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Appendix: Technical details

Throughout the appendix, we use the following additional notations:

αt,h,λ(s) =
ν2(s)

a0,t,λΓ2(s)

t∑

k=1

(1 − λ)t−k

nk∑

j=1

Kh(xkj − s)

ν2(xkj)
[εkj + fk(xkj)],

βt,h,λ(s) =
g′′
1(s)ν

2(s)

2a0,t,λΓ2(s)

t∑

k=1

(1 − λ)t−k

nk∑

j=1

(xkj − s)2Kh(xkj − s)

ν2(xkj)
,

φi(s) =
1

a0,t,λ

t∑

k=1

(1 − λ)t−k

nk∑

j=1

(xkj − s)i Kh(xkj − s)

ν2(xkj)
[εkj + fk(xkj)], i = 0, 1,

φi+2(s) =
1

aτ,t,λ

t∑

k=τ+1

(1 − λ)t−k

nk∑

j=1

(xkj − s)i Kh(xkj − s)

ν2(xkj)
g1(xkj), i = 0, 1,

et0,t1,λ =
t1∑

k=t0+1

(1 − λ)4(t−k)n2
k, n∗ = m/(

m∑

i=1

n−1
i ), η2 =

∫
[K(u)]2du.

Appendix A: Regularity Conditions Used In Section 2

(C1) Density functions Γ1 and Γ2 are Lipschitz continuous and bounded away from zero on

[0,1].

(C2) g0(·) and g1(·) have continuous second order derivatives on [0,1].

(C3) The kernel function K(u) is bounded and symmetric about 0 on [-1,1]. Furthermore,

u3K(u) and u3K ′(u) are both bounded, and
∫ 1

−1
u4K(u)du < ∞.

(C4) E(|ε11|4) < ∞.

(C5) The covariance function γ(s, t) has continuous second order derivatives for both s and

t.

(C6) ni, for i = 1, . . . , m, are of the same order, say ni ∼ n.
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(C7)
aτ,t,λ

a0,t,λ
− 1 = o(min{h2, c

− 1

2

0,t,λ}).

(C8)-(I) ni, m, h satisfy the conditions that ni → ∞, m → ∞, h → 0, nih
2 → ∞,

mnih
3 → ∞.

(C8)-(II) n0, h and c0,t,λ satisfy the conditions that n0 → ∞, h → 0, n0h
3

2 → ∞, c0,t,λh
3

2 →
∞, c0,t,λh

8 → 0 and e0,t,λ/(hb2
0,t,λ) → 0.

(C8)-(III) h and c0,t,λ satisfy the conditions that h → 0, c0,t,λh
3 → ∞ and c0,t,λh

8 → 0.

(C8)-(IV) n0, h and c0,t,λ satisfy the conditions that n0 → ∞, h → 0, n0h
3

2 → ∞, c0,t,λh
3 →

∞, c0,t,λnh5 → 0 and e0,t,λ/(hb2
0,t,λ) → 0.

(C9) D(0) is assumed to be a positive definite matrix.

(C10) For some w > 2, E(|ε11 + f1(x11)|w) < ∞ and tλ → ∞.

It is noted that conditions (C1)-(C4) are standard in nonparametric regression. (C5)

assures the smoothness of the random-effects fi(·). (C6) is for technical convenience and is

often satisfied in practice. (C7) is easy to satisfy if t is large enough. (C8)-I to (C8)-IV are

the bandwidth conditions used in Proposition 1, Theorem 1-(i), Theorem 1-(ii) and Theorem

2, respectively. (C9) is a mild condition for Proposition 1. (C10) is an extra condition for

the proofs of Theorem 1-(ii) and Theorem 2-(iii).

Appendix B: Proofs

Proof of Proposition 1

(i) This result is a direct conclusion of Theorem 1 in Wu and Zhang (2002), except that

certain conditions have been changed. More specifically, expressions (7) and (8) of Condition

A in Wu and Zhang (2002) have been relaxed to Conditions (C8)-I and (C9) here. The proof

of this conclusion is similar to that of result (ii), and thus it is omitted here.

