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a b s t r a c t

Recently,monitoring the processmean and variability simultaneously formultivariate pro-
cesses by using a single control chart has drawn some attention. However, due to the com-
plexity of multivariate distributions, existing methods in univariate processes cannot be
readily extended to multivariate processes. In this paper, we propose a new single con-
trol chartwhich integrates the exponentiallyweightedmoving average (EWMA) procedure
with the generalized likelihood ratio (GLR) test for jointly monitoring both the multivari-
ate process mean and variability. Due to the powerful properties of the GLR test and the
EWMA procedure, the new chart provides quite robust and satisfactory performance in
various cases, including detection of the decrease in variability and individual observation
at the sampling point, which are very important cases in many practical applications but
may not be well handled by existing approaches in the literature. The application of our
proposed method is illustrated by a real data example in ambulatory monitoring.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been a resurgent interest in multivariate control charts. Given the voluminous research in
various areas of univariate control charts, research in multivariate control charts is perhaps overdue. This is likely to be so
because, inmany industrial applications, the quality of a product is often related to several correlated quality characteristics.
Several authors have also pointed out that multivariate control charts are an important area of research for the new century
(Woodall and Montgomery, 1999; Stoumbos et al., 2000). The purpose of this paper is to contribute to this development.
Multivariate process measurement benefits from the use of inherent multivariate methods rather than a collection

of univariate charting methods applied to the individual components. The development of multivariate control charts
originates from thework byHotelling (1947). Recentworks have focusedmostly on developing control charts formonitoring
small changes in the process mean. See Woodall and Ncube (1985), Healy (1987), Crosier (1988), Pignatiello and Runger
(1990) and Hawkins (1991, 1993) for accounts of multivariate cumulative SUM (MCUSUM) control charts and Lowry et al.
(1992), Runger and Prabhu (1996) and Linderman and Love (2000) for accounts of multivariate exponentially weighted
moving average (MEWMA) control charts. Qiu and Hawkins (2001, 2003) proposed a rank-based multivariate CUSUM
procedure to detect a shift in the process mean. Other recent works focus on developing procedures for monitoring the
process variability. See Alt and Bedewi (1986), Tang and Barnett (1996a,b), Liu (1995), Chan and Zhang (2001), Yeh et al.
(2003, 2004, 2005) and Hawkins and Maboudou-Tchao (2008) for example. Generally, the process mean and variance may
change simultaneously during themonitoring period. However, monitoring small changes in themultivariate process mean
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and variability simultaneously has received little attention in the literature. The few exceptions include the following.
The traditional combination of the χ2 chart and the |S| chart; Yeh and Lin (2002), in which a box chart was proposed;
and Yeh et al. (2003), in which a combined EWMA M-chart and V-chart was developed. Chen et al. (2005) proposed a
Max-EWMA (called MEW for abbreviation throughout this paper) chart for monitoring both location and dispersion; Khoo
(2005) proposed a bivariate control chart based on the T 2 and |S| statistics, but this chart is slow to react to small process
shifts. Reynolds and Cho (2006) proposed a combination of MEWMA control charts based on sample means and on the sum
of the squared deviation from target. Hawkins andMaboudou-Tchao (2008) considered a combination of theMEWMA chart
and the multivariate exponentially weighted moving covariance matrix (MEC) chart, which is called the MAC chart here.
Alt (1985) gave a review of multivariate quality control charts and pointed out that an important area worth further

research was to develop a single control chart for the simultaneous monitoring of both the process location and dispersion.
Therefore, it is desirable to construct a single control chart that can not only detect changes in the process mean, but also
is sensitive to the shifts in the process variability. When a single chart is used, the design and operation of the monitoring
scheme can be greatly simplified compared to the combination-type chart. Cheng and Thaga (2006) gave an overview of
control charts in an effort to use only one chart to simultaneously monitor both the process location and spread in the
univariate case. However, due to the complexity of multivariate distributions, these methods cannot be readily extended to
multivariate cases. The purpose of this paper is to fulfill this demand.
In this paper, ourmotivation is to develop a new control chartwhichmaintains the ability to simultaneouslymonitor, on a

single chart, the process mean and process variability for multivariate processes. Our new chart is based on the generalized
likelihood ratio (GLR) test and integrates the EWMA procedure. Note that Zhang et al. (2010) proposed a single control
chart based on the GLR that simultaneously monitors the process mean and process variability, but it is based on univariate
processes. Hawkins and Deng (2009) also look at the GLR-based control chart. Hawkins and Maboudou-Tchao (2008) also
considered the GLR; the problem they faced was to monitor the covariance matrix of a multivariate normal process. Our
proposed new chart has the following good features. (1) It can be easily designed and constructed because no additional
parameter is involved except for the smoothing constant and an upper control limit. (2) Due to the advantages of the classical
GLR test, it is quite robust and sensitive to various types of shifts. (3) It is able to handle the case when the sample size is
one. The properties of the new chart with respect to the average run length (ARL), which is defined as the average number
of samples before the control chart signals an out of control condition, are studied and we find that the new chart is quite
sensitive in detecting small and moderate changes in a process.
The rest of this paper is organized as follows. In the next section, our proposed control chart is presented. Then the

performance of the proposed chart, from the perspective of the ARL, is evaluated using Monte Carlo simulations and
compared to that of some other existing procedures. In the following section, the application of our proposed method is
illustrated by a real data example in ambulatory monitoring. In the last section, a conclusion and future research directions
are presented.

