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The presence of outliers has serious adverse effects on the modeling and forecasting of functional data.
Therefore, outlier detection, aiming at identifying abnormal functional curves from a dataset, is quite
important. This article proposes a new testing procedure based on functional principal component analysis.
Under mild conditions, the null distribution of the test statistic is shown to be asymptotically pivotal with a
well-known asymptotic distribution. Simulation results demonstrate good finite-sample performance of the
asymptotic test and detection procedure. Finally, by illustrating the connection between profile monitoring
in statistical process control and outlier detection in functional data, we apply the proposed approach to a
real-data example from a manufacturing process and show that it performs quite well in detecting outlying
profiles. Supplementary Material for this article is posted online on the journal web site.

KEY WORDS: Asymptotic test; Functional data analysis; Functional principal component analysis;
Statistical process control.

1. INTRODUCTION

In many data analysis tasks, outlier detection plays an im-
portant role in modeling, inference, and even data processing
because outliers could adversely lead to model misspecifica-
tion, biased parameter estimation, and poor predictions. The
original outlier detection methods were arbitrary but now prin-
cipled and systematic techniques are used, developed from the
contexts of statistics and computer science. By the type of data,
the popular methods can be divided between univariate meth-
ods, proposed in earlier works in this field, and multivariate
methods that usually form most of the current body of research.
Another fundamental taxonomy of outlier detection methods is
between parametric methods and nonparametric methods that
are model-free (see Barnett and Lewis 1994, p. 251). Statistical
parametric methods either assume a known underlying distri-
bution of the observations (e.g., Rousseeuw and Leory 1987,
chap. 6) or, at least, they are based on statistical estimates of un-
known distribution parameters (Hadi 1992). These methods flag
observations deviating from the model assumptions. Within the
class of nonparametric outlier detection methods, local distance
measures are often used and such methods are usually capable
of handling large databases (e.g., Fawcett and Provost 1997).

The motivation of this work originates from the so-called
profile monitoring problem in the context of statistical process
control (SPC). In some recent SPC applications, a manufac-
turing process or product is characterized by a profile, that is,
responses as a function of one or more explanatory variables.
In particular, the profile is often some function varying over a
covariate, which is often time, but may also be spatial location,
wavelength, etc. The aim of profile monitoring is for checking
the stability of this functional/curve relationship over time (see
Woodall et al. 2004; Zou, Tsung, and Wang 2007). In the SPC of

profile problem, a critical step is to identify any outlying profiles
among a set of complex profiles and to remove them from the
reference dataset. The presence of outliers has serious adverse
effects on the modeling of functional curve and accordingly on
the properties of control charts (Qiu, Zou, and Wang 2010; see
Section 4 for details of examples).

Naturally, this problem can be regarded as outlier detection
in functional data analysis (FDA). In recent years, FDA has
been enjoying increased popularity due to its applicability to
problems that are difficult to cast into a framework of scalar or
vector observations. It deals with the case in which the data are
repeated measurements of the same subject densely taken over
an ordered grid of points belonging to an interval of finite length.
Thus, for each subject, we observe a function and, though the
recording points are really discrete like the curve observations
in the foregoing profile monitoring, we may regard the entire
function as being continuously observed.

Although much research has been carried out into the im-
portant problem of outlier detection in univariate/multivariate
samples and regression problems, far less work has been done
in FDA. Among others, Hyndman and Ullah (2007) used a
method based on robust principal components analysis and the
integrated squared error from a linear model; Febrero, Galeano,
and González-Manteiga (2008) and López-Pintado and Romo
(2009) considered functional outlier detection using functional
depth. Some authors have also developed graphical tools for
visualizing functional data and identifying functional outliers;
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see Hyndman and Shang (2010) and Sun and Genton (2011;
2012). In this article, we propose a new method that uses func-
tional principal components analysis. Our method is fast to com-
pute and efficient in detecting outliers in functional data. Spe-
cially, the asymptotic distribution of our proposed test statistic
is derived and the threshold value that divides anomalous and
nonanomalous data is based on this asymptotic distribution.

The remainder of this article is organized as follows: our pro-
posed methodology is described in detail in Section 2. Its nu-
merical performance is thoroughly investigated and compared
with several other approaches in Section 3. In Section 4, we
demonstrate the method using a real-data applications in pro-
file monitoring from manufacturing industries. Several remarks
draw the article to its conclusion in Section 5. Technical details
are provided in the Appendix. Some other technical details,
including proofs of some theorems, are available online as Sup-
plementary Materials.

2. METHODOLOGY

2.1 Problem and Notation

Consider a functional observations set {Xi(t), i =
1, . . . , N}. Without loss of generality, we assume that t ∈
T = [a, b],−∞ < a < b < ∞. Moreover, the observations
Xi(t) are assumed to be independent and we want to test whether
there are outliers in the dataset. An exact definition of an outlier
often depends on hidden assumptions regarding the data struc-
ture and the applied detection method. Yet, some definitions are
regarded general enough to cope with various types of data and
methods. Hawkins (1980, p. 1) defined an outlier as an observa-
tion that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism. Anal-
ogously, Barnett and Lewis (1994, p. 4) indicated that outliers
are observations appearing to deviate markedly from other mem-
bers of the sample in which they occur. By a similar fashion, we
define outliers in a functional dataset as the observations whose
means are significantly different from the others. Accordingly,
we want to test the null hypothesis

H0: EX1(t) = EX2(t) = · · · = EXN (t), t ∈ T

against the alternative

H1: There is a subset AN of {1, . . . , N} such that EXk(t) =
EXl(t) for each k, l /∈ AN while EXk(t) �= EXl(t) for each
k ∈ AN and l /∈ AN,

where AN is the outlier set.
To be more specific, under the null hypothesis H0, the func-

tional observations can be modeled as independent realizations
of an underlying stochastic process

Xi(t) = µ0(t) + Yi(t), i = 1, . . . , N, (1)

where µ0(t) is the mean function of the stochastic process and
Yi(t) is the stochastic error with EYi(t) = 0. We do not specify
the value of the common mean µ0(t) in the hypothesis H0 since
this is the most common case in practice. By the preceding

assumption, under H1, the observations follow the model

Xi(t) =
{

µi(t) + Yi(t), i ∈ AN,

µ0(t) + Yi(t), i /∈ AN .

