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Appendix: Technical details

Throughout the appendix, we use the following additional notations:
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Appendix A: Regularity Conditions Used In Section 2

(C1) Density functions I'y and I'y are Lipschitz continuous and bounded away from zero on
[0,1].

(C2) go(+) and g¢;(+) have continuous second order derivatives on [0,1].

(C3) The kernel function K (u) is bounded and symmetric about 0 on [-1,1]. Furthermore,
uw? K (u) and v?K'(u) are both bounded, and ffl uK(u)du < oo.

(C4) E(lenn]?) < .

(C5) The covariance function (s, t) has continuous second order derivatives for both s and

t.

(C6) n;, for i = 1,...,m, are of the same order, say n; ~ n.



_1
(C7) =2 — 1 = o(min{h?, coﬂi/\}).

ag,t,\
(C8)-(I) n;, m, h satisfy the conditions that n;, — oo, m — oo, h — 0, n;h? — o0,

mn;h® — oo.

(C8)-(II) ng, h and co 5 satisty the conditions that ny — oo, h — 0, nohs> — 0, co,m,\h% —

00, co,ty)\hg — 0 and €o,t,>\/(hbat,)\) — 0.
(C8)-(IIT) h and cg4,y satisfy the conditions that h — 0, co2h® — 0o and ¢ \h® — 0.

(C8)-(IV) ng, h and ¢o¢ » satisfy the conditions that ny — oo, h — 0, nohs — 00, co i h® —

00, Coyanh® — 0 and egyx/ (A3, ) — 0.
(C9) Dyg) is assumed to be a positive definite matrix.
(C10) For some w > 2, E(ley; + fi(z11)]*) < oo and tA — 0.

It is noted that conditions (C1)-(C4) are standard in nonparametric regression. (C5)
assures the smoothness of the random-effects f;(-). (C6) is for technical convenience and is
often satisfied in practice. (C7) is easy to satisfy if ¢ is large enough. (C8)-I to (C8)-IV are
the bandwidth conditions used in Proposition 1, Theorem 1-(i), Theorem 1-(ii) and Theorem
2, respectively. (C9) is a mild condition for Proposition 1. (C10) is an extra condition for

the proofs of Theorem 1-(ii) and Theorem 2-(iii).

Appendix B: Proofs

Proof of Proposition 1

(i) This result is a direct conclusion of Theorem 1 in Wu and Zhang (2002), except that
certain conditions have been changed. More specifically, expressions (7) and (8) of Condition
A in Wu and Zhang (2002) have been relaxed to Conditions (C8)-1 and (C9) here. The proof

of this conclusion is similar to that of result (ii), and thus it is omitted here.



(ii) To investigate (-, -), we first need to study the asymptotic behavior of §’(-). Let

ZKh(%‘j —z)(z; —x)", r=0,1,2,
J

53,0 hSz‘,1

A= [0'(20)]71D(0), Gz =N, h h2
Si1 Si,2

Similar to Proposition 1 in Wu and Zhang (2002), we have
7'(2) _82{21+GA) 1G;} - ZI+GA) 'ZTK,y,, (A1)

where e, = (0,1)7. Note that s;,(z) — s,Da(z) = Op(n;h) "2 +O(h), where s, = [ K (u)u"du
with sg = 1,1 = 0, and s = 1;. By Condition (C9), we have

1 O,(h2 +n 2hd) O, (R +n; *h¥)

G Al = ;
i nila(x) (2512810 — h?si1) O,(1) Op(1)

(A.2)

By noting that h?s;ps;o — h?s;; = O(h?) and by Condition (C8)-I that n;h? — oo, we
have G;'A™! = 0,(1). Consequently, 3" G;'A™' = 0,(1). By using certain matrix

manipulations similar to those in Wu and Zhang (2002), (A.1) leads to

T(@) = g@)+ =3 uslo)(1 +0,(1)

where

=ZG ) Kalay — a)fes + file) + 20 @) — o)

.I'Z'j—.%'

Kh xz_] (:L'zj l') Si,l 1 . ,
B Z |: nzhz nzhnIFQ(Jj) [‘gl] + fl(xz_]> -+ 29 (x)(l'zj gj) ]

It is straightforward to show that

Blu@)lX] = 0,(1),  Varlus(@)|X] = [y a) + =011 +o(1).

Thus, we have

7(2) = g'(@)[1 + Op(h?) + Op(m™2) + Op((mn*"h?)~%)). (A.3)



Now, ﬁ(x) can be rewritten as
filz) = eTA(I+ GA) ' ZTK [y, — Z,(B + o) + Ziw)).
By using the fact that G;'A~! = 0,(1), we have

el Al+G,A) ' ZK, Za; = el [T+ (AG) | '
=el[I-(AG) '+ (AG) ? + -]y
= [e] o — €] (AG;) ;] (1 + 0,(1))
= [i@)[1+Op(n; " + (nih) )], (A.4)

where the last equation is from (A.2).