2. The new chart for monitoring both the mean and the variability

Let g = (g1, . . . , gp)′ be a random vector that represents p correlated quality characteristics from a process of interest.
When the process is in control, it is assumed that the distribution of g isN(µ0,60), a p-dimensional normal distributionwith
mean vectorµ0 and covariance matrix60, and that bothµ0 and60 are known or their values can be estimated at the end of

Phase I process control. Therefore, one can find an appropriate transformation of g , X = 6
−
1
2

0 (g − µ0), such that in general

X is distributed as N(µ,6) when the process is in control, where µ = 6
−
1
2

0 (µ0 − µ0) = 0, 6 = 6
−
1
2

0 606
−
1
2

0 = Ip and Ip
is a p × p identity matrix. In the subsequent discussion, the proposed charts will be developed based on the transformed
variable X.
For notational purposes, let Xt1,Xt2, . . . ,Xtn, t = 1, 2, . . . , be the tth sample of size n drawn from the process. Also

we assume that the random vectors Xtj, j = 1, . . . , n, are independent of each other, both within the sample and between
samples. Let X̄t =

∑n
j=1 Xtj/n and St =

∑n
j=1(Xtj − X̄t)′(Xtj − X̄t)/n be the tth sample mean vector and sample covariance

matrix, respectively.
Next, consider the following hypothesis test.

H0 : µ = 0 and 6 = Ip versus H1 : µ 6= 0 or 6 6= Ip.

It is relatively easy to obtain the generalized likelihood ratio statistic as follows:

LRt = np(a− log g − 1)+ n‖X̄t‖2, (1)

where a = 1
p tr(St), g = (|St |)

1
p , and | · |, tr(·) denote the determinant and trace of a square matrix and ‖ · ‖ represents the

Euclidean distance of a vector.
It can be easily checked that LRt

L
→ χ21

2 p(p+3)
as n→∞. Obviously, a large LRt leads to rejection of the null hypothesis.

The terms ‖X̄t‖2 and a − log g contribute to the changes of the process mean and variance, respectively. Unlike other test
statistics in the literature, LRt is a likelihood ratio derived statistic under the setting in which the process mean vector and
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covariance matrix may change, and thus it naturally adapts to be sensitive to various types of shift combinations. We can
give a brief explanation of why the new chart has the ability to detect shifts for p = 2.

Suppose thatµ = (µ1, µ2)′ and the variance–covariancematrix6 =

(
σ 21 ρσ1σ2

ρσ1σ2 σ 22

)
. We replace S and X̄ in Eq. (1) with

6 and µ, and we can derive

LR = n[(σ 21 − log σ
2
1 )+ (σ

2
2 − log σ

2
2 )− log(1− ρ

2)− p] + n(µ21 + µ
2
2).

The function f (x) = x− log x is monotonically increasing (decreasing) when x > 1 (0 < x < 1) and attains its minimum at
x = 1. In addition, the function g(x) = − log(1− x2) (−1 < x < 1) attains its minimum at x = 0. So the LR statistic will be
sensitive to the increase, decrease in variance, the change in correlation and the mean.
In order to detect small or moderate shifts effectively, next we incorporate the EWMA procedure into the construction

of LRt . Here the EWMA scheme is not to directly average the LRt statistic but rather to get more precise ‘‘estimates’’ of the
current process mean vector and covariance matrix, respectively. It is analogous to the construction of multivariate EWMA
(Lowry et al., 1992; Chan and Zhang, 2001) control charts to some extent. To be specific, two EWMA statistics based on the
sample mean vector X̄t and sample covariance matrix St are given by

ut = λX̄t + (1− λ)ut−1,
vt = λS∗t + (1− λ)vt−1, (2)

where S∗t =
∑n
j=1(Xtj−ut)′(Xtj−ut)/n, u0 = 0, v0 = Ip, and λ is a smoothing parameter satisfying 0 < λ < 1. In general, a

smaller λ leads to a quicker detection of smaller shifts (Lucas and Saccucci, 1990). As pointed out by an anonymous referee,
we can consider using different smoothing parameters for ut and vt . Based on our computational results, a control chart
with this modification is only sensitive to some particular shifts. It seems complicated in form and it is not so easy to discuss
the optimal choices of different λ. So we do not suggest implementing this method in real practice.
It should be noted, as Huwang et al. (2007) pointed out, that, when nt ≥ p, vt can be used to estimate Σ . Also note

that the moving average estimation of the process mean vector ut is used in the covariance matrix estimation to replace
X̄t . It would be expected to be more accurate by using these sequentially updated estimations and thus it may improve the
ability to detect the possible process change. In fact, Yeh et al. (2003) and Huwang et al. (2007) also advocated to use this
formulation. From the simulation results we find that the out-of-control ARL (OC ARL) increases slightly when the variance
increases, while it is not ARL biased when the variance decreases. That is to say, the OC ARL is not bigger than the in-control
ARL (IC ARL). So from this point, in this paper, we consider this ‘‘estimation’’-based formulation.
Finally, we substitute ut and vt for X̄t and St in Eq. (1) and obtain the charting statistic (denoted as ELRt ):