A straightforward approach to identify outliers in functional
data is to apply the parametric/nonparametric multivariate out-
lier detection procedures. However, the infinite-dimensional na-
ture of functional variation implies that in many situations, the
number of grid points is larger than the number of subjects. It is
well known that most usual multivariate statistical methods suf-
fer from “the curse of dimensionality,” and thus, these methods
are not applicable (or at least not effective) when the number of
variables is larger than the number of individuals in the sample.
Hence, it is usually important to perform dimension reduction
in FDA. Functional principal component analysis (PCA) is a
fundamental technique to extract a few major and typical fea-
tures from functional data. Since our proposed test statistic will
be constructed based on functional PCA, we first briefly review
it and introduce some necessary notations.

Let c(t, s) = E{Y (t)Y (s)} denote the covariance function of
Y (·). Denote λk and υk(·) as the eigenvalues and eigenfunctions
of the covariance operator c(t, s), respectively, that is, they are
defined by∫ b

a

c(t, s)υk(s)ds = λkυk(t), t ∈ T , k = 1, 2, . . . . (2)

In the classic FDA, c(t, s) is estimated by

ĉ(t, s) = 1

N

∑
1≤i≤N

{Xi(t) − X̄N (t)}{Xi(s) − X̄N (s)},

where X̄N (t) = 1
N

∑N
i=1 Xi(t). The corresponding estimators of

λk and υk(·) are λ̂k and υ̂k(·), defined by∫ b

a

ĉ(t, s)υ̂k(s)ds = λ̂kυ̂k(t), t ∈ T , k = 1, 2, . . . .

Under some mild conditions (given in the Appendix), ĉ(t, s),
λ̂k , and υ̂k(·) are consistent estimators of c(t, s), λk , and υk(·),
respectively.

In the functional data setting, some related testing problems
have recently been studied by several authors. Hall and Van
Keilegom (2007) proposed two-sample functional tests from
discrete data, and Cuevas, Febrero, and Fraiman (2004) devel-
oped the functional analysis of variance. Benko, Härdle, and
Kneip (2009) developed a bootstrap test for checking whether
the elements of the two decompositions are the same by using
functional PCA. Other recent contributions to hypothesis test-
ing in this field include articles by Locantore et al. (1999) and
Spitzner, Marron, and Essick (2003).

A more closely related work is by Berkes et al. (2009), who
developed a methodology for the detection of change-point iI in
the mean of functional observation µi(t). The article assumes
that there is possibly a change-point in the dataset and the goal
is to test whether it occurs or not. The article also shows how
to locate the change-points if the null hypothesis is rejected. It
is worth pointing out that both Berkes et al. (2009) and Qiu,
Zou, and Wang (2010) considered a change-point problem for
functional data but their assumptions and techniques are totally
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310 GUAN YU, CHANGLIANG ZOU, AND ZHAOJUN WANG

different. The former is based on fixed sample change-point
detection and functional PCA whereas the latter considers the
online monitoring problem (sequential change-point detection)
and employs nonparametric mixed-effect models. In this work,
we use an idea similar to that by Berkes et al. (2009), functional
PCA representation and reduction of data. However, we assume
that the data may contain several outlying functional curves with
possibly different means, rather than assuming any partition of
the data into “normal” and “outlying” groups.

2.2 The Outlier Detection Procedure

Denote �i(t) = Xi(t) − X̄N (t), i = 1, . . . , N . Suppose there
are no outliers in the functional observations, then the FDA
model (1) holds and we can expect that the absolute value
|�i(t)| is small for all 1 ≤ i ≤ N and all t ∈ T . Contrarily, if
there are some outliers in the sample, max1≤i≤N |�i(t)| would
become large due to the shift of the mean of the outliers. There-
fore, our test can be constructed based on the set of curves
{|�1(t)|, |�2(t)|, . . . , |�N (t)|}. We must bear in mind that the
observations considered in this article are functional data that
are in an infinite dimensional space. The covariance function
would be difficult to interpret and does not give a fully com-
prehensible presentation of the structure of the variability in the
observed data directly.

To this end, we use functional PCA to reduce the dimension
and to construct a test by the projections of the functions �i (t) on
the principal components of the functional observations. The
projections are all linear combination of {υ̂k(t), k = 1, 2, . . .}.
The coefficients corresponding to the largest d eigenvalues are:

η̂ik =
∫ b

a

{Xi(t) − X̄N (t)}υ̂k(t)dt,

i = 1, . . . , N, k = 1, . . . , d.

These coefficients are ideal indicators that reflect the difference
between the ith sample and the sample mean. In particular,
η̂ik shows the amount of deviation of the ith sample on the
kth mode of variation. Therefore, we propose the following test
statistics:

SN,d = max
1≤i≤N

∑
1≤k≤d

η̂2
ik

λ̂k

. (3)

This test statistic is similar to the commonly used test statistic
for outlier detection in multivariate dataset {Zi}Ni=1 of dimension
d (Rousseeuw and Leory 1987, p. 224):

D2
max = max

1≤i≤N
(Zi − Z̄)T �̂−1(Zi − Z̄),

where Z̄ and �̂ are the sample mean vector and covariance
matrix, respectively. Since the matrix �̂ may not be invertible
when the dimension d is large, the effectiveness and applicabil-
ity of D2

max would be doubtful for the high-dimensional data.
However, our proposed statistic does not suffer from this prob-
lem since we can choose suitable d so that all the estimated
eigenvalues λ̂k are far away from zero.

