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a b s t r a c t

Local polynomial regression is widely used for nonparametric regression. However, the
efficiency of least squares (LS) basedmethods is adversely affected by outlying observations
and heavy tailed distributions. On the other hand, the least absolute deviation (LAD)
estimator is more robust, but may be inefficient for many distributions of interest. Kai et al.
(2010) [13] propose a nonparametric regression technique called local composite quantile
regression (LCQR) smoothing to improve local polynomial regression further. However,
the performance of LCQR depends on the choice of the number of quantiles to combine, a
meta parameter which plays a vital role in balancing the performance of LS and LAD based
methods. To overcome this issue, we propose a novel method termed the local Walsh-
average regression (LWAR) estimator by minimizing a locally Walsh-average based loss
function. Under the same assumptions in Kai et al. (2010) [13], we theoretically show
that the proposed estimator is highly efficient across a wide spectrum of distributions.
Its asymptotic relative efficiency with respect to the LS based method is closely related
to that of the signed-rank Wilcoxon test in comparison with the t-test. Both of the
theoretical and numerical results demonstrate that the performance of the new approach
and LCQR is at least comparable in estimating the nonparametric regression function or
its derivatives and in some cases the new approach performs better than the LCQR with
commonly recommended number of quantiles, especially for estimating the regression
function.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Nonparametric regression is a smoothingmethod for recovering the regression function and its characteristics fromnoisy
data. Consider the general nonparametric regression model

Y = m(T ) + σ(T )ε, (1)

where Y is the response variable, T is a covariate, m(T ) = E(Y | T ), which is assumed to be a smooth non-parametric
function, and σ(T ) is a positive function representing the standard deviation. Suppose that {yi, ti}ni=1, is an independent
and identically distributed random sample, and the errors εi’s are independent and identically distributed (i.i.d.) from a
distribution G (its density denoted by g). The aim of nonparametric regression is to estimate the value of m(t0) or its
derivativesm(r)(t0) for r ≥ 1.

Due to both simplicity of computation and nice asymptotic properties, the local least squares (LLS) polynomial estimator
is one of the popular smoothing methods and has been well studied in the literature [2,4]. To be more specific, the LLS
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estimators are constructed according to the following criterion: find (â, b̂1, . . . , b̂p) so as to minimize

n
i=1


yi − a −

p
k=1

bk(ti − t0)k
2

K

ti − t0

h


, (2)

where K(·) is a smooth kernel function and h is the smoothing parameter.
Although the LLSmethod is a successful and standard choice in nonparametric fitting, itmay sufferwhen the error follows

a heavy-tailed distribution or in the presence of outliers. Specially, when the error distribution does not have finite second
moment which occurs for instance when the random error has a Cauchy distribution, the LLS is no longer consistent. Thus,
considerable efforts have been devoted to construct some robust nonparametric polynomial smoothers. One way is to use
a general function ζ (·) instead of quadratic loss in (2) to form localM-type polynomial regression estimators, say

n
i=1

ζ


yi − a −

p
k=1

bk(ti − t0)k

K

ti − t0

h


.

It is interesting to point out that the concept of robust local polynomial regression was previously introduced by
Cleveland [1], leading to the so-called LOWESS or Locally Weighted Smoothing Scatterplots. When p is chosen to be 0 and
an outlier-resistant function ζ (·) [12] is specified, minimizing the objective function above would lead to a robust local
constant estimator. See [1,9], for example. Fan et al. [6], Fan and Jiang [8], andWelsh [20] pointed out that, the localM-type
polynomial regression estimators with p ≥ 1 cannot only have advantage of reducing bias but also cope well with edge
effects and be effective methods for derivative estimation.

One of the most popular localM-type regression estimators may be the local least absolute deviation (LLAD) polynomial
estimator,

n
i=1

yi − a −

p
k=1

bk(ti − t0)k
 K

ti − t0

h


,

which can be more robust when g deviates from the normal (see [5,6]). Nevertheless, the efficiency of LLAD compared to
LLS is proportional to the density at the median. For the Gaussian error case, the distribution of the greatest interest, this
quantity is only about 0.697 (0.6374/5). And worse still, the efficiency can be arbitrarily small if g(0) is close to zero.

To overcome some of the above issues, Kai et al. [13] proposed the local composite quantile (LCQR) regression estimator
by averaging multiple local quantile regressions [21]. The LCQR estimator is based on solving

arg min
a1,...,aq,b1,...,bp

q
k=1

n
i=1

ρτk


yi − ak −

p
j=1

bj(ti − t0)j

K

ti − t0

h


, (3)

where ρτ (u) = u(τ − I(u < 0)) is the quantile regression function, and τ1, . . . , τq are the quantiles to combine. Note
that there are q + p parameters to optimize since there are q intercepts included in this formulation. Indeed, the LCQR
can be seen as a tradeoff case of LLS (q = ∞) and LLAD (q = 1) by choosing an appropriate q ∈ (1, ∞). Kai et al. [13]
showed that LCQR can be more robust in various circumstances, with little loss in efficiency compared to LLS in estimating
the regression function m(t0) or its derivative m′(t0). However, the performance of LCQR depends on the choice of q, the
number of quantiles to combine, a meta parameter which plays a vital role in balancing the performance of LLS and LLAD.