ELRt = np(a′ − log g ′ − 1)+ n‖ut‖2,

t = 1, 2, . . . , where a′ = 1
p tr(vt) and g

′
= (|vt |)

1
p . If ELRt > h, an alarm is triggered, where h > 0 is chosen to achieve a

specified IC ARL. In this paper, we call this chart the ELR chart.
Our ELR chart is similar to the Hawkins and Maboudou-Tchao (2008) MEC chart, but it has some differences. First, our

chart aims for simultaneously monitoring the process mean and variability with a single chart while the MEC chart aims for
monitoring changes in the covariance matrix only (see Hawkins and Maboudou-Tchao (2008) for details), so the charting
statistics are not the same. Second, the estimation of the processmean is usedwhen estimating the covariance, and after this
simple remedy, it can be seen from the next section that the ELR chart is ARL unbiased while the MEC chart is ARL biased.
Apparently, unlike box and MEW charts, the ELR chart still works for the case n = 1 due to the definition of vt .
In this paper, the ARL values are found by using 20,000 simulated runs and they corresponded to standard errors of less

than 0.5 in the simulated ARL. Table 1 provides the control limits of the ELR chart for various combinations of n and IC ARL
for p = 2, p = 3 and p = 5, respectively, when λ = 0.1 and λ = 0.2. Note that the control limits are almost the same when
n is large enough under the same IC ARL, which is expected because the ELR statistic follows an asymptotic χ2 distribution.
For other choices of parameters, the control limits are available from the authors upon request.

3. ARL comparisons

In this section, we compare the performance of our chart with that of some competing charts.

3.1. ARL comparisons for rational groups

The ARL performance of the ELR chart is studied with different values of λ, n, p, the shift in the process mean vector µ
and the change in the process covariance matrix 6. We simulate 20,000 run lengths and use the average to estimate the
corresponding ARL. The run length is sufficient long, enabling us to draw reasonable conclusions. In this paper, we only
tabulate the zero-state ARLs in order to be consistent with the literatures.
Table 2 tabulates the simulation results for p = 2, n = 2, 5, IC ARL = 370 and different values of λ. Note that the ELR

chart is as effective in detecting changes that only take place in ρ as it is in detecting changes that also occur in σ 21 or σ
2
2

or both. Also note that since the in-control values of the means and the correlation coefficient are zero, due to symmetry,
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Table 1
The control limits of the ELR chart for various combinations of p, n and IC ARL when λ = 0.1 and λ = 0.2.

n λ = 0.1 λ = 0.2
IC ARL IC ARL
185 200 370 500 1000 185 200 370 500 1000

p = 2 1 0.742 0.752 0.836 0.877 0.968 1.695 1.718 1.872 1.949 2.115
2 0.745 0.758 0.847 0.888 0.983 1.711 1.728 1.896 1.977 2.156
5 0.751 0.758 0.855 0.896 0.991 1.723 1.745 1.915 1.998 2.186
8 0.751 0.765 0.855 0.898 0.995 1.725 1.746 1.918 2.005 2.191
10 0.751 0.765 0.855 0.898 0.995 1.726 1.746 1.922 2.008 2.196
15 0.751 0.765 0.855 0.898 0.995 1.726 1.747 1.923 2.010 2.201

p = 3 1 1.080 1.096 1.199 1.246 1.352 2.455 2.478 2.669 2.752 2.950
2 1.090 1.105 1.208 1.256 1.365 2.464 2.490 2.685 2.781 2.985
5 1.094 1.110 1.214 1.263 1.375 2.468 2.495 2.698 2.788 3.008
8 1.095 1.110 1.214 1.264 1.377 2.470 2.496 2.701 2.797 3.014
10 1.095 1.111 1.215 1.266 1.378 2.470 2.498 2.702 2.798 3.014
15 1.096 1.111 1.217 1.266 1.378 2.471 2.498 2.703 2.799 3.015

p = 5 1 1.923 1.941 2.071 2.133 2.264 4.311 4.341 4.579 4.582 4.934
2 1.926 1.945 2.077 2.143 2.276 4.308 4.340 4.588 4.713 4.974
5 1.927 1.945 2.082 2.144 2.280 4.285 4.321 4.575 4.692 4.965
8 1.929 1.945 2.084 2.144 2.281 4.282 4.316 4.571 4.687 4.959
10 1.929 1.945 2.084 2.144 2.285 4.280 4.316 4.571 4.688 4.959
15 1.929 1.945 2.084 2.145 2.285 4.280 4.316 4.571 4.688 4.959

Table 2
The OC ARL values for the ELR chart when p = 2, n = 2, 5, λ = 0.1, 0.2, 0.3, 0.4 and IC ARL = 370.