With respect to the choice of the number of the principal
components, there are several approaches proposed in the liter-
ature. The data-based method to choose d is available through

the cross-validation score based on the one-curve-leave-out pre-
diction error (Rice and Silverman 1991; Yao, Müller, and Wang
2005a). Though the data-based cross-validation method is very
attractive, it requires expensive computation, especially when
the number of observations along each curve K is large. A less
computationally intensive approach is to choose d based on the
traditional cumulative percentage variance method. In our sim-
ulation study, typically two or three principal components were
required to capture 85% of the variation. The simulation results
in Section 3 indicates that this method is not only convenient
but also effective.

When a set of N curves is measured on a fine grid of K equally
spaced points, the functional principal components problem can
be solved by applying standard principal components analysis
to the N by K matrix of observed data. Often the grid is sparse
or the time-points are unequally spaced, although still com-
mon to all curves. In this case, we usually impose smoothness
constraints on the principal components in several ways. One
direct approach is to represent them using a set of smooth basis
functions (Ramsay and Silverman 2005, chap. 3). This amounts
to projecting the individual rows of the data matrix on to the
basis and then performing PCA on the basis coefficients. Al-
ternatively, one can use the basis coefficients to estimate the
individual curves, sample the curves on a fine grid, and per-
form PCA on the resulting “data.” The discrete trajectories were
converted to functional observations by the latter method and
Fourier bases. In addition, the observations could be irregularly
spaced and the numbers of observations along each curve are
unequal. In such situations, James, Hastie, and Sugar (2000)
presented a technique based on reduced rank mixed effects
framework. Yao, Müller, and Wang (2005b) proposed a non-
parametric method to perform functional principal components
analysis. Both methods can be used to estimate the eigenvalues
λk and eigenfunctions υk , and then our proposed outlier test
procedure would be still applicable. This deserves some future
study.

Based on the foregoing discussion, to identify the true outliers
set AN , we suggest the following stepwise functional outliers
detection (SFOD) procedure by using the test statistic SN,d in a
retrospective fashion:

Step 0: Give a significance level α and set the estimated outliers
set ON = Ø.

Step 1: Choose d so that the functional PCA explains 85% of
the variance.

Step 2: Compute SN,d and choose some threshold value lN,d (α).
If SN,d < lN,d (α), we stop the procedure. Otherwise set

ON = ON ∪
{

i :
∑

1≤k≤d

η̂2
ik

λ̂k

= max
j

∑
1≤k≤d

η̂2
jk

λ̂k

}
.

Step 3: Delete the sample in ON from the data and go back to
Step 1.

The procedure will be illustrated in the real-data application in
Section 4. When the SFOD procedure stops,ON is the estimated
outlier set. In Step 1, the PCA is recalculated every time obser-
vations are deleted from the sample. In Step 2, the cut-off value
or threshold lN,d (α) usually plays an important role in dividing
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OUTLIER DETECTION IN FUNCTIONAL OBSERVATIONS 311

anomalous and nonanomalous data numerically. Therefore, the
basis for the decision on outlier identification lies on finding a
proper threshold value lN,d (α). The choice of lN,d (α) will be
discussed in the next subsection. Since

∑
1≤k≤d λ̂−1

k η̂2
ik repre-

sents the difference between the ith curve and the mean curve,
the curve with the largest

∑
1≤k≤d λ̂−1

k η̂2
ik is identified as an out-

lier when H0 is rejected. We delete the estimated outliers before
going back to Step 1 because those “outlying profiles” may con-
taminate the estimation of the mean and covariance matrix in
the PCA. The contamination effect of the outliers will be further
discussed in the next section.

2.3 Theoretical Properties

Next, we give some asymptotic properties of SN,d , which
could shed some light on practical design of the testing pro-
cedure and justify the performance of the detection proce-
dure to a certain degree as well. We state our theorems here,
but their proofs are given in the online Supplementary Ma-
terials. Theorem 1 gives the asymptotic null distribution of
SN,d .

To establish the asymptotic distribution of the test statistic
under H0, the following technical conditions are needed:

(C1) The mean µ(t) is square integrable, that is, is inL2(T ). The
errors Yi(t) are independent and identically distributed
(iid.) mean zero Gaussian process. Their covariance func-
tion c(t, s) is square integrable.

(C2) The eigenvalues λk defined in Equation (2) satisfy, for
some d > 0,

λ1 > λ2 > · · · > λd > λd+1.

Remark. Note that except for the Gaussian assumption on the
error process Yi(t), Conditions (C1) and (C2) are the same as
the conditions given by Berkes et al. (2009). These two condi-
tions are sufficient to guarantee that λ̂k and υ̂k(·) are reasonable
estimators of λk and υk(·). Lemmas 4.2 and 4.3 by Bosq (2000)
imply that, for each k ≤ d,

lim sup
N→∞

[N (E(‖ĉkυk(t) − υ̂k(t)‖2))] < ∞, (4)

lim sup
N→∞

[N (E(|λk − λ̂k|2))] < ∞, (5)

where ĉk = sgn{∫ b

a
υk(t)υ̂k(t)dt}. Furthermore, the Condition

(C1) implies the following expansions:

c(t, s) =
∑

1≤k<∞
λkυk(t)υk(s),

Yi(t) =
∑

1≤k<∞
λ

1/2
k ξik(t)υk(t), (6)

where the sequences {ξik, i = 1, . . . , N, k = 1, 2, . . .} are iid.
normal random variables with mean 0 and unit variance. It is
easy to check that the infinite sum in Equation (6) converges
in L2(T × T ) and L2(T ), all λk’s are nonnegative, and the

eigenfunctions υk(t), k = 1, 2, . . . , form an orthonormal basis
in L2(T ).