Theoretically speaking, the nice properties of LCQR lie on the assumption that the error distribution is symmetric (see
the discussions in [13]). Note that for the symmetric location model in the context of nonparametric statistics, the median
of Walsh-average of the data, which is also well known as Hodges–Lehmann estimate [11], can balance robustness and
efficiency in estimating the location parameter. This motivates us to develop a novel Walsh-average estimation procedure
that is highly efficient, robust and computationally simple. The new approach can significantly improve on classical local
polynomial regression for a wide class of error distributions and has comparable efficiency in the worst case scenario.
Theoretical analysis reveals that the asymptotic relative efficiency (ARE), measured by the asymptotic mean squared error
(or the asymptotic mean integrated squared error), of the local Walsh-average estimator in comparison with the LLS
estimator has an expression that is closely related to that of the signed-rankWilcoxon test in comparison with the t-test. By
both theoretical and numerical analysis, we find that the performance of the new approach and LCQR is at least comparable
in estimatingm(t0) orm′(t0) and in many situations the new approach performs better than the LCQR with commonly used
parameter q (5 or 9 recommended by Kai et al. [13]). In contrast with LCQR, the new approach does not need to choose the
meta parameter q and the minimization problem is just p + 1 rather than p + q as in LCQR.

The remainder of this paper is organized as follows: our proposed methodology is described in detail in Section 2,
including the estimation procedure, algorithm andmain theoretical properties. Its numerical performance is investigated in
Section 3. Several remarks draw the paper to its conclusion in Section 4. The technical details are provided in the Appendix A.
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2. Local p-polynomial Walsh-average regression

2.1. The estimation procedure

Firstly, consider the classical univariate location model,

X = θ + ε,

where θ is the location parameter and we assume that the distribution of ε is symmetric around 0. Given a sample of
observations X1, . . . , Xn, the Hodges–Lehmann estimate of θ is accordingly defined by the median of Walsh-average of
{Xi}

n
i=1, that is

θ = Mediani≤j


Xi + Xj

2


.

This is also equivalent to the minimization problem that

θ = argmin
θ


i≤j

Xi + Xj

2
− θ

 . (4)

Recall the model (1). In local p-polynomial regression we first approximatem(t) locally by a p-polynomial function

m(t) ≈ m(t0) + m′(t0)(t − t0) + · · · +
1
p!

m(p)(t0)(t − t0)p

and then fit a polynomial model locally in a neighborhood of t0. Naturally, wemay define the local weightedWalsh-average
loss function by combining the local polynomial regression and the Walsh-average minimization problem (4)

Ln(a, b1, . . . , bp) =
1

2n(n + 1)


i≤j

ei + ej
 Kh(ti − t0)Kh(tj − t0), (5)

where ei = yi − a −
p

k=1 bk(ti − t0)k and Kh(·) = K(·/h)/h. Denote the minimizer of (5) by (â, b̂1, . . . , b̂p) and the local
p-polynomial Walsh-average estimator ofm(t0) and m(r)(t0) are accordingly given by

m̂(t0) = â

m̂(r)(t0) = r!b̂r , r = 1, . . . , p.

Hereafter, we refer to these estimates as the local Walsh-average regression (LWAR) estimators.

Remark 1. Wang et al. [18] recently proposed an estimation procedure for the varying coefficient models

Y = a0(U) + XTa(U) + ε

based on local ranks. In their procedure, the location smooth function a0(U) is estimated separately by LLAD after the a(U)
is estimated by using the local rank approach. This is because the intercept is not identifiable in the global rank estimation
of linear model [10]. The symmetric assumption is not needed there because of the use of LLAD. In contrast, the LCQR and
LWAR estimators of m(t0) can achieve consistency due to the assumption that the error distribution is symmetric. See [13]
and Section 2.3 for further discussions.

2.2. Computational algorithm

Wang et al. [18] provide a pseudo-observation algorithm to implement the local rank procedure for varying coefficient
model. Similar to their idea, the local Walsh-average smoothing estimator of (a, b1, . . . , bp)T can be solved by fitting a
weighted L1 regression on n(n+1)/2 pseudo-observations {xi + xj, yi + yj} with weights wij = K((ti − t0)/h)K((tj − t0)/h),
where xi = (1, ti − t0, . . . , (ti − t0)p)T , 1 ≤ i ≤ j ≤ n. Such an algorithm is quite efficient and reliable in practice because
subroutines or functions for carrying out weighted L1 regression are available inmost of statistical software packages. In our
numerical studies, we use the function rq in the R package quantreg. The R code for implementing the proposed scheme are
available from the authors upon request. When the sample size is small, the minimization algorithm for LWAR is usually
faster than the LCQR with large q because it has less parameters. In contrast, when the sample size is large, LCQR with a
small or moderate q would be faster to implement than LWAR because there is a double-sum in the objective function for
LWAR.
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2.3. Asymptotic properties

In this subsection, we establish the asymptotic properties of the local Walsh-average regression. Denote by f (·) the
marginal function of the covariate T . We choose the kernel function K such that K is a symmetric density function with
a finite support and let

µj =


ujK(u)du and vj =


ujK 2(u)du, j = 0, 1, 2, . . . .

Without loss of generality, we assume that the variance of error distribution to be 1. Otherwise, we can conveniently
transform the error term in model (1) to [σσ(T )] × (σ−1ε) when the variance is σ 2. For the asymptotic analysis, we need
the following regularity conditions.

(C1) m(t) has a continuous (p + 2)-th derivative in the neighborhood of t0.
(C2) f (·) is differentiable and positive in the neighborhood of t0.
(C3) The conditional variance σ 2(t) is continuous in the neighborhood of t0.
(C4) The error has a symmetric distribution with a positive density g(·) which is Lipschitz continuous.