(µ1, µ2, σ1, σ2, ρ) n = 2 n = 5
λ λ

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

(0.25, 0.25, 1.00, 1.00, 0.00) 48.7 68.3 88.4 109 21.2 26.6 35.3 46.3
(0.50, 0.50, 1.00, 1.00, 0.00) 14.5 15.9 18.7 23.5 7.7 7.1 7.4 8.1
(0.75, 0.75, 1.00, 1.00, 0.00) 8.1 7.6 8.0 8.8 4.5 3.9 3.8 3.7
(1.00, 1.00, 1.00, 1.00, 0.00) 5.4 4.9 4.8 5.0 3.1 2.7 2.6 2.4
(1.25, 1.25, 1.00, 1.00, 0.00) 3.9 3.5 3.4 3.4 2.3 2.1 1.9 1.8
(1.50, 1.50, 1.00, 1.00, 0.00) 3.0 2.7 2.6 2.6 1.9 1.6 1.5 1.4
(1.75, 1.75, 1.00, 1.00, 0.00) 2.4 2.2 2.1 2.1 1.5 1.3 1.2 1.0
(2.00, 2.00, 1.00, 1.00, 0.00) 2.0 1.8 1.8 1.7 1.2 1.1 1.0 1.6
(0.00, 0.00, 0.75, 0.75, 0.00) 10.1 26.8 44.2 72.1 1.0 4.8 10.2 16.2
(0.00, 0.00, 0.60, 0.60, 0.00) 1.0 3.2 8.4 13.6 1.0 1.0 1.0 1.9
(0.00, 0.00, 0.50, 0.50, 0.00) 1.0 1.0 2.2 5.2 1.0 1.0 1.0 1.0
(0.00, 0.00, 0.25, 0.25, 0.00) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.00, 0.00, 1.25, 1.25, 0.00) 17.6 34.3 44.6 51.7 1.3 8.7 14.1 18.8
(0.00, 0.00, 1.50, 1.50, 0.00) 1.0 4.6 8.5 11.3 1.0 1.0 1.5 2.6
(0.00, 0.00, 1.60, 1.60, 0.00) 1.0 1.9 5.0 7.1 1.0 1.0 1.0 1.5
(0.00, 0.00, 1.75, 1.75, 0.00) 1.0 1.0 2.3 4.0 1.0 1.0 1.0 1.0
(0.00, 0.00, 1.25, 1.00, 0.00) 44.0 67.2 83.4 91.5 11.1 23.6 33.2 41.5
(0.00, 0.00, 1.25, 0.75, 0.00) 14.3 31.1 45.5 57.5 1.0 6.8 12.4 18.0
(0.00, 0.00, 1.00, 0.50, 0.00) 1.0 6.0 13.4 22.3 1.0 1.0 1.4 3.1
(0.00, 0.00, 1.50, 0.50, 0.00) 1.0 1.5 5.3 8.3 1.0 1.0 1.0 1.3
(0.00, 0.00, 1.75, 0.25, 0.00) 1.0 1.0 1.0 7.9 1.0 1.0 1.0 1.0
(0.00, 0.00, 1.00, 1.00, 0.25) 85.3 132 159 188 28.7 53.2 78.0 103
(0.00, 0.00, 1.00, 1.00, 0.50) 10.7 27.0 41 55.3 1.0 5.0 10.3 15.3
(0.00, 0.00, 1.00, 1.00, 0.75) 1.0 3.4 8.3 13.4 1.0 1.0 1.1 1.9
(0.00, 0.50, 1.00, 1.00, 0.50) 7.3 13.2 17.6 23 1.0 3.4 5.3 6.8
(0.00, 0.00, 1.50, 1.50, 0.50) 1.0 2.4 5.6 7.7 1.0 1.0 1.1 1.8
(0.00, 0.50, 1.50, 1.50, 0.50) 1.0 2.1 4.7 6.2 1.0 1.0 1.0 1.0
(0.50, 0.50, 1.50, 0.50, 0.50) 1.0 1.1 2.8 4.2 1.0 1.0 1.0 1.0

the simulation results for the case when ρ is negative produce similar comparisons among the competing charts as those
seen when ρ is positive, and therefore they are not discussed in this paper. It can be seen that the performance of the ELR
chart improves as n becomes larger (for a fixed λ). When the process shift is small, the performance improves as λ becomes
smaller (for a fixed n).
We also compare the performance of the proposed ELR chart with that of the box chart, T 2–|S| and MEW charts

aforementioned. Reynolds and Cho (2006) proposed several combinations of multivariate EWMA control charts based on
samplemeans andon the sumof the squareddeviation from target. The performance of these charts depends on thedirection
of the shift inmean or the variance. The result of this dependence on the direction of the shift is that conclusions aboutwhich



2248 J. Zhang et al. / Computational Statistics and Data Analysis 54 (2010) 2244–2252

Table 3
Comparisons of OC ARL for the box chart, T 2 − |S|, MEW and ELR charts when p = 2, n = 4, λ = 0.2 and IC ARL= 370.

