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Abstract

In some applications, the quality of a process is characterized by the functional re-

lationship between a response variable and one or more explanatory variables. Profile

monitoring is for checking the stability of this relationship over time. Control charts for

monitoring nonparametric profiles are useful when the relationship is too complicated

to be described parametrically. Most existing control charts in the literature are for

monitoring parametric profiles. They require the assumption that within-profile mea-

surements are independent of each other, which is often invalid in practice. This paper

focuses on nonparametric profile monitoring when within-profile data are correlated. A

novel control chart is suggested, which incorporates local linear kernel smoothing into

the exponentially weighted moving average (EWMA) control scheme. In this method,

within-profile correlation is described by a nonparametric mixed-effects model. Our

proposed control chart is fast to compute and convenient to use. Numerical examples

show that it works well in various cases. Some technical details are provided in an

appendix available online as supplemental materials.

Key Words: EWMA; Local Linear Kernel Smoothing; Nonparametric Mixed-Effects

Models; Phase II; Profile Monitoring; Statistical Process Control.

1 Introduction

In certain applications, the quality of a process is characterized by the functional relationship

between a response variable and one or more explanatory variables. At each sampling stage,
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one observes a set of data points of these variables that can be represented by a curve (or,

profile). Profile monitoring is mainly for checking the stability of this relationship over time

based on observed profile data. In some applications (e.g., certain calibration applications),

profiles can be described reasonably well by a linear regression model. But, in some others,

more flexible models are necessary for properly describing profiles. This paper focuses on

nonparametric profile monitoring when within-profile data are correlated.

As described by Woodall (2000), statistical process control (SPC) can generally be di-

vided into two phases. In Phase I, a set of process data is gathered and analyzed. Any

unusual “patterns” in the data lead to adjustments and fine tuning of the process. Once all

such assignable causes are accounted for, we are left with a clean set of data, gathered under

stable operating conditions and illustrative of the actual process performance. This dataset,

which is referred to as the in-control (IC) dataset hereafter, is then used for estimating cer-

tain IC parameters of the process. In Phase II SPC, the estimated IC process parameters are

used, and the major goal of this phase is to detect any change in the profiles. Performance

of a Phase II SPC procedure is often measured by the average run length (ARL), which is

the average number of time points needed for the procedure to signal a change in profiles.

The IC ARL value of the procedure is often controled at a given level. Then, the procedure

performs better if its out-of-control (OC) ARL is shorter, when detecting a specific profile

change. In the literature, most SPC control charts are for Phase II process monitoring which

is also the focus of the current paper.

In recent years, Phase II profile monitoring has drawn much attention from statisticians.

Early research on this topic focuses on linear profile monitoring. See, for instance, Kang and

Albin (2000), Kim et al. (2003), Mahmoud and Woodall (2004), Zou et al. (2006), and Mah-

moud et al. (2007), among several others. Zou et al. (2007) and Kazemzadeh et al. (2008)

consider cases when profiles can be described well by multiple and/or polynomial regression

models. Some recent research concerns nonlinear profile monitoring. For instance, Williams

et al. (2007a, 2007b) suggest three general approaches to nonlinear profile monitoring and

use these approaches for monitoring nonlinear dose-response profiles. Colosimo and Pacella
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(2007) propose methods for monitoring roundness profiles of some manufactured items. Lada

et al. (2002) and Ding et al. (2006) investigate a general class of nonlinear profiles, using

techniques such as dimension-reduction, wavelet transformations, and independent compo-

nent analysis. Zou et al. (2008) discuss profile monitoring using nonparametric regression

methods. A nice overview on profile monitoring can be found in Woodall et al. (2004).