Theorem 1. Suppose that Conditions (C1)–(C2) hold. Then,
under null hypothesis H0, for each x ∈ R, we have

P

{
SN,d

2
− log N − (d/2 − 1) log log N + log �(d/2) ≤ x

}
→ e−e−x

, as N → ∞. (7)

The asymptotic null distribution of SN,d is independent of the
nuisance parameters µ(t) and c(t, s) and thus, SN,d is asymptot-
ically pivotal. By this theorem, we can obtain the approximate
critical value of the test statistic SN,d . Define

uN,d (α) = 2cd (α) + 2 log N + (d − 2) log log N

− 2 log �(d/2),

where cd (α) is the upper α quantile of the double exponential
distribution. Then, we propose the functional data outlier test
(FDOT) with rejection region{SN,d ≥ uN,d (α)}. It is the basis
for our SFOD procedure. This test has asymptotic significance
level α. However, the test based on uN,d may perform poorly in
the small-sample situations since the convergence in Theorem
1 is relatively slow. Empirically speaking, when N is not large
enough, the approximation of Equation (7) yields somewhat
conservative results for small values of d. Alternatively, when N
is small, we suggest to simulate the distribution of the following
random variable:

GN,d = max
1≤i≤N

d∑
k=1

(ξik − ξ̄k)2,

where {ξik : i = 1, . . . , N ; k = 1, . . . , d} are iid. N (0, 1) ran-
dom variables and ξ̄k = 1

N

∑N
i=1 ξik, k = 1, . . . , d. The upper

α quantile of the distribution of GN,d , denoted as gN,d (α), is a
good choice for the critical value of our proposed test with ap-
proximate significance level α. The reason is that the above ran-
dom variable GN,d is a reasonable approximation to the SN,d as
shown in the proof of the Theorem 1. Accordingly, uN,d and
gN,d are two choices for lN,d in Section 2.2. For some N, d
and three significance levels 10%, 5%, and 1%, these two kinds
of critical values are tabulated in Table 1. The comparison be-
tween uN,d and gN,d for various N, d and α can also be seen in
Section B of the online Supplementary Materials. Based on our
experience and simulation results (partly reported in the next
section), we recommend to use the distribution of GN,d when
N ≤ 100, and otherwise to use the asymptotic distribution given
in Equation (7).

Furthermore, regarding the behavior of the test under H1, we
have the following result:

Theorem 2. Suppose that Conditions (C1)–(C2) and addi-
tional conditions (C3)–(C5) given in the Appendix hold. Then,
for each α ∈ (0, 1), under alternative hypothesis H1, we have

PH1{SN,d > uN,d (α)} → 1, as N → ∞.

Theorem 2 says that our proposed test is consistent if the
number of outliers mN grows with the sample size N in the
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Table 1. The critical values based on uN,d and gN,d for various N,
d, and α

d = 1 d = 2 d = 3 d = 4

N α uN,d gN,d uN,d gN,d uN,d gN,d uN,d gN,d

50 0.10 9.81 9.26 12.32 12.07 13.93 14.39 15.05 16.46
0.05 11.25 10.58 13.76 13.46 15.37 15.91 16.49 18.03
0.01 14.51 13.65 17.02 16.57 18.63 19.14 19.75 21.61

100 0.10 11.03 10.65 13.71 13.61 15.47 15.98 16.76 18.18
0.05 12.47 11.96 15.15 15.04 16.91 17.51 18.21 19.75
0.01 15.73 15.05 18.41 18.23 20.17 20.87 21.46 23.26

200 0.10 12.28 11.92 15.09 15.04 17.01 17.55 18.43 19.81
0.05 13.72 13.23 16.53 16.48 18.44 19.03 19.87 21.38
0.01 16.98 16.37 19.79 19.67 21.71 22.42 23.13 24.91

400 0.10 13.54 13.28 16.48 16.45 18.51 19.01 20.06 21.35
0.05 14.98 14.66 17.92 17.88 19.95 20.48 21.51 22.89
0.01 18.24 17.65 21.18 21.21 23.21 23.88 24.76 26.32

order specified in the Appendix. It guarantees that the functional
outliers test is effective from certain theoretical points. In the
following section, through the simulation under a variety of
cases, we will show that our proposed test performs well in a
finite-sample setting.

3. SIMULATION STUDIES

To see the performance of our proposed test and outlier de-
tection procedure, we have conducted many simulation stud-
ies. Some of the results are reported here. In Section 3.1,
we investigate the approximation of the level by two meth-
ods given in Section 2.3. A power analysis is conducted in
Section 3.2 to evaluate the effectiveness of the proposed test
and make comparisons with three related methods. In Section
3.3, we discuss how to alleviate the masking effect. Finally,
we study the performance of our proposed SFOD procedure in
Section 3.4.

3.1 Empirical Size Study

To study the empirical size, for simplicity and without loss of
generality, the mean µ(t) was chosen to be 0 and the following
three different cases of Y (t) were considered:

Scenario 1: Standard Brownian Motion (BM).
Scenario 2: Standard Brownian Bridge (BB).
Scenario 3: sin(2πt)Z0 + 0.5Zt , where Z0 and Zt are indepen-

dent N(0,1).

