj ))U(M(xt+1 − xj ))],

which clearly leads to cov(RE(Mt−1xt ), RE(Mt xt+1)) = 0.
2. As t → ∞,

RE(Mt−1xt )
p→ RF (Mxt ) ≡ αt ,

by Theorem 4.2 of Oja [20] and the continuous mapping theorem. Note
that E(αt ) = 0 and cov(αt ) = p−1E[||RF (Mxt )||2]Ip under the spherical
assumption.

Write vt as vt = ∑t
j=1 λ(1 − λ)t−jαt (1 + op(1)). By using the fact that

the αt ’s are i.i.d., this proposition follows immediately from the Hajek-Sidak
central limit theorem. �
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