(µ1, µ2, σ1, σ2, ρ) Box chart T 2 − |S| MEW ELR

(0.50, 0.50, 1.00, 1.00, 0.0) 63.5 41.4 7.6 8.5
(0.75, 0.75, 1.00, 1.00, 0.0) 14.8 10.6 3.6 4.6
(1.00, 1.00, 1.00, 1.00, 0.0) 4.9 3.9 2.3 3.1
(0.50, 0.00, 1.00, 1.00, 0.0) 145. 100. 16 16
(0.00, 0.00, 1.25, 1.25, 0.0) 39. 33. 14 13
(0.00, 0.00, 1.50, 1.50, 0.0) 9.2 8.3 4.2 1.0
(0.00, 0.00, 1.25, 1.25, 0.5) 43. 35. 13 2.6
(1.00, 1.00, 1.50, 1.50, 0.0) 2.6 2.3 1.9 1.0
(0.75, 0.75, 1.50, 1.50, 0.0) 3.8 3.4 2.5 1.0
(0.50, 0.50, 1.75, 1.75, 0.5) 3.9 3.4 2.2 1.0

Table 4
The OC ARL values of the ELR and MEW charts when p = 2, n = 2, ρ = 0, λ = 0.2 and IC ARL= 200.

(σ1, σ2) Charts c
0 0.5 1.0 1.5 2.0 2.5 3.0

(1.00, 1.00) MEW 200.7 30.6 7.6 4.2 3.0 2.4 2.0
ELR 200.7 25.3 7.6 4.2 2.8 2.0 1.6

(0.60, 1.00) MEW 78.5 30.4 8.0 4.3 3.0 2.4 2.0
ELR 12.6 7.7 4.2 2.7 2.0 1.5 1.2

(1.25, 1.00) MEW 64.7 22.6 7.1 4.1 2.9 2.3 2.0
ELR 48.1 17.1 6.7 3.8 2.6 1.9 1.5

(1.25, 2.00) MEW 7.0 6.3 4.8 3.7 2.9 2.4 2.1
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(0.50, 1.50) MEW 44.9 17.9 7.3 4.4 3.1 2.5 2.1
ELR 1.3 1.3 1.2 1.1 1.0 1.0 1.0

(0.50, 2.50) MEW 6.2 5.6 4.5 3.6 2.9 2.5 2.1
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(0.50, 0.50) MEW 10.5 10.9 7.4 4.2 3.0 2.1 2.0
ELR 1.0 1.0 1.0 1.1 1.1 1.1 1.0

(0.60, 0.60) MEW 18.4 18.7 8.0 4.2 3.0 2.3 2.0
ELR 2.1 2.3 2.6 2.5 2.2 1.8 1.3

(0.60, 0.80) MEW 36.5 28.8 8.1 4.3 3.0 2.3 2.0
ELR 8.5 6.1 4.0 2.8 2.1 1.6 1.3

(1.25, 1.25) MEW 28.6 15.2 6.8 4.1 3.0 2.4 2.0
ELR 26.1 12.5 3.5 3.2 2.2 1.6 1.3

(1.50, 1.50) MEW 10.1 8.2 5.5 3.8 2.9 2.4 2.0
ELR 3.6 3.3 2.2 1.6 1.3 1.1 1.0

(2.00, 2.00) MEW 4.3 4.1 3.6 3.1 2.6 2.2 1.9
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(2.50, 2.50) MEW 2.9 2.9 2.7 2.5 2.2 2.0 1.8
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(3.00, 3.00) MEW 2.3 2.3 2.2 2.1 2.0 1.9 1.7
ELR 1.0 1.0 1.0 1.0 1.0 1.0 1.0

combination of charts is best for specific shifts are complicated, with the choice of the best combination depending on the
type, direction, and size of the shift, and hence in this research we exclude this chart from further investigation.
In order to be consistent with the literatures, the IC ARL is taken as 370 and n = 4 is considered. For the two EWMA-type

charts, λ = 0.2 is used for fair comparisons. When the process is out of control, without loss of generality, for p = 2, the

process mean has been shifted to µ = (µ1, µ2)
′ and the variance–covariance matrix 6 =

(
σ 21 ρσ1σ2

ρσ1σ2 σ 22

)
. From the top

of Table 3, we observe that, if the process shift is only from the mean vector, the MEW chart performs slightly better. The
difference between the performance of the MEW chart and our ELR chart, however, is relatively small. For other types of
shift, our ELR chart performs significantly better than the other three charts. Other simulations for different values of p,
n (n > 4), ρ and IC ARL were also done by authors (not reported here), and similar results could be obtained.
Sometimes, the sample size n is very small at one sampling point, say n = 2. From Table 3 we can see that theMEW chart

does better than the box chart and the combined T 2 − |S| chart, so we exclude the box chart and the combined T 2 − |S|
chart in the remainder of this paper, and hence we compare our ELR chart only with the MEW chart. In this case, when the

process is out of control, we assume that µ = (0, c)′ and 6 =

(
σ 21 0
0 σ 22

)
.

The results are summarized in Table 4.We also observe that our proposedmethod uniformly performs significantly better
than the MEW chart over the entire range of shifts considered.
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Table 5
Comparisons of OC ARL for the ELR and MEW charts when p = 3, n = 2, λ = 0.2 and IC ARL= 200.