All the three processes were realized on a grid of 200 equi-
spaced points in T = [0, 1]. To simulate a standard Brownian
Motion, we repeatedly generated independent Gaussian random
variables with mean 0 and standard deviation 1/

√
200. The value

of the Brownian Motion at time i/200 is the first i increments.
To simulate a standard Brownian Bridge S(t), we firstly generate
a standard Brownian Motion B(t). Then, through the transfor-
mation S(t) = B(t) − tB(1) we acquire a standard Brownian
Bridge sample. Following the basis function method introduced
by Ramsay and Silverman (2005, p. 45), the discrete trajectories
were converted to functional observations by 15 Fourier bases.

Our simulation study found that our method is not affected
much by the type of the basis or the number of basis functions.
For an estimation problem, one can use cross-validation (CV),
generalized cross-validation (GCV), or other model selection
criteria to choose the number of Fourier bases. However, our
simulation results show that these criteria tailored for estima-
tion often do not produce an optimal test. This finding is not
surprising because similar conclusions have been made in the
nonparametric regression testing problem and other related con-
texts (cf. Hart 1997, chap. 6). Similar observations in the context
of profile monitoring have also been made by Zou, Tsung, and
Wang (2008). The number of bases should be chosen to balance
the size of the test and the detection ability to various outlying
profiles. We find that with 5–15 Fourier bases, the level of the
proposed test can be maintained within an acceptable range. To
provide a better protection against local/oscillating functional
changes, we use a relatively larger number of bases, say 15. In
practice, spline or local polynomial smoothing can be used as
well. We have studied many cases with different sample sizes,
but only report here the results of the above three models when
the sample sizes N were chosen to be 50, 100, 200, and 400.
In each scenario, the empirical size is computed based on 2000
replications. In each replication, the number of the eigenfunc-
tions d was chosen automatically by the cumulative percentage
variance approach, which found a suitable d explaining 85% of
the variance.

Figure 1 shows the empirical sizes based on two kinds of criti-
cal values computed from the limiting distribution and simulated
distribution of GN,d . The nominal significance level α is chosen
to be 0.1, 0.05, and 0.01. The results indicate that the empirical
sizes approximate the nominal significance levels as the sample
size increases. Otherwise, the empirical sizes based on the sim-
ulated critical values gN,d are closer to the nominal levels when
the sample size is relatively small, for example, N � 100. In a
majority of cases, both approximations of critical value seem to
result in conservative tests. This partially stems from the fact
that the number d of the eigenfunctions was not specified in
our simulations (determined by cumulative percentage variance
approach) whereas the asymptotic distribution of SN,d given in
Theorem 1 was derived assuming that d was specified.

3.2 Power Study

In this subsection, we study the power of different tests in
rejecting null hypothesis that the means of all the function are
the same. We consider the following three simulated datasets
generated by:

Case (I): Xi(t) ∼ 2 sin(2πt) + BM, i ∈ AN ; Xi(t) ∼ BM,

i /∈ AN ;

Case (II): Xi(t) ∼ 0.6et + BB, i ∈ AN ; Xi(t) ∼ BB,

i /∈ AN ; and

Case (III): Xi(t) ∼ −3.8t + sin(2πt)Z0 + 0.5Zt, i ∈ AN ;

Xi(t) ∼ sin(2πt)Z0 + 0.5Zt, i /∈ AN ;

where AN denotes the outlier set.
Denote |AN | = [ρN ], where ρ is the ratio of the outliers in

the sample and [ρN ] denotes the greatest integer less than or
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Figure 1. Empirical size of the test using uN,d (solid line) and gN,d (dashed line) along with the nominal size α (%; dotted line). The empirical
size (y-axis) is plotted against sample size N (x-axis).

equal to ρN . In our simulation study, we chose N to be 50,
100, 200, and 400. The ratio of the outliers ρ was chosen to be
2%, 4%, and 6% for all three cases. The locations of the outliers
were chosen evenly. All three processes were realized on a grid
of 30 or 200 equispaced points in T = [0, 1] and smoothed by
15 Fourier bases.

To assess the performance of FDOT, we compare it with
some existing methods. A commonly used approach is the mul-
tivariate outlier test (MOT; Rousseeuw and Leory 1987), which
uses the test statistic D2

max introduced in Section 2.2. When the
number of observations along each curve K is larger than the
sample size N, we use the tapering estimator (Cai, Zhang, and
Zhou 2010) to estimate the inverse of the covariance matrix.
The tapering parameter was chosen to be 7 as suggested by
Cai, Zhang, and Zhou (2010). Another related approach is the
test based on h-modal functional depth (Febrero, Galeano, and
González-Manteiga 2008; FDET). Its test statistic is:

RN = − min
1�i�N

N∑
j=1

K

(‖Xi(t) − Xj (t)‖
h

)
,

where K(·) is the Gaussian kernel function, the bandwidth h is
chosen to be the 15th percentile of the empirical distribution of

{‖Xi(t) − Xj (t)‖, i, j = 1, . . . , N}, and

‖Xi(t) − Xj (t)‖= sup
k=1,...,K

|Xi(tk) − Xj (tk)|.

In addition, since our proposed FDOT uses functional PCA, it
is also of interest to compare our method with other tests based
on functional PCA. A natural benchmark is the functional data
change-point test (FDCT) proposed by Berkes et al. (2009).
FDCT uses the following test statistic:

QN,d = 1

N2

d∑
l=1

λ̂−1
l

N∑
j=1

( ∑
1�i�j

η̂i,l − j

N

∑
1�i�N

η̂i,l

)2

.

Berkes et al. (2009) demonstrated that the test has excellent
finite sample performance for the functional data change-point
problem.