In the literature, most existing profile monitoring control charts (e.g., Zou et al. 2008)

require a fundamental assumption that observations within a profile are independent of each

other, which is often invalid in applications. In practice, within-profile data are usually spa-

tially or serially correlated. For instance, within-profile data of the vertical-density profiles

(VDPs) considered by Walker and Wright (2002) and Williams et al. (2007b) are spatially

correlated, since the density measurements are taken in intervals that are close to each other

along the vertical depth of a particle board. As another example, within-profile data in the

deep reactive ion etching (DRIE) example considered by Zou et al. (2007) exhibit obvious

serial correlation over time. As demonstrated in the following sections, when within-profile

correlation is present, proper setup of the profile model becomes challenging, and estima-

tion of certain IC process parameters becomes difficult as well. If it is ignored in profile

monitoring, then the IC and OC properties of the related control charts would be adversely

affected.

There is no existing research on Phase II nonparametric profile monitoring in cases when

within-profile data are correlated. Recent articles by Jensen et al. (2008) and Jensen and

Birch (2009) discuss linear and nonlinear profile monitoring in Phase I analysis, using linear

and nonlinear mixed-effects modeling (cf., e.g., Laird and Ware 1982). Their methods can

accommodate certain within-profile correlation. But, besides the fundamental difference

between the Phase I linear/nonlinear profile monitoring considered in their papers and the

Phase II nonparametric profile monitoring considered here, their approaches assume that

both the fixed and random effects terms in their models follow certain parametric models,

and that the covariance matrix of the random errors also follows a parametric form, such

as the autoregressive or compound symmetry form. While parametric methods are useful in
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certain applications, questions will always arise about adequacy of these parametric model

assumptions and about potential impact of model mis-specifications on profile monitoring

performance. See Hart(1997) for related discussion. In addition, design points are assumed

to be deterministic (i.e., non-random) in Jensen et al. (2008) and Jensen and Birch (2009),

and unchanged from profile to profile in Jensen et al.. (2008). In practice, however, different

profiles often have different design points (i.e., the so-called unbalanced design cases). In

some cases, they might even be random (i.e., the random design cases). Phase II profile

monitoring in such cases is particularly challenging, which is also discussed in this paper.

To properly describe within-profile correlation, we propose to use a nonparametric mixed-

effects model (cf., e.g., Shi et al. 1996; Rice and Wu 2001; Wu and Zhang 2002), which

allows a flexible variance-covariance structure. Based on estimated variance structure from

an IC dataset, we propose a novel Phase II control chart for monitoring nonparametric pro-

files, which can accommodate within-profile correlation and arbitrary design. Our proposed

control chart is based on local linear kernel smoothing of profile data and on the EWMA

weighting scheme as well. It incorporates properly both the exponential weights used in the

EWMA scheme at different time points and the heteroscedasticity of observations within

each profile into the local linear kernel smoother. Numerical results show that this approach

performs well in various cases.

Our proposed control chart is described in detail in Section 2. Its numerical performance

is investigated in Section 3. In Section 4, we apply this method to a dataset from a manu-

facturing process of aluminium electrolytic capacitors. Several remarks conclude the article

in Section 5. Some technical details are provided in an appendix, which is available online

as supplementary materials.
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2 Methodology

This section is organized in five parts. In Section 2.1, nonparametric mixed-effects modeling

of an IC dataset is introduced. Its model estimation is discussed in Section 2.2. In Section

2.3, a new Phase II nonparametric profile control chart is proposed, which can accommodate

within-profile correlation and arbitrary design. Certain computational issues are addressed in

Section 2.4. Some practical guidelines regarding design and implementation of the proposed

control chart are given in Section 2.5.

2.1 Nonparametric Mixed-Effects Modeling

The Phase II nonparametric profile control chart proposed in this paper does not require IC

process parameters to be known. Instead, we estimate the related IC process parameters from

an IC dataset, using nonparametric mixed-effects modeling. In the literature, mixed-effects

modeling is often used in longitudinal data analysis (cf., e.g., Laird and Ware 1982; Diggle

et al. 1994). It has become a major tool for accommodating possible correlation among

observed data. Nonparametric mixed-effects (NME) modeling for analyzing longitudinal

data has been discussed by several authors, including Shi et al. (1996) and Rice and Wu

(2001). Here, we follow this framework for modeling within-profile correlation of an IC

dataset. In what follows, we use the term “profile” throughout; but, it should be noted that,

in the literature on mixed-effects modeling, it is often referred to as “cluster” or “subject.”