(c , σ1 , σ2 , σ3 , ρ1 , ρ2 , ρ3) MEW ELR

(0.00, 0.50, 0.50, 0.50, 0.00, 0.00, 0.00) 6.3 1.0
(0.00, 1.50, 1.50, 1.50, 0.00, 0.00, 0.00) 7.5 2.6
(0.50, 0.50, 0.50, 0.50, 0.00, 0.00, 0.00) 6.8 1.0
(0.50, 1.50, 1.50, 1.50, 0.00, 0.00, 0.00) 6.6 2.4
(0.50, 1.00, 1.00, 1.00, 0.00, 0.00, 0.00) 36.6 32.5
(1.00, 1.00, 1.00, 1.00, 0.00, 0.00, 0.00) 8.4 9.2
(0.00, 0.75, 1.00, 1.00, 0.00, 0.00, 0.00) 156.7 63.3
(0.00, 1.50, 1.00, 1.00, 0.00, 0.00, 0.00) 29.3 16
(0.00, 2.00, 1.00, 1.00, 0.00, 0.00, 0.00) 9.7 1.6
(0.50, 0.75, 1.00, 1.00, 0.00, 0.00, 0.00) 38.4 20.2
(0.50, 1.50, 1.00, 1.00, 0.00, 0.00, 0.00) 17.5 10.7
(0.50, 2.00, 1.00, 1.00, 0.00, 0.00, 0.00) 8.5 1.5
(0.00, 1.00, 1.00, 1.00, 0.50, 0.50, 0.50) 77.2 7.8
(0.00, 1.00, 1.00, 1.00, 0.25, 0.50, 0.75) 65.6 2.1
(0.50, 1.50, 1.50, 1.50, 0.25, 0.25, 0.25) 4.9 2.3
(0.50, 1.50, 1.50, 1.50, 0.25, 0.50, 0.75) 5.0 2.0
(1.00, 0.75, 1.00, 1.00, 0.00, 0.00, 0.00) 8.7 7.7
(1.00, 1.50, 1.00, 1.00, 0.00, 0.00, 0.00) 7.2 5.7

For p = 3, when the process is out of control, µ = (0, 0, c)′, 6 =

(
σ 21 ρ1 ρ2
ρ1 σ 22 ρ3
ρ2 ρ3 σ 23

)
is considered. The results are

summarized in Table 5. From Table 5 we can see that our proposed ELR chart still works significantly better than the MEW
chart inmost cases, especially for detecting only the correlation shifts. For example, when ρ1 = 0.25, ρ2 = 0.50, ρ3 = 0.75,
the OC ARL for the MEW chart is 65.6, but for the ELR chart the OC ARL reduces to 2.1. When the process shift is only from
the mean vector, i.e., c = 0.50 or c = 1.00, and the variance and correlation do not change, the MEW chart does a little
better than the ELR chart. We also compared our chart with the other two charts (not reported here), and the conclusions
are the same.

3.2. Performance of the ELR chart for the individual observation case

In industrial practice, sampling may be expensive and time consuming, and the sample interval may be relatively long.
In such cases, individual observation at sampling points is usually considered. However, the MEW chart and the box chart
may not be appropriate. Yeh et al. (2005) proposed a maximum multivariate exponentially weighted moving variability
control chart (MMV chart) for monitoring process variability with individual observations. They show that this chart is
more sensitive than the multiple CUSUM and EWMA charts and is sensitive to the shift in the process mean. Huwang
et al. (2007) proposed two control charts, MEWMS (MES) and MEWMV (MEV) charts, based on the traces of the estimated
covariance matrices derived from the individual observations. The simulation results show that the MES chart is better than
the MEV chart in many cases. They also checked the capability of their chart to detect the shift in the mean, and it was
also effective. Hawkins and Maboudou-Tchao (2008) considered the MEC chart for detecting the covariance matrix and the
MAC chart for detecting both the process mean and the covariance matrix. Recently, Zhang and Chang (2008) proposed a
combined DEWMA-MEWMD (CDM) chart for monitoring the mean vector and variances in the variance–covariance matrix.
This section compares the performance of the MMV, MES, MEC, MAC, CDM and ELR charts. In addition, we also compare our
proposed chart with the MEWMA (MEA chart) charts of Lowry et al. (1992) for monitoring the mean vector. In order to be
consistent with the literature, the IC ARL is taken as 370 and λ = 0.2 is considered for fair comparison. For the combined
MAC chart, the IC ARL was chosen as 700 for each chart so that the combined MAC chart has an IC ARL of about 370.
In our study, we compared the performance of these charts for p = 2, i.e., the process has a bivariate normal distribution

withµ = (µ1, µ2)′ and6 =

(
σ 21 ρσ1σ2

ρσ1σ2 σ 22

)
. When the process is in control, it is assumed thatµ1 = µ2 = 0, σ 21 = σ

2
2 = 1

andρ = 0.We then simulated out-of-control scenarios by generating observations fromprocesses having different bivariate
normal distributions.When an observationwas generated, it was used to test all competing charts. All the simulated OC ARL
values were obtained based on 20,000 Monte Carlo simulations. Note that the focus of the simulation was on cases when
either σ 21 or both σ