Because A(I + G;A)~! = G; (1 +0(1)), by (A.4) and (C5), we have

) = o) =3 = e o) - )] + 0/ ) — 0y — 0

- %[g%x) - f-"(x)](xij — 2P} + o(1)) + Oyl + (k)

Z K};?; [ei; + %f!(x)(:cij — 2)?(1 + 0,(1)) =: vi(x).

By certain straightforward calculations, we have

Elvi(z)|X] = O(h?) + Op(m_%), Var[v;(z)| X] = Op[h2 + (ngh) ™t + (mn;h?) ™Y,
Elvi(sp)vi(s1)|X] = Op[h® + (n:h) 71, Var[vi(sp)vi(s1)| X] = Op[n* + (n;h%) 7],
Var[vi(sg)vj ()] X] = O,[h* + (n;h) > + m™'h?], for i# j.

It follows that

m

Aot 1) = - D 1filse) + sl i) + i)

i=1
= Y(sus s){L+ Oyl + (mh) 7% +m ™% + (mnh®) 4]},
(iii) The proof of this result is analogous to that of result (ii), and it is omitted here. N

To prove the two theorems in Section 2, we first prove the following lemma.
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Lemma 1 For any s € [0, 1],

(i) Under conditions in Theorem 1, we have

Gon(5) = aepa(s)(1+ o(h?));

(ii) Under conditions in Theorem 2, we have
Gna(s) = 1(5) = atpa(s) (L + 0(h2)) + Braa(s) (1 + 0p(1)).

Proof We only prove result (ii) here, because result (i) can be proved in a similar way.

For simplicity, we suppress the symbol “(¢,h, \)” in mgt’h’)‘)(s), which should not cause any

confusion. By some algebraic manipulations, it can be checked that

Gena(s) = g1(s) = aoeamg ' (s)[do(s) + d2(s)] + aoeamg ™ (s)ma(s)[ma(s) —mi(s)mg ' (s)] ™
{mg " (s)ma(s)[@o(s) + @a(s)] — ¢1(s) — s(s)} — gu(s)
= aoeamy ' (s)do(s) + aoamy (5)[@2(s) — ag,xmo(s)g1(s) — agymi(s)gi(s)]
+mg ' (s)mi(s){g1(s) + aoealma(s) —mi(s)mg ' (s)] "
[mg ' (s)ma(s)(¢o(s) + d2(s)) — ¢1(s) — ds(s)]}
= Ap+ Ay + Ay
By Taylor’s expansions and by Condition (C5), it is straightforward that

Ay = agena(s) (1+ Op((coinh)™?) + O(h)),

Ay = Baa(s) (14 Op((connh) %) + O(h)) + O ( - 1) |

Qo,t,\

By the facts that

aaj’/\ml(s) = 1;;((3 /(u — 8)Kp(u — s)du + Op(c&;//\th/Z) = O(h?),
$s(s) = FE; [91(s) / (u— 8) Ky (u— s)du + h2g;(s)m] + O(h®) + O,(cy K h'?),
~ Ta(s)

¢2(s) = 1/2(3)g1(8> +O(h),  agyma(s) = O(h?),



we have

Ay = Oylh*) + Opfcg 3 h"°).
By combining all the above results, Condition (C7), and the facts that a1 (s) = O,((cosrh)~?)
and G, 5.1(s) = O,(h?), we can get result (ii) in the lemma. O
Proof of Theorem 1

(i) Without loss of generality, we assume that gy = 0 (see related discussion in Section 2.3).

By Lemma 1, we have

70 2
C « S; 1
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= Visi)
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X [ern + fk(xk/z)]}(l +o(h2)) = (T + T)(1 + o(h?))

Note that, as h — 0,

t ng 2 no 2
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It is easy to see that

E(Ty) = ji, + o(h™2), Var(T}) = O

Thus, we have

ﬂ:ﬂﬁ+@(%ﬂmz%/n?m+MhW)



Similarly, we have

t
) Epi€
T, = 20,t,>\ {Z(l_/\)%k)z [FQ( ki) K+ K((xg; — l’kl)/h) kjEkl
k=1

ag g h = Do) V3 (y;)
+3 =N =Y 7[521(fkk75)]2K i K (g — opr) )2 fk(xl;jg)(]iik./; + Aled)
kK ; j j

S IESVECED Y (@) e K ((2x — w00)/ ) (e fo(ent) + em (@) + fr(@rg) fr(@m)] }

= [Da(an)]? V2 ()
x (1+O(h) + Oy((noh) %))
=: (Toy + T + To3)(1 + O(h) + O,((noh)~2)).
It can be shown that

E(Tyn) =0, Var(Ty) = O(eoun/b5,5) = o(h™1),
E(Ty3) = O(nh) = o(h_%), Var(Ty3) = O(eo,tyA/bgyt’/\nQ) = o(h_l).