For a fair comparison, all critical values of the considered
tests were computed by the simulated distributions of the test
statistics under the true model to control their significance levels
to be 0.05. This calibration is conducted under the conditions
for which each test was designed, so even with this approach,
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314 GUAN YU, CHANGLIANG ZOU, AND ZHAOJUN WANG

some tests (FDCT and MOT) can still remain biased. Table 2
shows the power of different tests when K = 30 and 200, re-
spectively, with 2000 replications for each case. In this table,
the entries with asterisk indicate that the corresponding tests are
not unbiased, that is, the power is less than 5%. The simulation
results indicate that our proposed FDOT method outperforms
the other approaches in most cases. The FDCT seems to be the
worst among all the tests. This can be well understood as FDCT
was designed for the change-point problem. To have satisfac-
tory power, FDCT generally requires that the number of samples
both before and after the change-point are large enough. How-
ever, in our FDOT problem, we cannot assume that the outliers
gather together in the sample. Moreover, the comparison be-
tween the simulation results of K = 30 and 200 indicates that
our proposed FDOT procedure turns to be quite robust when the
number of observations along each curve varies.

3.3 The Masking Effect

From Table 2, we note that for the fixed sample size, the pow-
ers of tests decrease to some extent as the number of the outliers
increases. This tendency is not surprising since all the consid-
ered tests are suffering from the masking effect. When there are
multiple outliers in the sample, the estimators of the mean curve
and the covariance function will be skewed. Furthermore, with
masking, removal of any single outlier might have little or no ef-
fect on estimates since other outliers remain. In such situations,
robust estimators of the mean curve and covariance function
are needed. Rousseeuw and van Zomeren (1990) proposed to
use the minimum volume ellipsoid estimator of mean and co-
variance matrix for the multivariate outliers detection problem.
However, our simulation study indicated that their robust esti-
mation procedure was not effective in the present problem. It is

Table 2. Power (%) comparisons of different tests when K = 30 and 200

K = 30 K = 200

Model ρ N FDOT FDCT MOT FDET FDOT FDCT MOT FDET

Case I 2% 50 95.7 * 12.8 33.4 96.7 * 18.0 32.2
100 99.3 8.20 65.4 32.2 99.6 7.60 15.7 30.2
200 100 18.8 85.9 30.9 99.9 18.6 13.8 26.6
400 100 48.6 94.1 27.4 100 47.7 7.45 29.4

4% 50 99.7 * 8.30 31.2 99.5 * 13.5 31.7
100 100 * 23.8 29.6 99.9 * 9.25 30.0
200 99.9 11.0 32.3 26.6 100 10.5 7.10 27.9
400 100 40.4 39.3 26.6 100 41.2 6.95 28.1

6% 50 97.4 * 7.1 28.4 97.6 * 11.5 26.4
100 96.7 * 14.2 25.0 96.2 * 6.90 27.1
200 95.1 * 16.4 23.2 95.8 * * 23.8
400 94.7 * 19.2 20.7 95.3 * 6.00 23.2

Case II 2% 50 83.5 * 20.2 78.6 80.1 * * 66.3
100 91.7 7.40 75.8 79.9 89.7 5.25 * 72.2
200 96.9 11.3 89.7 81.8 96.1 12.4 * 80.5
400 99.5 32.3 96.2 87.8 99.4 29.8 6.50 85.4

4% 50 86.8 * 8.05 81.7 81.2 * 5.45 76.7
100 91.6 * 25.9 85.7 88.5 * 6.85 81.4
200 96.0 5.90 35.6 85.4 94.7 7.60 8.55 85.3
400 97.8 25.2 42.4 86.9 97.7 24.0 8.85 89.2

6% 50 62.6 * 7.55 77.3 56.2 * * 76.6
100 62.5 * 15.1 77.9 59.1 * * 78.0
200 64.3 * 17.0 78.5 66.9 * * 82.7
400 67.9 * 19.4 79.2 71.9 * 15.8 86.2

Case III 2% 50 100 * 100 97.3 60.3 8.30 29.5 99.7
100 100 * 99.9 98.6 61.1 18.5 29.3 99.2
200 100 7.6 100 99.0 63.7 63.3 32.9 99.2
400 100 76.8 100 99.3 65.6 66.2 13.5 99.2

4% 50 100 * 13.7 98.5 99.4 7.95 34.1 99.8
100 100 * 29.8 98.7 100 12.9 30.3 99.6
200 100 * 41.0 98.9 100 48.0 30.6 99.6
400 100 7.65 47.1 98.2 100 100 7.10 99.6

6% 50 100 * 8.0 96.6 99.9 9.25 33.1 99.3
100 72.0 * 10.6 96.2 100 6.55 27.2 99.1
200 36.4 * 14.2 94.7 100 6.00 22.7 98.8
400 22.7 * 16.3 94.3 100 6.15 5.60 99.0

NOTE: ∗indicates that the test is not unbiased.
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OUTLIER DETECTION IN FUNCTIONAL OBSERVATIONS 315

often unstable and requires expensive computation. Some simi-
lar findings can be found in the literature by Yeh, Huwang, and
Li (2009) in which the focus is the outlier detection for linear
profiles. In practice, we recommend to use a two-step FDOT
procedure to alleviate the masking effect. At the first step, we
choose d = 1 and a relatively large significance level (such as
α = 0.1 in our simulation). Through the SFOD procedure, we
exclude some “candidate outliers” from the sample and then
use the filtered sample to estimate the mean curve and the co-
variance function. At the second step, we conduct the FDOT
procedure using the estimators of the mean curve and covari-
ance function based on the “cleaner” sample obtained from the
first step. Figure 2 shows the size (ρ = 0) and power compari-
son between the two-step FDOT and one-step FDOT for Case II
when K = 30. The nominal significance level α was still chosen
as 0.05. The simulated results in Figure 2 show that the two-step
FDOT procedure alleviates the masking effect to certain degree.
It is also worth noting that due to the extra variation introduced
by the additional steps, the two-step procedure tends to have
larger size than the one-step procedure. However, as shown by
the simulation results in Section 3.1, the one-step FDOT proce-
dure is usually somewhat conservative. This results in sizes of
the two-step procedure that are generally close to the nominal
size.