To simplify the presentation, we choose to discuss cases with a single covariate here; this

discussion can be easily generalized to cases with multiple covariates. In the IC dataset,

assume that there are m profiles and the i-th profile has ni observations, for i = 1, 2, . . . ,m.

Then, the NME model can be written as

yij = g(xij) + fi(xij) + εij, for j = 1, 2, . . . , ni, i = 1, 2, . . . ,m, (1)

where g is the population profile function (i.e., the fixed-effects term), fi is the random-effects

term describing the variation of the i-th individual profile from g, {xij, yij}nij=1 is the sample
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collected for the i-th profile, and εijs are i.i.d. random errors with mean 0 and variance

σ2. In model (1), it is routinely assumed that the random-effects term fi and the errors εij

are independent of each other, and fi is a realization of a mean 0 process with a common

covariance function

γ(x1, x2) = E[fi(x1)fi(x2)].

Without loss of generality, we further assume that xij ∈ [0, 1], for all i and j.

Model (1) is fairly flexible. It includes many common correlation structures as special

cases. For instance, if fi(xij) = αi and αi is a mean 0 random variable, then within-profile cor-

relation would have the compound symmetry form. If Corr(fi(x1), fi(x2)) = ρ(|x1 − x2|;α),

for some correlation function ρ and a coefficient α, then the correlation structure includes

the nonhomogeneous Ornstein-Uhlenbeck process and the Gaussian correlation model (cf.,

Zhang et al. 1998). When the design points are equally spaced and unchanged among

different profiles, this model can also be used for describing the autoregressive correlation

structure. Because of its flexibility, model (1) requires a relatively large set of IC profiles for

model estimation and calibration, compared to its parametric counterparts. Thanks to fast

progress in sensor and information technology, automatic data acquisition becomes increas-

ingly common in industry. Consequently, a large amount of IC data is often available, and

model (1) allows us to make use of such data without imposing a parametric model form.

2.2 Estimation of the NME Model

In this part, we discuss estimation of the IC g, γ and σ2 (cf., expression (1)) from an IC

dataset. These quantities will be used in constructing a Phase II nonparametric profile

control chart when within-profile correlation is present and can be described by the NME

model (1) (see related discussion in Section 2.3 below).

In the literature, there are some existing discussions about statistical analysis of corre-

lated data under various settings and assumptions, including those in Altman (1990), Hart

6



(1991), Hoover et al. (1998), Wang (1998), Zhang et al. (1998), Fan and Zhang (2000),

Lin and Carroll (2000), and many others. Wu and Zhang (2002) propose a method for

estimating model (1) by combining linear mixed-effects (LME) modeling and local linear

kernel smoothing (cf., Fan and Gijbels 1996). They demonstrate that their estimator of g,

which is referred to as LLME, is often more efficient than certain alternative estimators in

terms of the mean squared errors. Furthermore, by their approach, it is fairly easy to obtain

consistent estimators of γ and σ2, which is important for constructing a Phase II control

chart in the current study. For these reasons, we adopt Wu and Zhang’s method here, which

is briefly described below.

For a given point s ∈ [0, 1], LLMEs of g(s) and fi(s) are obtained by minimizing the

following penalized, negative log, local linear kernel likelihood function:

m∑
i=1

{
1

σ2

ni∑
j=1

[yij − zTij(β +αi)]
2Kh (xij − s) +αTi D−1αi + ln |D|+ ni ln(σ2)

}
, (2)

where Kh(·) = K(·/h)/h, K is a symmetric density kernel function, h is a bandwidth,

zTij = (1, xij − s), β is a deterministic two-dimensional coefficient vector, and αi ∼ (0,D)

is a two-dimensional vector of the random effects. Minimization of (2) can be accomplished

by the following iterative procedure:

Step 1. Set the initial values for D and σ2, denoted as D(0) and σ2
(0).