The following notations are needed to present the asymptotic properties of the local p-polynomial Walsh-average
estimator. Let S and S∗ be (p+1)×(p+1)matriceswith (l+1, k+1)-elementsµl+k+µlµk andvl+k+µlvk+µkvl+µlµkv0, 0 ≤

l, k ≤ p, respectively. Similarly, let cp and c̃p be (p+1)-variate vectorswithµp+i+1+µp+1µi andµp+i+2+µp+2µi, 0 ≤ i ≤ p,
respectively. Let T be the σ -field that is generated by {t1, . . . , tn}. Moreover, we use notation m(0)(t0) for m(t0) in certain
circumstance for simplicity.

Theorem 1. Suppose that t0 is an interior point of the support of f (·) and Conditions (C1)–(C4) hold. If h → 0 and nh2
→ ∞,

then, for 0 ≤ r ≤ p,

(i) The asymptotic conditional variance of m̂(r)(t0) is given by

var(m̂(r)(t0) | T) = eTr+1S
−1S∗S−1er+1

r!2σ 2(t0)
12τ 2f (t0)nh1+2r

+ op


1

nh1+2r


,

where τ =

g2(x)dx;

(ii) If p − r is odd, then the asymptotic conditional bias of m̂(r)(t0) is given by

bias(m̂(r)(t0) | T) = eTr+1S
−1cp

r!
(p + 1)!

m(p+1)(t0)hp+1−r
+ op(hp+1−r).

If p − r is even, then

bias(m̂(r)(t0) | T) = eTr+1S
−1c̃p

r!
(p + 1)!


m(p+2)(t0) + (p + 2)m(p+1)(t0)

f ′(t0)
f (t0)


hp+2−r

+ op(hp+2−r),

where ek = (0, . . . , 0, 1, 0, . . . , 0)T with the kth element being one;
(iii) Furthermore, conditioning on T, we have

√

nh1+2r{m̂(r)(t0) − m(r)(t0) − bias(m̂(r)(t0))} → N


0, eTr+1S

−1S∗S−1er+1
r!2σ 2(t0)
12τ 2f (t0)


,

in distribution as n → ∞.

2.4. Asymptotic relative efficiency

In this subsection, we study the asymptotic relative efficiency of the localWalsh-average estimators with that of the local
least squares estimators for estimating m(t0) and m′(t0). Parallel to [13], we also consider to use the local linear (p = 1)
and quadratic (p = 2) Walsh-average regression for estimating the regression function m(·) and the derivative function
m′(·), respectively. Similar to LCQR and LLS [13,3], we will see these two LWAR estimators enjoy the ideal feature that
the asymptotic conditional biases of the estimators do not depend on f (·). We summarize the result into the following
corollaries. We only provide some key points regarding the proofs in the Appendix A since they follow from Theorem 1 and
some straightforward algebra.

Hereafter we denote the local estimators based on least squares, least Walsh-average and least composite quantile
regression with q quantiles by m̂LS, m̂WA and m̂CQRq , respectively. The dependence on the degrees of polynomial in each
estimator is not made explicit in notation for simplicity, which should not cause any confusion. We only need keep in mind
thatm(t0) andm′(t0) are respectively estimated through local linear and quadratic regression for all the methods.
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Corollary 1. Suppose the assumptions given in Theorem 1 all hold. Then, the asymptotic conditional bias and variance of the local
linear Walsh-average estimator m̂WA(t0) are given by

bias{m̂WA(t0) | T} =
1
2
m′′(t0)µ2h2

+ op(h2),

var{m̂WA(t0) | T} =
1
nh

v0σ
2(t0)

12τ 2f (t0)
+ op


1
nh


.

Furthermore, conditioning on T, we have

√
nh

m̂WA(t0) − m(t0) −

1
2
m′′(t0)µ2h2


→ N


0,

v0σ
2(t0)

12τ 2f (t0)


,

in distribution as n → ∞.

Corollary 2. Suppose the assumptions given in Theorem 1 all hold. Then, the asymptotic conditional bias and variance of the local
quadratic Walsh-average estimator m̂′

WA(t0) are given by

bias{m̂′

WA(t0) | T} =
1
6
m′′′(t0)

µ4

µ2
h2

+ op(h2),

var{m̂′

WA(t0) | T} =
1

nh3

v2σ
2(t0)

12τ 2µ2
2f (t0)

+ op


1

nh3


.

Furthermore, conditioning on T, we have

√

nh3


m̂′

WA(t0) − m′(t0) −
1
6
m′′′(t0)

µ4

µ2
h2


→ N

0,

v2σ
2(t0)

12τ 2µ2
2f (t0)


,

in distribution as n → ∞.

Remark 2. It is worth noting that the symmetric distribution assumption is no longer needed for the asymptotic normality
of m̂′

WA(t0) given in Corollary 2. From the proof of Corollary 2, we can see that without that assumption, the asymptotic bias
remains the same and the asymptotic variance is given by

1
nh3

ξv2σ
2(t0)

δ2µ2
2f (t0)

,

where δ =

g(−u)g(u)du and ξ =


(G(−u) − 1/2)2g(u)du. Under the symmetric assumption, we have δ = τ and

ξ = 1/12 and consequently the asymptotic variance in Corollary 2 follows. Thus, the symmetric assumption is only used for
asymptotic relative efficiency comparison between LCQR and LWAR but the consistency and asymptotic normality of local
quadratic Walsh-average for estimating m′ still hold without this assumption. This feature is mainly due to


uK(u)du = 0

and also shared by LCQR as mentioned in [13].