3.4 The Performance of SFOD Procedure

We compare the performance of our SFOD procedure with the
depth-based functional outlier detection procedure introduced
by Febrero, Galeano, and González-Manteiga (2008; denoted
as DFOD). In this comparison, we set K = 200 and the sig-
nificance level α was chosen as 0.1. To evaluate the statistical
performance of the SFOD procedure, we consider two accuracy
measures, r1 = NTID

NID and r2 = NTID
NT , where NTID is the num-

ber of true outliers identified, NID is the number of samples
identified as outlier, and NT is the number of true outliers in the
sample. These two indexes provide certain indication of the pre-
cision of the detection results. Large r1 and r2 indicate superior
detection.
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Figure 2. Size and power comparison between the two-step FDOT
(solid line) and one-step FDOT (dashed line). The dotted line in the
first plot represents the nominal significance level α = 0.05.

Table 3 shows the simulated values of these two indexes for
Cases (I)–(III) when the ratio of the true outliers is chosen to
be 2%, 4%, and 6%. The results show that the SFOD procedure
generally performs better than DFOD. From the measure r1,
we find that the SFOD procedure identifies true outliers more
successfully as the sample size increases. As shown in Table 3,
when the sample size is 400, most of the curves in the set
ON (identified by the SFOD procedure) are true outliers. More-
over, from the results of the measure r2, we can see that the
SFOD procedure could identify most of the true outliers except

Table 3. Performance comparison of SFOD and DFOD when K = 200

Case (I) Case (II) Case (III)

r1 (%) r2 (%) r1 (%) r2 (%) r1 (%) r2 (%)

ρ N SFOD DFOD SFOD DFOD SFOD DFOD SFOD DFOD SFOD DFOD SFOD DFOD

2% 50 92.1 44.1 97.4 46.8 78.0 76.0 83.5 81.5 93.5 87.3 99.5 92.5
100 96.2 42.1 97.1 28.3 89.8 82.9 79.5 69.3 96.1 92.2 100 84.9
200 97.7 37.2 94.0 13.2 96.4 88.5 72.3 51.4 98.0 95.1 100 71.1
400 98.8 40.4 90.5 7.06 98.4 92.2 65.8 35.0 98.7 96.7 100 51.4

4% 50 96.2 48.2 98.5 35.8 84.7 86.4 79.2 79.7 95.5 96.2 99.3 100
100 98.0 43.9 96.7 17.2 93.4 89.9 75.5 64.3 97.4 97.6 99.8 99.9
200 99.0 39.7 94.7 7.17 97.4 92.5 68.5 42.1 98.7 98.6 100 98.0
400 99.4 41.9 91.5 3.65 99.0 94.6 60.6 25.5 99.3 99.1 100 77.9

6% 50 97.2 41.8 97.3 23.7 71.2 88.1 61.7 76.0 96.7 96.2 99.9 100
100 98.2 40.2 96.4 10.3 74.8 90.9 51.7 57.5 98.4 98.2 100 99.9
200 99.2 36.8 94.3 4.27 83.7 93.0 41.6 33.6 99.1 99.0 100 97.6
400 99.3 37.6 90.7 2.14 86.7 94.9 23.0 17.3 99.5 99.1 100 68.1
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Figure 3. The first six (gray lines), the 115th, 116th, 117th, and the 123rd (dotted lines) AEC functional curves.

for a handful of cases where the ratio of the outliers is large
while the shift is small.

4. A REAL-DATA APPLICATION IN INDUSTRIAL
MANUFACTURING: PROFILE MONITORING

The proposed methodology is demonstrated in an aluminium
electrolytic capacitor (AEC) manufacturing process in this sec-
tion. More detailed discussion about the AEC example may
be found in the literature by Qiu, Zou, and Wang (2010). Re-
garding quality of AECs, the most important characteristic is
dissipation factor (DF), which can be automatically measured
by an electronic device. However, it is known that DF measure-
ments would change significantly with environmental tempera-
ture, and there is a specific requirement about the adaptability
of AECs to temperature. To monitor the adaptability, engineers
put a sampled AEC in a container. Then, the container’s tem-
perature is controlled, and the temperature is supposed to stably
increase from −26◦F to 78◦F. In this process, measurements of
DF and the actual temperature inside the container are taken at
53 equally spaced time points. The actual temperature inside the
container is reported by a temperature sensor. Figure 3 shows
some AEC curves that represent the functional relationship be-
tween DF and temperature.

Most existing profile monitoring methods (e.g., Zou, Tsung,
and Wang 2008; Zou, Qiu, and Hawkins 2009) require a fun-
damental assumption that observations within a profile are in-
dependent of each other, which is apparently invalid in appli-
cations. To properly describe within-profile correlation, Qiu,
Zou, and Wang (2010) proposed a nonparametric mixed-effects
model (cf., Wu and Zhang 2002), which allows a flexible
variance–covariance structure. Alternatively, we may consider
the AEC profiles as functional observations with some random
errors and thus, can be adequately described by the FDA model
(1).

The entire AEC dataset contains 144 curves. As discussed
in Section 2.2, the discretely sampled curves were converted
to functional observations by using 15 Fourier basis functions.