2



(ii) To investigate γ̂(·, ·), we first need to study the asymptotic behavior of ĝ′(·). Let

si,r(x) =
1

nihr

ni∑

j=1

Kh(xij − x)(xij − x)r, r = 0, 1, 2,

A = [σ2
(0)]

−1D(0), Gi = ni



 si,0 hsi,1

hsi1 h2si,2



 .

Similar to Proposition 1 in Wu and Zhang (2002), we have

ĝ′(x) = eT
2 {

m∑

i=1

(I + GiA)−1Gi}−1
m∑

i=1

(I + GiA)−1ZT
i Kiyi, (A.1)

where e2 = (0, 1)T . Note that si,r(x)−srΓ2(x) = Op(nih)−
1

2 +O(h), where sr =
∫

K(u)urdu

with s0 = 1, s1 = 0, and s2 = η1. By Condition (C9), we have

G−1
i A−1 =

1

niΓ2(x)(h2si2si0 − h2si1)



 Op(h
2 + n

− 1

2

i h
1

2 ) Op(h
2 + n

− 1

2

i h
1

2 )

Op(1) Op(1)



 . (A.2)

By noting that h2si2si0 − h2si1 = O(h2) and by Condition (C8)-I that nih
2 → ∞, we

have G−1
i A−1 = op(1). Consequently, 1

m

∑m
i=1 G−1

i A−1 = op(1). By using certain matrix

manipulations similar to those in Wu and Zhang (2002), (A.1) leads to

ĝ′(x) = g′(x) +
1

m

m∑

i=1

ui(x)(1 + op(1)),

where

ui(x) =

ni∑

j=1

eT
2 G−1

i



 1

xij − x



Kh(xij − x)[εij + fi(xij) +
1

2
g′′(x)(xij − x)2]

=

ni∑

j=1

[
Kh(xij − x)(xij − x)

η1Γ2(x)nih2
− si,1

nihη1Γ2(x)

]
[εij + fi(xij) +

1

2
g′′(x)(xij − x)2].

It is straightforward to show that

E[ui(x)|X] = Op(h
2), Var[ui(x)|X] = [γ(x, x) +

ν2(x)η2

nih3
](1 + o(1)).

Thus, we have

ĝ′(x) = g′(x)[1 + Op(h
2) + Op(m

− 1

2 ) + Op((mn∗h3)−
1

2 )]. (A.3)
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Now, f̂i(x) can be rewritten as

f̂i(x) = eT
1 A(I + GiA)−1ZT

i Ki[yi − Zi(β̂ + αi) + Ziαi].

By using the fact that G−1
i A−1 = op(1), we have

eT
1 A(I + GiA)−1ZT

i KiZiαi = eT
1 [I + (AGi)

−1]−1αi

= eT
1 [I − (AGi)

−1 + (AGi)
−2 + · · · ]αi

= [eT
1 αi − eT

1 (AGi)
−1αi](1 + op(1))

= fi(x)[1 + Op(n
−1
i + (nih)−

3

2 )], (A.4)

where the last equation is from (A.2).

Because A(I + GiA)−1 = G−1
i (1 + o(1)), by (A.4) and (C5), we have

f̂i(x) − fi(x) =

ni∑

j=1

Kh(xij − x)

niΓ2(x)
{εij + [g(x) − ĝ(x)] + [g′(x) − ĝ′(x)](xij − x)

+
1

2
[g′′(x) + f ′′

i (x)](xij − x)2}(1 + o(1)) + Op[n
−1
i + (nih)−

3

2 ]

=

ni∑

j=1

Kh(xij − x)

niΓ2(x)
[εij +

1

2
f ′′

i (x)(xij − x)2](1 + op(1)) =: vi(x).

By certain straightforward calculations, we have

E[vi(x)|X] = O(h2) + Op(m
− 1

2 ), Var[vi(x)|X] = Op[h
2 + (nih)−1 + (mnih

2)−1],

E[vi(sk)vi(sl)|X] = Op[h
2 + (nih)−1], Var[vi(sk)vi(sl)|X] = Op[h

4 + (nih
3)−1],

Var[vi(sk)vj(sl)|X] = Op[h
4 + (nih)−2 + m−1h2], for i 6= j.

It follows that

γ̂(sk, sl) =
1

m

m∑

i=1

[fi(sk) + vi(sk)][fi(sl) + vi(sl)]

= γ(sk, sl){1 + Op[h
2 + (nh)−

1

2 + m− 1

2 + (mnh3)−
1

2 ]}.