By two corollaries above, we now are ready to compare the estimation efficiency of LWAR estimators with that of LLS
estimators for estimatingm(t0) andm′(t0). The local linear least squares estimator form(t0) has mean square error (MSE)

MSE(m̂LS(t0)) =


1
2
m′′(t0)µ2

2

h4
+

1
nh

v0σ
2(t0)

f (t0)
+ op


h4

+
1
nh


,

and hence

hopt
LS (t0) =


v0σ

2(t0)
f (t0)[m′′(t0)µ2]

2

1/5

n−1/5, (6)

in which hopt
LS (t0) is the optimal bandwidth minimizing the asymptotic MSE for estimating m(t0). The local Walsh-average

estimator for m(t0) has MSE

MSE(m̂WA(t0)) =


1
2
m′′(t0)µ2

2

h4
+

1
nh

v0σ
2(t0)

12τ 2f (t0)
+ op


h4

+
1
nh


,

and correspondingly

hopt
WA(t0) =


v0σ

2(t0)
12τ 2f (t0)[m′′(t0)µ2]

2

1/5

n−1/5. (7)
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Table 1
The asymptotic efficiency comparisons of LLS, LLAD, LCQR and LWAR for estimating m and m′ . t(d): student’s t-distribution with d degrees of freedom.
T (ρ; σ): Tukey contaminated normal with CDF F(x) = (1 − ρ)Φ(x) + ρφ(x/σ) where Φ(x) is the CDF of a standard normal distribution and ρ ∈ [0, 1] is
the contamination proportion.

Error ARE(LLS, LLAD) ARE(LLS, LCQR5) ARE(LLS, LCQR9) ARE(LLS, LWAR)

m m′ m m′ m m′ m m′

N(0, 1) 0.697 0.773 0.934 0.945 0.966 0.963 0.964 0.974
Laplace 1.741 1.486 1.220 1.281 1.155 1.268 1.383 1.261
t(3) 1.472 1.318 1.597 1.441 1.524 1.444 1.670 1.443
t(4) 1.099 1.070 1.265 1.204 1.238 1.210 1.310 1.213
T (0.05; 3) 0.864 0.901 1.130 1.087 1.157 1.102 1.154 1.108
T (0.10; 3) 0.999 0.999 1.271 1.187 1.279 1.198 1.289 1.199
T (0.05; 10) 2.696 2.031 3.458 2.423 3.478 2.447 3.489 2.442
T (0.10; 10) 4.051 2.716 4.913 3.145 4.705 3.143 4.845 3.109

This allows us to calculate the local asymptotic relative efficiency

MSEopt(m̂LS(t0))
MSEopt(m̂WA(t0))

→ (12τ 2)4/5,

as n → ∞, where we use MSEopt to denote the MSE evaluate at its optimal bandwidth. Alternatively, we may consider the
ARE obtained by comparing the MISE, which is defined as MISE(h) =


E[m̂(t0) − m(t0)]2w(t)dt with a weighted function

w(·). This provides a global measurement. With the theoretical optimal bandwidths, we can obtain the ARE based on MISE
is still

ARE(m̂LS, m̂WA) = (12τ 2)4/5.

Similarly, by Corollary 2, we can derive the ARE of the local quadratic Walsh-average estimator with respect to local
quadratic least squares estimator is given by

ARE(m̂′

LS, m̂
′

WA) = (12τ 2)4/7.

Note that the above ARE is essentially related to the ARE of the signed-rank Wilcoxon test in comparison with the t-test
and it has a lower bound 0.8896 (0.8644/5; cf., Section 1.7.2 in [10]). It is also worth noting that m̂′

WA should have similar
performance to the LCQR with infinity quantiles, say, m̂′

CQR∞
, because they have the same asymptotic MSE and relative

efficiency with respect to LLS according to Theorem 4 in [13] and Corollary 2.
The ARE of local linear Walsh-average versus local linear least squares, together with that of LCQR and LLAD, are

documented in Table 1 for a number of distributions, including some commonly used distributions such as the normal
distribution, t distribution, and Tukey’s contaminated normal distribution. Note that the values for LCQR are just copied
from the values given in Table 1 of [13]. From this table, LWAR is asymptotically much more efficient than LLAD for the t
distribution and Tukey’s contaminated normal model. Compared to LLS, LWAR is almost as efficient for the normal case,
but can much more efficient for heavy tailed distributions, such as t and Tukey’s contaminated normals. Regarding the
comparison between LWAR and LCQR, they have very similar AREs in estimating derivatives. The LWAR outperforms LCQR
with q = 5 or 9 in the cases of t and Laplace distributions when the nonparametric function m is of interest, whereas they
are comparable under Tukey contaminated normals.