Then, we used the cumulative percentage variance approach that
finds d = 2 principal components explaining 85% of the vari-
ance. We then computed the statistic SN,d , the candidate outliers

subset ON = {i0 : arg max1�i�N

∑
1�k�d

η̂2
ik

λ̂k
}, and the p-value

by the asymptotic distribution in Theorem 1. Then, we removed
the sample in the subset ON and repeated the same computa-
tion steps several times. Table 4 gives the results of the first
10 steps of the stepwise detection procedure. The first p-value
0.0069 strongly indicates that there are outliers in the data. If
we specify the significance level to be 0.05, we can identify the
indices of the outlying observations to be 115, 116, 117, and
123.

For the purpose of comparison, we also detected the outly-
ing AEC curves by the h-modal functional depth introduced
by Febrero, Galeano, and González-Manteiga (2008). Outly-
ing AEC curves are expected to be far away from the center
of the data and therefore, correspond to curves of significantly
low depth. The depth values corresponding to the curves with
the 10 smallest h-modal functional depths are also shown in
Table 4. We found that two methods give similar results. The
indices of the candidate outlying curves are both between 115
and 123. Figure 4 shows the first three nonoutlying curves, the

Table 4. Detection results of the AEC example

Index Index
Rank p-value (SFOD method) Depth (Depth method)

1 0.0069 115 14.836 117
2 0.0072 123 14.863 115
3 0.0265 117 15.579 121
4 0.0327 116 16.402 120
5 0.0881 121 16.886 118
6 0.0954 120 17.852 116
7 0.2295 118 18.107 118
8 0.3587 110 18.455 56
9 0.2066 23 18.813 123

10 0.2756 30 19.155 139
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Figure 4. The first three nonoutlying curves, the mean curve, and the 115th, 116th, 117th, and 123rd curves after smoothing.

mean curve, and the 115th, 116th, 117th, and 123rd curves af-
ter smoothing. The deviation of the outlying curves from the
nonoutlying curves is quite clear.

By this detection result, we have the following two findings:
first, the first 96 AEC curves in this example can be regarded
as in-control functions. This justifies the use of these curves
as the training (reference) dataset to fit the model and design
the control chart given in the article by Qiu, Zou, and Wang
(2010). Second, by monitoring the result in the article by Qiu,
Zou, and Wang (2010), the outliers we found are contained
in the set of OC curves (actually 112–120). Some other OC
curves are not identified by our approach, such as 112–114.
This is not surprising to us because the control chart by Qiu,
Zou, and Wang (2010) is designed to be efficient in detecting
the step-change. Their charts borrow strength across multiple
curves while our approach is individually testing each curve. The
detection result for the AEC curves indicates that our proposed
procedure performs well in applications.

5. CONCLUDING REMARKS

Datasets with multiple outliers or clusters of outliers are sub-
ject to masking and swamping effects (Barnett and Lewis 1994;
Pena and Prieto 2001). Similar to classical outlier detection
methods, our procedure assumes the data contain only one out-
lier in each retrospective step and thus, the power may de-
crease if the percentage of outlying function curves in the data
is high as shown in the simulation study. In some situations,
our method may fail to detect some outliers, simply because
it is affected by the functional observations that it is supposed
to identify. Although the proposed two-step procedure seems
to work well, a systematic method that is able to handle this
issue is needed. Moreover, an ongoing effort of the authors is to
develop a scheme integrating a “data-driven” adaptive smooth-

ing parameter selection method to improve the performance of
FDOT in situations involving masking and swamping.

In addition, our simulation results (not reported here) show
that the considered approach for choosing d, cumulative per-
centage variance, may not produce a most powerful test. This
finding is not surprising because such a criteria is tailored for es-
timation and similar conclusions have been made in some other
testing problems. For instance, in the nonparametric regression
testing problem, the power and size of a typical test would de-
pend on the bandwidth used in regression function estimation,
and it is recognized that optimal bandwidth for nonparametric
curve estimation may not be optimal for testing (cf., Hart 1997,
chap. 6; see also Berkes et al. 2009, for a related discussion).
An ongoing effort of the authors is to develop a more proper
adaptive selection of d to make the test nearly optimal.

APPENDIX: TECHNICAL CONDITIONS USED
IN THEOREM 2

To establish the consistency of the proposed test under the alter-
native hypothesis, we also need the following additional condi-
tions:

(C3) Under H1, denote the number of outliers as mN , we assume
that ∑

i∈AN
‖µi(t)‖2

mN

= O(1), as N → ∞.

(C4) (The condition on the number of outliers) Under H1, the
number of outliers satisfies

mN → ∞,
mN

√
log(mN )

N
→ 0, as N → ∞.
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318 GUAN YU, CHANGLIANG ZOU, AND ZHAOJUN WANG

(C5) (The condition on the means of outlying curves) Define

δik = 1√
λk

∫ b

a

(µi(t) − µ0(t))υk(t)dt.

Under H1, we assume that

lim inf
N→∞

maxi∈AN

∑d
k=1 δ2

ik

log N
> 8 + 4

√
3.

Remark. Condition (C3) is fairly common technical assump-
tion for the study of the consistency of the test. Similar to the out-
lier test for the multivariate samples (Hadi 1992), our proposed
test is not consistent when assuming that there is only one out-
lier in the sample. To construct the consistency of our proposed
test, Conditions (C4) and (C5) are required. Condition (C4) is
reasonable because the number of outliers |AN | = mN can be
expected to grow with sample size N in many cases. Further-
more, the number of outliers mN cannot be too large to help
us distinguish the outliers from “normal” data. Condition (C5)
is a purely technical condition that guarantees that the mean of
outlying functions dominates the chance variability caused by
the random error.

SUPPLEMENTARY MATERIALS

Proofs for Theorem 1 and 2, and a figure comparing UN,d and
gN,d (pdf).
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