2
1 and σ

2
2 increase with an increase in ρ, or when ρ changes only or the mean vector changes only, or

both the mean shifts and the covariance matrix changes occur at the same time in the process.
Table 6 tabulates the simulation results. We can see that, for detecting only the covariance, the MES chart does better

than other charts. For detecting only themean vector, theMEA chart performs better. This is not surprising, because theMEA
chart and the MES chart were specially designed for detecting changes in the mean and the covariance matrix, respectively.
TheMAC, CDM and the ELR charts are designed for monitoring the process mean and variance simultaneously. From the last
three columns of this table, we can see that when only σ 21 increases, the MAC chart has the best performance for detecting
small shifts, i.e., σ 21 = 1.25, and the CDM chart does better for detecting large shifts, σ

2
1 = 1.75. When both σ

2
1 and σ

2
2 and

ρ increase with a small size, i.e., σ 21 = σ
2
2 = 1.25, ρ = 0.25, the MAC chart performs better, while when both σ

2
1 and σ

2
2
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Table 6
Comparisons of OC ARL for various charts with individual observations when p = 2, λ = 0.2 and IC ARL= 370.

(µ1, µ2, σ 21 , σ
2
2 , ρ) MEA MMV MES MEC MAC CDM ELR

(0.00, 0.00, 1.25, 1.00, 0.00) 205.1 154.5 144.0 166.7 177.8 207.4 249.6
(0.00, 0.00, 1.75, 1.00, 0.00) 86.1 50.8 43.2 44.8 52.2 27.0 80.7
(0.00, 0.00, 1.25, 1.25, 0.25) 122.1 66.2 69.2 70.0 81.3 139.2 118.3
(0.00, 0.00, 1.75, 1.75, 0.25) 43.7 21.6 18.2 19.2 23.6 12.6 35.3
(0.00, 0.00, 1.25, 1.25, 0.75) 70.1 19.7 46.0 10.6 20.3 109.2 14.1
(0.00, 0.00, 1.75, 1.75, 0.75) 33.1 11.7 17.0 6.1 12.4 12.8 9.0
(0.00, 0.00, 1.00, 1.00, 0.25) 298.3 184.1 298.5 174.2 213.2 363.4 198.8
(0.00, 0.00, 1.00, 1.00, 0.50) 196.1 68.2 191.9 52.8 76.0 350.4 63.4
(0.00, 0.00, 1.00, 1.00, 0.75) 132.8 32.3 126.2 12.6 26.4 272.9 15.0
(0.25, 0.25, 1.00, 1.00, 0.00) 95.6 241.0 228.2 258.2 127.5 228.3 116.2
(0.50, 0.50, 1.00, 1.00, 0.00) 23.6 84.3 80.9 94.1 29.8 84.9 28.2
(1.00, 1.00, 1.00, 1.00, 0.00) 6.7 13.1 13.0 13.1 7.3 13.6 6.4
(0.25, 0.25, 1.25, 1.25, 0.50) 44.6 29.2 45.4 26.1 30.9 105.6 30.3
(0.25, 0.25, 1.25, 1.25, 0.75) 38.8 17.7 38.3 9.6 17.7 96.4 11.4
(0.50, 0.50, 1.25, 1.25, 0.50) 18.4 19.5 27.6 16.9 16.9 63.0 15.0
(0.50, 0.50, 1.25, 1.25, 0.75) 17.6 13.5 24.8 7.7 12.9 61.1 7.5
(0.25, 0.25, 0.75, 0.75, 0.50) 112.5 135.3 838.5 55.1 78.8 123.1 31.6
(0.25, 0.25, 0.75, 0.75, 0.75) 88.9 57.2 450.8 10.2 26.4 104.5 9.5
(0.50, 0.50, 0.75, 0.75, 0.50) 25.9 48.9 192.4 30.5 28.4 56.3 13.9
(0.50, 0.50, 0.75, 0.75, 0.75) 24.4 28.3 133.4 7.9 18.1 54.1 6.2

increase with a large size, i.e., σ 21 = σ
2
2 = 1.75, and ρ = 0.25, the CDM chart does better. When ρ increases with a large

size, i.e., ρ = 0.75, and the process variance also increases, the MAC chart does better than the CDM chart, but the ELR chart
has the best performance. In other cases, our ELR chart always outperforms the other two charts. Also, we can see that the
CDM chart is insensitive to changes in ρ.
Note that, in this paper, we only provide a general guideline on the choice of λ which produces a reasonably good

performance for the ELR chart, under a variety of out-of-control scenarios. On the other hand, for a specific λ in 0.1 <
λ < 0.3, the ELR chart may not produce the smallest OC ARL for a predetermined IC ARL and a prespecified change in
parameters. AlthoughMarkovian mean estimation (Shu et al., 2008) should perform better in detecting a range of shifts, we
do not investigate it here, for simplicity. In summary, we suggest that a smaller smoothing constant λ, e.g., 0.1, be used in
setting the ELR control chart since it gives smaller OC ARL values.