2.5. Bandwidth selection

As the same with any nonparametric regression procedure, an important choice to be made is the amount of local
averaging performed to obtain the regression estimate. For the local polynomial regression estimator, bandwidth selection
rules were considered in [4,16], among others. Although we have derived the asymptotically optimal bandwidth for the
LWAR estimator as in (7), it is difficult to use the plug-in method to estimate it due to many unknown quantities. Kai
et al. [13] suggest to use the so-called ‘‘short-cut’’ strategy to obtain a neat but reasonable bandwidth. In this paper, we
adopt their method and recommend the following bandwidth selection procedure. From (6) and (7), for estimating the
regression functionm(·), we see that

hopt
WA = (12τ 2)−1/5hopt

LS . (8)

Thus, we can firstly use existing bandwidth selectors [2] to estimate hopt
LS . The coefficient τ can be robustly estimated by

using the approach given in [10] and easily be estimated by the function wilcoxontau in the R package [17]. Finally, we plug
in this estimator into (8) to obtain the bandwidth for the LWAR estimator. For estimating the derivativem′(·) through local
quadratic Walsh-average regression, a similar strategy could be employed. It is worth noting that the short-cut strategy for
bandwidth selectionmay not workwell if the error variance is very large or infinite. In such situations, onemay consider the
so-called ‘‘pilot’’ selector [4] which is a better choice than the short-cut strategy. Readers may refer to [13] for some related
discussion.
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Table 2
Simulation results for comparison of RASEs for estimatingm.

Method LLAD LCQR5 LCQR9 LWAR
Model (I)

Normal 0.695(0.290) 0.931(0.119) 0.959(0.089) 0.974(0.097)
Laplace 1.345(0.648) 1.109(0.199) 1.072(0.135) 1.202(0.233)
t(3) 1.172(0.551) 1.275(0.502) 1.171(0.336) 1.431(0.953)
T (0.05, 3) 0.969(0.511) 1.069(0.228) 1.062(0.174) 1.105(0.230)
T (0.05, 10) 2.001(1.089) 2.155(1.532) 1.524(0.836) 2.360(1.370)

Model (II)

Normal 0.683(0.289) 0.957(0.170) 0.978(0.129) 0.962(0.182)
Laplace 1.314(0.766) 1.194(0.328) 1.141(0.252) 1.281(0.452)
t(3) 1.417(0.968) 1.597(1.032) 1.425(0.817) 1.633(1.561)
T (0.05, 3) 0.865(0.480) 1.179(0.625) 1.151(0.472) 1.170(0.418)
T (0.05, 10) 2.323(1.408) 3.166(2.482) 2.418(1.701) 3.634(3.188)

Note: standard deviations are given in parentheses.

Table 3
Simulation results for comparison of RASEs for estimatingm′ .

Method LLAD LCQR5 LCQR9 LWAR
Model (I)

Normal 0.797(0.244) 0.952(0.109) 0.961(0.102) 0.985(0.052)
Laplace 1.323(0.528) 1.101(0.168) 1.103(0.157) 1.142(0.130)
t(3) 1.163(0.616) 1.210(0.458) 1.213(0.453) 1.212(0.423)
T (0.05, 3) 0.934(0.328) 1.048(0.177) 1.053(0.173) 1.080(0.097)
T (0.05, 10) 1.507(0.886) 1.767(0.761) 1.753(0.754) 1.849(1.072)
χ2
2 0.989(0.821) 1.474(1.121) 1.469(0.999) 1.466(0.986)

Model (II)

Normal 0.627(0.784) 0.938(0.359) 0.946(0.309) 0.971(0.380)
Laplace 1.301(1.237) 1.206(0.679) 1.205(0.641) 1.184(0.804)
t(3) 1.321(1.801) 1.610(1.756) 1.598(1.805) 1.336(1.006)
T (0.05, 3) 0.829(0.892) 1.227(2.061) 1.213(1.879) 1.048(0.644)
T (0.05, 10) 2.056(2.184) 3.059(5.670) 3.029(5.343) 2.481(3.781)
χ2
2 1.033(0.858) 1.646(1.535) 1.628(1.477) 1.607(1.025)

Note: standard deviations are given in parentheses.

3. Numerical studies and examples

3.1. Simulation examples

We study the finite-sample performance of LWAR in this section via a simulation study. Throughout this section we
use the Epanechnikov kernel and 1000 replications for each considered example. For a clear comparison, we adopt all the
settings used in [13]. To be more specific, the bandwidth for the LLS method is chosen by a plug-in bandwidth selector [16]
while the short-cut strategy illustrated in Section 2.5 is considered for LWAR. One example is the regression

Y = sin(2T ) + 2 exp(−16T 2) + 0.5ε,

where T follows N(0, 1). We estimate m(·) and m′(·) over [−1.5, 1.5]; The other example is the one with heteroscedastic
errors, with the form

Y = T sin(2πT ) + σ(T )ε,

where T follows U(0, 1), σ (t) = [2 + cos(2π t)] /10. In this example, we estimatem(·) and m′(·) over [0, 1].
Five error distributions for ε are considered: N(0, 1), Laplace, t(3), Tukey contaminated normal T (0.05; 3) and

T (0.05; 10). The performance of estimators is assessed via the average square errors (ASE) defined on 200 equally spaced
grid points within given estimation intervals. We summarize simulation results by using the ratio of average square errors,
RASE(m̂) = ASE(m̂LS)/ASE(m̂) for an estimator m̂, where m̂LS is the LLS estimator. Kai et al. [13] have shown that the LCQR is
an efficient and safe alternative to LLS in finite-sample cases and thus should be an ideal benchmark in our comparison. The
means and standard deviations (in parentheses) of RASEs for estimating the function m and its derivative are summarized
in Tables 2 and 3, respectively. In the simulation studies in [13], LCQR5 and LCQR9 seem to have better overall performance.
So, we only present the results of these two estimators for the comparison use and all the values regarding LCQR given in
this table are just copied from [13]. The results for the LLAD estimator are also presented in these two tables.