(iii) The proof of this result is analogous to that of result (ii), and it is omitted here. �

To prove the two theorems in Section 2, we first prove the following lemma.
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Lemma 1 For any s ∈ [0, 1],

(i) Under conditions in Theorem 1, we have

ĝt,h,λ(s) = αt,h,λ(s)(1 + o(h
1

2 ));

(ii) Under conditions in Theorem 2, we have

ĝt,h,λ(s) − g1(s) = αt,h,λ(s)(1 + o(h
1

2 )) + βt,h,λ(s)(1 + op(1)).

Proof We only prove result (ii) here, because result (i) can be proved in a similar way.

For simplicity, we suppress the symbol “(t, h, λ)” in m
(t,h,λ)
i (s), which should not cause any

confusion. By some algebraic manipulations, it can be checked that

ĝt,h,λ(s) − g1(s) = a0,t,λm
−1
0 (s)[φ0(s) + φ2(s)] + a0,t,λm

−1
0 (s)m1(s)[m2(s) − m2

1(s)m
−1
0 (s)]−1

·{m−1
0 (s)m1(s)[φ0(s) + φ2(s)] − φ1(s) − φ3(s)} − g1(s)

= a0,t,λm
−1
0 (s)φ0(s) + a0,t,λm

−1
0 (s)[φ2(s) − a−1

0,t,λm0(s)g1(s) − a−1
0,t,λm1(s)g

′
1(s)]

+m−1
0 (s)m1(s){g′

1(s) + a0,t,λ[m2(s) − m2
1(s)m

−1
0 (s)]−1·

[m−1
0 (s)m1(s)(φ0(s) + φ2(s)) − φ1(s) − φ3(s)]}

=: ∆1 + ∆2 + ∆3.

By Taylor’s expansions and by Condition (C5), it is straightforward that

∆1 = α0,t,h,λ(s)
(
1 + Op((c0,t,λh)−1/2) + O(h)

)
,

∆2 = βt,h,λ(s)
(
1 + Op((c0,t,λh)−1/2) + O(h)

)
+ O

(
aτ,t,λ

a0,t,λ

− 1

)
.

By the facts that

a−1
0,t,λm1(s) =

Γ2(s)

ν2(s)

∫
(u − s)Kh(u − s)du + Op(c

−1/2
0,t,λ h1/2) = O(h2),

φ3(s) =
Γ2(s)

ν2(s)
[g1(s)

∫
(u − s)Kh(u − s)du + h2g′

1(s)η1] + O(h3) + Op(c
−1/2
0,t,λ h1/2),

φ2(s) =
Γ2(s)

ν2(s)
g1(s) + O(h), a−1

0,t,λm2(s) = O(h2),
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we have

∆3 = Op(h
3) + Op(c

−1/2
0,t,λ h1/2).

By combining all the above results, Condition (C7), and the facts that αt,h,λ(s) = Op((c0,t,λh)−1/2)

and βt,h,λ(s) = Op(h
2), we can get result (ii) in the lemma. �

Proof of Theorem 1

(i) Without loss of generality, we assume that g0 = 0 (see related discussion in Section 2.3).

By Lemma 1, we have

Tt,h,λ =
c0,t,λ

n0

n0∑

i=1

[αt,h,λ(si)]
2

ν2(si)
(1 + o(h

1

2 ))

=
c0,t,λ

n0

n0∑

i=1

ν2(si)

a2
0,t,λ[Γ2(si)]2

t∑

k=1

(1 − λ)2(t−k)

nk∑

j=1

[Kh(xkj − si)]
2

ν4(xkj)
[εkj + fk(xkj)]

2(1 + o(h
1

2 ))

+
c0,t,λ

n0

n0∑

i=1

ν2(si)

a2
0,t,λ[Γ2(si)]2

{ t∑

k=1

(1 − λ)2(t−k)
∑

j 6=l

[Kh(xkj − si)][Kh(xkl − si)]

ν2(xkj)ν2(xkl)
[εkj + fk(xkj)]

× [εkl + fk(xkl)] +
∑

k 6=k′

(1 − λ)t−k(1 − λ)t−k′
∑

j,l

[Kh(xkj − si)][Kh(xk′l − si)]