3.3. Diagnosis

When choosing a control chart or combination of control charts to detect and eliminate special causes, a primary
consideration should be the ability to signal quickly after a special cause occurs. Another important issue, particularly in
the multivariate setting, is the development of procedures that can be employed after a signal for diagnostic purposes. In
particular, it is necessary to be able to pinpoint which parameter or parameters have shifted after a signal occurs.
From the traditional perspective on diagnostics, our proposed chart would be problematic because our proposedmethod

is an omnibus chart, and it is sensitive to both mean vector and variance–covariance matrix changes, so it is not easy to
diagnose which parameter or parameters have shifted. But just as Reynolds and Cho (2006) pointed out that, in today’s
environment, control charts are almost always plotted by computer, so after a signal by a control chart, additional control
charts or other plots can easily be called up when needed to help diagnose which parameters have changed. For this type
of control chart, some diagnostic aids have been proposed and developed in the literature (see, for example, Healy (1987),
Hawkins (1991), Runger (1996) and Mason et al. (1995)).

4. A real data example

In this section, the application of our proposed ELR chart is illustrated by a real data example Hawkins and Maboudou-
Tchao (2008) used to show the implementation of their MEWMC chart for covariance shifts. The data set is from a long-
standing research project in ambulatory monitoring. In this work, subjects were equipped with instruments that measure
and record physiological variables. The wearer’s blood pressure and heart rate were measured and recorded every 15 min
for 6 years. Before analysis using statistical process control (SPC) methods, each week’s raw data are condensed into weekly
summary numbers, which include mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP), mean of heart
rate (HR), and overallmean arterial pressure (MAP). Interested readers are referred toHawkins andMaboudou-Tchao (2008)
for more detail.
In Hawkins and Maboudou-Tchao (2008), the smoothing parameter λ is set to 0.1 and the IC ARL is set to 500. Although

wehavemade a detailed comparative study in last section,we set the same smoothing parameterλ and IC ARLwithHawkins
andMaboudou-Tchao (2008) to show the application of our ELR chart more clearly. Note that, for our chart, the control limit
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Table 7
Ambulatory monitoring data.

n U1 U2 U3 U4 ELRn

1 0.497 −0.259 −1.249 0.398 0.038
2 1.052 −0.602 −0.878 −2.061 0.186
3 0.510 2.327 0.244 −1.167 0.282
4 1.483 0.671 0.914 0.452 0.269
5 1.664 0.099 −0.735 0.735 0.330
6 0.272 1.683 −0.085 0.519 0.407
7 0.984 1.504 −0.304 0.771 0.608
8 −0.449 1.305 0.952 1.195 0.673
9 0.717 −0.389 −0.299 −0.824 0.681
10 0.309 0.606 −0.207 −0.416 0.766
11 0.867 −1.262 −0.772 0.476 0.772
12 0.435 −1.992 0.064 1.129 0.811
13 −0.581 −1.026 0.295 1.647 0.864
14 1.184 −2.159 −1.140 1.359 1.287
15 0.121 −1.449 −0.564 0.214 1.332
16 −0.714 −0.161 0.122 −1.621 1.098
17 −0.288 −0.924 0.199 −0.625 1.108
18 −1.427 −0.782 0.565 −1.272 1.127
19 −1.327 −0.626 −0.399 −2.818 1.504
20 0.381 1.367 1.352 −2.552 1.518
21 0.296 −0.870 0.579 −0.068 1.401
22 −0.363 −1.029 0.781 0.469 1.389
23 0.412 −0.630 0.194 3.169 1.672
24 −0.208 −0.687 −0.674 −2.351 1.892

h is 1.664 to achieve IC ARL 500 with λ = 0.1. Table 7 shows the data set taken from Table 5 in Hawkins and Maboudou-
Tchao (2008), with label ‘‘U1’’, ‘‘U2’’, ‘‘U3’’ and ‘‘U4’’, and the ELR statistics with label ‘‘ELRn’’. Note that ‘‘U1’’, ‘‘U2’’, ‘‘U3’’ and
‘‘U4’’ are the standardized data for SBP, DBP, HR andMAP, respectively. From Table 7, we observe that the ELR chart gives an
OC signal at observation 23, which is consistent with the result of Hawkins andMaboudou-Tchao (2008). This, again, shows
that the ELR chart is quite a useful tool for practitioners.
After a signal, the chart gives no direct information on which variable or variables may undergo the shift. The standard

approach that addresses this problem is a decomposition of T 2. Hawkins and Maboudou-Tchao (2008) gave a detailed
discussion about the diagnosis, so we do not address this problem further here.

5. Conclusions

In this paper, we propose and study a newmultivariate charting scheme for simultaneouslymonitoring the processmean
vector and covariance matrix of a multivariate normal process by using a single chart. It is worth noting that the proposed
chart can be applied to both the cases when the sample size is one or larger than one. As long as the current stage t satisfies
nt ≥ p, we can use these nt observations to construct the ELR chart formonitoring both the processmean and the covariance
matrix.
Huwang et al. (2007) proposed using the trace in their paper to monitor the process variability. As they pointed out,

since the trace reduces a complex matrix to a summary statistic, an apparent drawback is that it is insensitive in detecting
changes inwhich the in-control and the out-of-control covariancematrices have the same trace. However, thanks to the good
properties of theGLR test and the EWMAprocedure, our chart is very effective for diverse cases, including the detection of the
individual observation case. When compared with some existing charts, the ELR chart does significantly better in detecting
almost all kinds of shifts in the process. The new chart can be easily designed and constructed. Taking consideration of its
easy design, implementation and effectiveness,we think that the ELR scheme is a serious alternative in practical applications.
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