A few observations can be made from Tables 2 and 3. Firstly, the proposed LWAR method is highly efficient for all the
distributions under consideration. Its efficiency compared to LLS is high and its RASEs are all greater than 1 except for
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Fig. 1. (a) Scatter plot of data; (b) Residuals of local least squares regression.

Fig. 2. Estimated regression function: (a) Using the whole data; (b) Using the data removing the three outliers.

the normal distribution. Even for normal, its RASEs are merely slightly smaller than 1. Secondly, the proposed bandwidth
selection method for choosing h performs satisfactorily and conforms to the asymptotic results shown in Table 1. In other
words, the theoretical ARE and simulated RASE of LWAR are always quite matched. Thirdly, the LWAR performs better than
LCQRs with q = 5 and q = 9 in most situations when estimating m, while the LCQR outperforms LWAR for estimating the
derivative in the heteroscedastic example. Moreover, both the LWAR and LCQR generally outperform the LLAD to certain
degree inmost cases. In addition, we add an asymmetric example in Table 3, the chi-square distributionwith two degrees of
freedom, to examine the finite sample performance of m̂′ since the symmetric assumption is no longer required as we have
mentioned before. The errors are centralized so that they have zero expectation. We can see that both the LCQR and LWAR
perform significantly better than LLS and LLAD as we can expect and the two methods provide similar estimation ability in
such case. We also examine other error variance magnitudes for both models and the conclusion is similar.

3.2. A real-data example

Weapplied ourmethod to the Bostonhousing data,whichhas beenwidely studied in various contexts in the literature, for
instance, [7,19], etc. The Boston housing data contains 506 observations, and is publicly available in the R packagemlbench.
The response variable Y is the median value of owner-occupied homes (MEDV) in each of the 506 census tracts in the
Boston Standard Metropolitan Statistical Areas, and there are thirteen predictor variables. In this study, we are interested in
the relationship between MEDV and one of the most important predictors, the percentage of lower status of the population
(LSTAT). The scatter plot of data (MEDV versus LSTAT) is depicted in Fig. 1(a). We first estimate the regression function
by using the local least squares estimator with the plug-in bandwidth selector. The residuals of LLS regression are shown
in Fig. 1(b). Then we use the bandwidth selection method provided in Section 2.5 to select the bandwidth for LWAR. The
unknown parameter τ in (8) can be estimated by using those residuals from LLS. The bandwidths selected are 2.09 and 2.22
for LLS and LWAR, respectively, when the regression function is of interest. For derivative estimation, the bandwidths are
given by 3.55 and 3.71, respectively. The resulting estimated functions and derivative functions are displayed in Figs. 2(a)
and 3(a), respectively.

It is readily seen from Figs. 2(a) and 3(a) that the two curves in each panel have similar patterns. The difference between
the LLS estimates and the LWAR estimates is considerably large when the LSTAT is around (7,10). This is not surprising to us
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Fig. 3. Estimated derivative function: (a) Using the whole data; (b) Using the data removing the three outliers.

because from the scatter plot we can observe that there are three possible outlier observations, (7.44, 50), (8.88, 50) and
(9.53, 50), which have been symboled by ‘‘diamond’’. These three outlying observations resulted in rather large residuals
when the LLSmethod is employed, as shown in Fig. 1(b) (the corresponding three residuals are also symboled by ‘‘diamond’’).

To appreciate the robustness of LWAR and the influence of these three possible outliers, we obtain the LWAR and the LLS
estimates after excluding these three possible outliers. The resulting estimates are displayed in Figs. 2(b) and 3(b). We can
clearly see that the LWAR estimate remains almost the same, whereas the LLS estimate changes by certain degrees when
LSTAT is around (7,10). Besides, after excluding these three outlying observations, the LLS estimate becomes much more
close to the LWAR estimate.

4. Discussion

Both the LWAR and LCQR require a fundamental assumption that the error distribution is symmetric. Without such a
condition their asymptotic biases will become a non-vanishing term. This is obviously stronger than the assumption in the
situation when using the LLAD or LLS. This is the underlying key to the successes of LWAR and LCQR. Of course, such a
condition is not too limited and could be valid in practice. A direct application of LWAR is to estimate the location part
a0(U) in the varying-coefficient model mentioned in Remark 1 instead of LLAD after the a(U) is estimated by using [18]’s
local rank approach. In such situation, the asymptotic relative efficiencies with respect to the LS based method for both the
location and coefficient parts would be the same. In addition, as discussed by Remark 2, the symmetric error distribution
assumption is no longer neededwhen estimating the derivativesm′(·). How to extend LWAR to other models, such as partly
linear models and varying coefficient models, and how about the assumptions of consistency, are questions left for future
research.
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Appendix A. Proofs of theorems

The proof follows along the same lines of the proof of Theorem 3.2 of [18], although part of details differs much. Here
we only present a sketch of proof of theorems. A detailed technical report is available from an on-line supplemental
file. Throughout this section, we will use the following notations for ease of exposition. Denote γn = (nh)−1/2, β =

(a, b1, . . . , bp)T ,

zi =


1,

ti − t0
h

, . . . ,


ti − t0

h

pT
,

β∗
= γ −1

n


a − m(t0), h


b1 − m′(t0)


, . . . , hp p!bp − m(p) /p!T ,

∆i = m(ti) − m(t0) −

p
k=1

1
k!
m(k)(t0).
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With these notations, we rewrite Ln(β) as follow

L∗

n(β
∗) =

1
2n(n + 1)


i≤j

σ(ti)εi + σ(tj)εj + ∆i + ∆j − γn(zi + zj)Tβ∗
 Kh(ti − t0)Kh(tj − t0).