ν2(xkj)ν2(xk′l)
[εkj + fk(xkj)]

× [εk′l + fk(xk′l)]

}
(1 + o(h

1

2 )) =: (T1 + T2)(1 + o(h
1

2 ))

Note that, as h → 0,

T1 =
c0,t,λ

a2
0,t,λ

t∑

k=1

(1 − λ)2(t−k)

nk∑

j=1

[εkj + fk(xkj)]
2

ν4(xkj)

1

n0

n0∑

i=1

ν2(si)

[Γ2(si)]2
[Kh(xkj − si)]

2

=
c0,t,λη2

ha2
0,t,λ

t∑

k=1

(1 − λ)2(t−k)

nk∑

j=1

[εkj + fk(xkj)]
2

ν2(xkj)

Γ1(xkj)

[Γ2(xkj)]2
(1 + O(h) + Op((n0h)−

1

2 )),

It is easy to see that

E(T1) = µ̃h + o(h− 1

2 ), Var(T1) = O

[
e0,t,λ

b2
0,t,λh

2

]

= o(h−1).

Thus, we have

T1 = E(T1) + Op(
√

Var(T1)) =
η2

h

∫
Γ1(u)

Γ2(u)
du + op(h

−1/2).
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Similarly, we have

T2 =
c0,t,λ

a2
0,t,λh

{ t∑

k=1

(1 − λ)2(t−k)
∑

j 6=l

Γ1(xkj)

[Γ2(xkj)]2
K ∗ K((xkj − xkl)/h)

εkjεkl

ν2(xkj)

+
∑

k 6=k′

(1 − λ)t−k(1 − λ)t−k′
∑

j,l

Γ1(xkj)

[Γ2(xkj)]2
K ∗ K((xkj − xk′l)/h)

[εkj + fk(xkj)][εk′l + fk(xk′l)]

ν2(xkj)

+

t∑

k=1

(1 − λ)2(t−k)
∑

j 6=l

Γ1(xkj)

[Γ2(xkj)]2
K ∗ K((xkj − xkl)/h)

[εkjfk(xkl) + εklfk(xkj) + fk(xkj)fk(xkl)]

ν2(xkj)

}

× (1 + O(h) + Op((n0h)−
1

2 ))

=: (T21 + T22 + T23)(1 + O(h) + Op((n0h)−
1

2 )).

It can be shown that

E(T21) = 0, Var(T21) = O(e0,t,λ/b
2
0,t,λ) = o(h−1),

E(T23) = O(nh) = o(h− 1

2 ), Var(T23) = O(e0,t,λ/b
2
0,t,λn

2) = o(h−1).

Since
∑
j,l

Γ1(xkj)

[Γ2(xkj)]2
K ∗ K((xkj − xk′l)/h)

[εkj+fk(xkj)][εk′l+fk(xk′l)]

ν2(xkj)
=: αk are independent of each

other for k 6= k′, h1/2T22 can be written as a symmetric quadratic function of αk for k =

1, . . . , t, with symmetric matrix [
c0,t,λ

a2

0,t,λ
h

1

2

(1−λ)t−k(1−λ)t−k′

]t×t which has vanishing diagonal

elements. So, we can use Proposition 3.2 in de Jong (1987) to show the asymptotic normality

of h1/2T22. Obviously, the expectation of T22 is zero. It can be checked that

Var(h1/2T22) = h

(
1 − e0,t,λ

b2
0,t,λ

)
σ̃2

h(1 + o(1)) = hσ̃2
h(1 + o(1)).

Finally, by certain straightforward algebraic manipulations, we can verify that the moments

of the elements in that quadratic form satisfy all the conditions given in Proposition 3.2 of

de Jong (1987). Using this theorem and all the results above about T1 and T2, we have the

result in Theorem 1-(i).

(ii) Using Lemma 1-(i), we have

Tt,h,λ =
c0,t,λ

n0

θT θ(1 + o(h
1

2 )),

where θ = [θ(s1), . . . , θ(sn0)]
T = [αt,h,λ(s1)/ν(s1), . . . , αt,h,λ(sn0

)/ν(sn0)]
T . Next, we show

the asymptotic multivariate normality of θ. To this end, it is sufficient to prove that, as
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c0,t,λ → ∞, for any n0-dimensional vector ω = (ω1, . . . , ωn0
),

√
c0,t,λ

d0,t,λ
ωT θ ∼ AN(0, ωTΩω).