Since Z m’“]) s K K((zg; — xpn)/h) ey eIl (ool o - are independent of each

(T2 (5D v2(z;)
other for k # k', h'/?Ty, can be written as a symmetric quadratic function of ay, for k =
1,...,t, with symmetric matrix [+ t; (1—=XA)""*(1—=A)*"*],; which has vanishing diagonal
a0,¢,x
elements. So, we can use Prop051t10n 3.2 in de Jong (1987) to show the asymptotic normality
of hY2Ty,. Obviously, the expectation of T, is zero. It can be checked that
€0\ | ~ -
Var(h'/2Ty,) = h (1 —~ m) ai(1+0(1)) = hap(1+o(1)).
7t’

Finally, by certain straightforward algebraic manipulations, we can verify that the moments
of the elements in that quadratic form satisfy all the conditions given in Proposition 3.2 of

de Jong (1987). Using this theorem and all the results above about T} and T, we have the

result in Theorem 1-(i).

(ii) Using Lemma 1-(i), we have

Tiny = C(;LMGTG(l + O(h%))
0

where 0 = [0(s1),...,0(s5,0)]" = [cwnr(s1)/v(s1), -, aena(Sn)/v(Sno)]”. Next, we show

the asymptotic multivariate normality of 8. To this end, it is sufficient to prove that, as
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o) — 00, for any np-dimensional vector w = (wy, ..., wy,),

COLA )T AN(0, w" Quw).
do,t.x

Note that
1 3 no V(g) Nk K («Tk _ S-)
wle = 1 — \)tF Wi i W\ Lkj i 4 -
ag ¢\ k:l( ) ; FQ(Si) ; Vz(xkj) [ kj fk( k;j)]
1 ¢
= Mka
o, ¢\

k=1
where M, = > w; R (s;). Obviously, F(w’0|X) = 0. By some straightforward calcula-

tions, we have

Cov(Ry(s;), Re(s;)| X)
K« K((s; —s;)/h) n 7(84,55)

(1= 2Rz | (50 )
(]. )\) k [V(Si)FQ(Sj) niph V(SZ‘)V(S]') (1 + p(l))
=(1- A)“““’ni%(l +0p(1);

where the last equation comes from the condition that nh — oo. It follows that

Var(, /%wTO) = w ' Qw(1 + o(1)).

Note that Mjs are independent of each other and that the moments of ﬁ]\/[k satisfy
the Lindeberg conditions when Condition (C10) holds. Therefore, Theorem 1-(ii) follows

immediately from the Lindeberg-Feller central limit theorem. (l

Proof of Theorem 2

(i). Without loss of generality, we assume that gy = 0. Thus, g; = 6. By Lemma 1-(ii), we

have

no 2 no
CotA a;pa(8i) 1 CotA [6(s:) + Bepal(si)]?
Ty = 02 5~ B0,y 4 oty 4 B2 3 (14 0,(1)

— V2(si) — v2(s;)
2c00 xo~ Qe (80) Bena(si) 2c0.40 o~ Qen(5:)0(s:)
L PAPVRRAT (1 4 0,(1 L h 1+ 0,(1
MR S ry ma G IO Z sy o)

= T1 + T2 + (Tg + T4)(1 + Op(l))



Obviously, T is equivalent to T} 5 » under the IC condition. It is straightforward to see that
h2
Bt,hy)\(s) = 55”(8)7’]1(1 + Op(l)) (A5)

By this result, we have T = ¢4 2(s5(1 + 0,(1)), and

hn1a0t)\ t k
Ty = 1—
3 RV ey

bo.+.x

%) [k + Fr(a;)]0" (2r5) (1 + 0p(1)).

Note that \/% S (1= Ntk >k %8@ is stochastically bounded, and
0,t, 7

h’na
1 ot Z (1= kz i) fr(xr;) = Op(coganh®).
k=1

bOt)\ ])

Thus, by condition (C8)-IV, we can conclude that T5 = 0,(h~'/?). Similarly,

t

2a0,4,x (k)0 (xrs)
Ty==202) (1= Z T ey + ()]

bo,ix (k) V2 (1)

I(w)y(u, u 1 _1
= ()p((coyt’m/(ﬁ(u)wdup) =o0,(h™2).
By all these results and by Theorem 1, result (i) is proved.
(ii). This result follows directly from result (i).

(iii). Proof of this part is similar to that of Theorem 1-(ii), using Lemma 1-(ii) and result

(A.5). So, it is omitted here. O