Moreover, we use ωn(β
∗) to denote the gradient function of L∗

n(β
∗). More specifically,

ωn(β
∗) = ∇L∗

n(β
∗)

= −
γn

2n(n + 1)


i≤j

sgn[σ(ti)εi + σ(tj)εj + ∆i + ∆j − γn(zi + zj)Tβ∗
] × (zi + zj)Kh(ti − t0)Kh(tj − t0),

where sgn(·) is the sign function.
In order to prove the theorems, we firstly state a few necessary lemmas.

Lemma 1. Suppose that Conditions (C1)–(C4) hold, h → 0, and nh2
→ ∞. Then,

γ −1
n [ωn(β

∗) − ωn(0)] = 4τ f 2(t0)σ−1(t0)γnSβ∗
+ op(1).

Proof. Let Un = γ −1
n [ωn(β

∗) − ωn(0)] = [2n(n + 1)]−1
i≤j Wn(di, dj), where

Wn(di, dj) =

sgn[σ(ti)εi + σ(tj)εj + ∆i + ∆j] − sgn[σ(ti)εi + σ(tj)εj + ∆i + ∆j

− γn(zi + zj)Tβ∗
]


× (zi + zj)Kh(ti − t0)Kh(tj − t0),

and di = (ti, ϵi)T . Clearly, Un = [2n(n + 1)]−1
i≤j Wn(di, dj) is of the form of U-statistic since Wn(·, ·) is symmetric in its

arguments. Note that

E[∥Wn(di, dj)∥
2
] ≤ 4h−4E


[zi + zj]T [zi + zj]K 2


ti − t0

h


K 2

tj − t0

h


= O(h−2) = o(n),

by using the assumption nh2
→ ∞, where ∥ · ∥ denotes the Euclidean norm. Thus, Un = E[Wn(di, dj)] + op(1) by Lemma

A.1 of [18]. Note that

E[Wn(di, dj)] = −2h−2E

 
G


∆i + ∆j + ϵ

σ (ti)


− G


−γn(zi + zj)Tβ∗

+ ∆i + ∆j + ϵ

σ (ti)



× g


ϵ

σ (tj)


d


ϵ

σ (tj)


[zi + zj]K


ti − t0

h


K

tj − t0

h



= 2h−2γnE


σ−1(ti)g


σ(tj)ϵ + ∆i + ∆j

σ(ti)


g(ϵ)dϵ[zi + zj][zi + zj]T

× K

ti − t0

h


K

tj − t0

h


β∗(1 + o(1))

= 4τ f 2(t0)σ−1(t0)γnSβ∗
+ o(1),

where the last equality is followed by a simple calculation similar to Parzen [14]. �

Moreover, we consider the following quadratic function:

Bn(β
∗) = γ −1

n β∗Tωn(0) + 2τ f 2(t0)σ−1(t0)γnβ
∗TSβ∗

+ γ −1
n L∗

n(0).

Lemma 2. Suppose that Conditions (C1)–(C4) hold. Then for any ε > 0 and c > 0

P


sup

∥β∗
∥≤c

γ −1
n L∗(β∗) − Bn(β

∗)
 ≥ ε


→ 0.

Proof. By using Lemma 1, we have

∇[γ −1
n L∗

n(β
∗) − Bn(β

∗)] = γ −1
n [ωn(β

∗) − ωn(0)] − 4τ f 2(t0)σ−1(t0)γnSβ∗
= op(1).

Using similar arguments of diagonal subsequencing and convexity in the proof of Theorem A.3.7 of [10], we can complete
the proof of this lemma. Details are omitted. �
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Proof of Theorem 1. Denote β̂ be the minimizer of L∗
n(β

∗) and β̃ be the minimizer of Bn(β
∗). Since the convex

function γ −1
n


L∗
n(β

∗) − L∗
n(0)


converges in probability to the convex function 2τ f 2(t0)σ−1(t0)γnβ

∗TSβ∗
+ γ −1

n β∗Tωn(0)
(by Lemma 2), it follows from the convexity lemma [15] that,

β̂ = β̃ + op(1) = −γ −2
n [4τ f 2(t0)σ−1(t0)]−1S−1ωn(0) + op(1). (A.1)

We next establish the asymptotic normality of β̂. Let us re-express −γ −2
n ωn(0) as

−γ −2
n ωn(0) = γ −2

n
γn

n(n + 1)


i≤j

[I(σ (ti)εi + σ(tj)εj + ∆i + ∆j > 0) − 1/2]ζij(t0)

=
1

γnn(n + 1)


i≤j

[I(σ (ti)εi + σ(tj)εj > 0) − 1/2]ζij(t0)

+
1

γnn(n + 1)


i≤j

[I(σ (ti)εi + σ(tj)εj + ∆i + ∆j > 0) − I(σ (ti)εi + σ(tj)εj > 0)]ζij(t0)

:= ωn1(0) + ωn2(0),

where we denote ζij(t0) = (zi + zj)Kh(ti − t0)Kh(tj − t0) for simplicity.
We first prove that

ωn1(0) → Np+1


0,

4
3
f 3(t0)v0S∗


,

in distribution as n → ∞. Note that we can write ωn1(0) =
√
n[n(n + 1)]−1

i≤j Hn(di, dj), where

Hn(di, dj) = h−3/2
[I(σ (ti)εi + σ(tj)εj > 0) − 1/2]ζij(t0).