Note that

ωT θ =
1

a0,t,λ

t∑

k=1

(1 − λ)t−k

n0∑

i=1

ωi
ν(si)

Γ2(si)

nk∑

j=1

Kh(xkj − si)

ν2(xkj)
[εkj + fk(xkj)]

=:
1

a0,t,λ

t∑

k=1

Mk,

where Mk =
∑n0

i=1 ωiRk(si). Obviously, E(ωT θ|X) = 0. By some straightforward calcula-

tions, we have

Cov(Rk(si), Rk(sj)|X)

= (1 − λ)2(t−k)n2
k

[
ν(sj)

ν(si)Γ2(sj)

K ∗ K((si − sj)/h)

nkh
+

τ(si, sj)

ν(si)ν(sj)

]
(1 + op(1))

= (1 − λ)2(t−k)n2
k

τ(si, sj)

ν(si)ν(sj)
(1 + op(1)),

where the last equation comes from the condition that nh → ∞. It follows that

Var(

√
c0,t,λ

d0,t,λ
ωT θ) = ωTΩω(1 + o(1)).

Note that Mks are independent of each other and that the moments of t
a0,t,λ

Mk satisfy

the Lindeberg conditions when Condition (C10) holds. Therefore, Theorem 1-(ii) follows

immediately from the Lindeberg-Feller central limit theorem. �

Proof of Theorem 2

(i). Without loss of generality, we assume that g0 = 0. Thus, g1 = δ. By Lemma 1-(ii), we

have

Tt,h,λ =
c0,t,λ

n0

n0∑

i=1

α2
t,h,λ(si)

ν2(si)
(1 + o(h

1

2 )) +
c0,t,λ

n0

n0∑

i=1

[δ(si) + βt,h,λ(si)]
2

ν2(si)
(1 + op(1))

+
2c0,t,λ

n0

n0∑

i=1

αt,h,λ(si)βt,h,λ(si)

ν2(si)
(1 + op(1)) +

2c0,t,λ

n0

n0∑

i=1

αt,h,λ(si)δ(si)

ν2(si)
(1 + op(1))

=: T1 + T2 + (T3 + T4)(1 + op(1)).
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Obviously, T1 is equivalent to Tt,h,λ under the IC condition. It is straightforward to see that

βt,h,λ(s) =
h2

2
δ′′(s)η1(1 + op(1)). (A.5)

By this result, we have T2 = c0,t,λζδ(1 + op(1)), and

T3 =
h2η1a0,t,λ

b0,t,λ

t∑

k=1

(1 − λ)t−k

nk∑

j=1

Γ1(xkj)

Γ2(xkj)ν2(xkj)
[εkj + fk(xkj)]δ

′′(xkj)(1 + op(1)).

Note that 1√
b0,t,λ

∑t
k=1(1 − λ)t−k

∑nk

j=1
Γ1(xkj)δ

′′(xkj)

Γ2(xkj)ν2(xkj)
εkj is stochastically bounded, and

h2η1a0,t,λ

b0,t,λ

t∑

k=1

(1 − λ)t−k

nk∑

j=1

Γ1(xkj)δ
′′(xkj)

Γ2(xkj)ν2(xkj)
fk(xkj) = Op(c0,t,λnh5).

Thus, by condition (C8)-IV, we can conclude that T3 = op(h
−1/2). Similarly,

T4 =
2a0,t,λ

b0,t,λ

t∑

k=1

(1 − λ)t−k

nk∑

j=1

Γ1(xkj)δ(xkj)

Γ2(xkj)ν2(xkj)
[εkj + fk(xkj)]

= Op((c0,t,λn

∫
δ2(u)

Γ1(u)γ(u, u)

ν2(u)
du)

1

2 ) = op(h
− 1

2 ).

By all these results and by Theorem 1, result (i) is proved.

(ii). This result follows directly from result (i).

(iii). Proof of this part is similar to that of Theorem 1-(ii), using Lemma 1-(ii) and result

(A.5). So, it is omitted here. �
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