Similarly to the arguments in the proof of Lemma 1, it can be shown that E∥Hn(di, dj)∥
2

= o(n). Furthermore, according to
the symmetric of the error distribution, we have E[Hn(di, dj)] = 0. This implies that ωn1 = n−1n

i=1 rn(di) + op(1), where
rn(di) = E[Hn(di, dj) | di]. Then

rn(di) = E[Hn(di, dj) | di]

= h−3/2

G


σ(ti)εi
σ(tj)


− 1/2


K

ti − t0

h


× E


(zi + zj)K


tj − t0

h


| di


= h−1/2


G


σ(ti)εi
σ(tj)


− 1/2


K

ti − t0

h


×


K(t)f (t0 + th)dt


zi +


E(zj | tj = t0 + th)K(t)f (t0 + th)dt


.

Furthermore,

E[rn(di)rn(di)
T
] =

 
G


ϵ

σ (tj)


− 1/2

2
dG


ϵ

σ (ti)


h−1E


K 2

ti − t0

h


×


K(t)f (t0 + th)dt


zi +


E(zj | tj = t0 + th)K(t)f (t0 + th)dt


×


K(t)f (t0 + th)dt


zTi +


E(zTj | tj = t0 + th)K(t)f (t0 + th)dt



→
4
3
f 3(t0)v0S∗.

By applying the Lindeberg–Feller central limit theorem, we can obtain the asymptotic normality of ωn1(0).
Next, we show that

ωn2(0) =
4hp+1

γn
[τ f 2(t0)σ−1(t0)cpm(p+1)(t0) + o(1)] + op(1),

when p − r is odd. Similarly to the above procedure, we rewrite

ωn2(0) = [n(n + 1)]−1

i≤j

H∗

n (di, dj),
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where

H∗

n (di, dj) = nh−1γn[I(σ (ti)εi + σ(tj)εj + ∆i + ∆j > 0) − I(σ (ti)εi + σ(tj)εj > 0)]ζij(t0).

Note that

∆i + ∆j =
1

(p + 1)!
((ti − t0)p+1

+ (tj − t0)p+1)m(p+1)(t0)

+
1

(p + 2)!
((ti − t0)p+2

+ (tj − t0)p+2)m(p+2)(t0) + o((ti − t0)p+2) + o((tj − t0)p+2).

Similarly, it can be shown that ωn2(0) = E[H∗
n (di, dj)] + op(1). Furthermore,

E[H∗

n (di, dj)] = nh−1γnE
 

G


ϵ + ∆i + ∆j

σ(ti)


− G


ϵ

σ (ti)


g


ϵ

σ (tj)


d


ϵ

σ (tj)


× ζij(t0)


= nh−1γn[τ + O(h)]E


σ−1(ti)(∆i + ∆j) × ζij(t0)


(1 + o(1))

=
4hp+1

γn
[τ f 2(t0)σ−1(t0)cpm(p+1)(t0) + o(1)] + op(1).

Finally, by a similar procedure, we also have

ωn2(0) =
4hp+2

γn


τ f 2(t0)σ−1(t0)c̃p


m(p+2)(t0) + (p + 2)m(p+1)(t0)

f ′(t0)
f (t0)


+ o(1)


+ op(1)

when p − r is even. By using the approximation given in (A.1), we obtain the theorem. �

Proof of Corollary 1. In local linearWalsh-average estimation,m(t) ≈ m(t0)+m′(t0)(t−t0) is used. Note that when p = 1,

S =


2 0
0 µ2


, S∗

=


4v0 0
0 v2


so, by Theorem 1,

var{m̂WA(t0) | T} =
1
nh

v0σ
2(t0)

12τ 2f (t0)
+ op


1
nh


.

Furthermore, note that c1 = (µ2, µ4 + µ2), then

bias{m̂WA(t0) | T} =
1
2
m′′(t0)µ2h2

+ op(h2).

Thus, the corollary is immediately obtained. �

Proof of Corollary 2. For general purpose, we highlight here the results of m̂′

WA(t0) without the symmetric distribution
assumption. Recall the notations δ and ξ defined in Remark 2. Without the symmetric error distribution, taking the same
procedure as in the proof of Theorem 1, we have

β̂ = β̃ + op(1) = −γ −2
n [4δf 2(t0)σ−1(t0)]−1S−1ωn(0) + op(1) (A.2)

and

ωn1(0) → N3

c, 16ξ f 3(t0)v0S∗


,

ωn2(0) =
4h3

γn
[δf 2(t0)cpm′′′(t0) + o(1)] + op(1),

where c = E[ωn1(0)] = (a, 0, b)T , and a, b are some constants. Note that when p = 2,

S =

 2 0 2µ2
0 µ2 0

2µ2 0 µ4 + µ2
2

 , S∗
=

 4v0 0 2v2 + 2µ2v0
0 v2 0

2v2 + 2µ2v0 0 v4 + 2µ2v2 + µ2
2v0,


and c2 = (0, µ4, 0)T . By (A.2) and simple calculations, we have

bias{m̂′

WA(t0) | T} =
1
6
m′′′(t0)

µ4

µ2
h2

+ op(h2),

var{m̂′

WA(t0) | T} =
1

nh3

ξv2σ
2(t0)

δ2µ2
2f (t0)

+ op


1

nh3


.
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On the other hand, when the error distribution is symmetric, δ = τ and ξ = 1/12, and then the corollary follows from
Theorem 1. �

Appendix B. Supplementary data

Supplementary material related to this article can be found online at doi:10.1016/j.jmva.2011.12.003.
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