Step 2. At the k-th iteration, for k ≥ 0, compute estimates of β and αi by solving the

so-called mixed-model equation (cf., Davidian and Giltinan 1995; Wu and Zhang 2002), and

the resulting estimates are

β̂
(k)

= {
m∑
i=1

ZT
i ΣiZi}−1{

m∑
i=1

ZT
i Σiyi} (3)

α̂(k)

i = {ZT
i KiZi + σ2

(k)[D(k)]
−1}−1ZT

i Ki(yi −Ziβ̂
(k)

), (4)

where Zi = (zi1, . . . ,zini)
T , yi = (yi1, . . . , yini)

T , Σi = (ZiD(k)Z
T
i + σ2

(k)K
−1
i )−1 and Ki =

diag{Kh(xi1 − s), . . . , Kh(xini − s)}.
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Step 3. Based on β̂
(k)

and α̂(k)

i , update the estimates of D and σ2 by

D(k+1) =
1

m

m∑
i=1

α̂(k)

i [α̂(k)

i ]T (5)

σ2
(k+1) =

1

m

m∑
i=1

1

ni
[yi −Zi(β̂

(k)
+ α̂(k)

i )]TKi[yi −Zi(β̂
(k)

+ α̂(k)

i )]. (6)

Step 4. Repeat Steps 2-3 until the following condition is satisfied:

‖D(l) −D(l−1))‖1
/
‖D(l−1)‖1 ≤ ε,

where ε is a pre-specified small positive number (e.g., ε = 10−4), and ||A||1 denotes the sum

of absolute values of all elements of A. Then, the algorithm stops at the l-th iteration.

Note that, in Step 4, we use the relative error of the successive estimates of D in the

convergence criterion. In fact, other estimates can also be used for this purpose. We use D

here because our simulation shows that it gives good results in various cases. As a side note,

similar to estimation of LME models, nonconvergence of the above iterative procedure can

occasionally happen, although we found that the frequency of nonconvergence is negligible

in all our simulation studies, except certain extreme cases such as the ones when m or nis

are too small. To reduce the frequency of nonconvergence, it is suggested in the literature

to use good initial values for D and σ2. A simple but effective method is to set D(0) to be

the identity matrix and

σ2
(0) =

1

m

m∑
i=1

1

ni

ni∑
j=1

[yij − ĝ(P )(xij)]
2,

where ĝ(P )(xij) is the standard local linear kernel estimator constructed from the pooled

data (cf., Hoover et al. 1998).

After obtaining estimates of β and αi using the above algorithm, we can define

ĝ(s) = eT1 β̂(s), f̂i(s) = eT1 α̂i(s),

γ̂(s1, s2) =
1

m

m∑
i=1

f̂i(s1)f̂i(s2), for any s1, s2 ∈ [0, 1], (7)
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where e1 = (1, 0)T . Note that the variance estimator from the above iterative procedure

depends on s. Since σ2 is a population parameter that does not depend on s, we suggest

estimating it by

σ̂2 =
1

m

m∑
i=1

1

ni

ni∑
j=1

[yij − ĝ(xij)− f̂i(xij)]2, (8)

which is similar to the nonparametric estimator proposed by Hall and Marron (1990).

The following proposition investigates the asymptotic properties of the one-step estima-

tors of g, γ and σ2. For given initial values D(0) and σ2
(0), the one-step estimators are those

calculated by (3), (7) and (8) when k = 1.

Proposition 1 Under Conditions (C1)–(C6), (C8)-I and (C9) given in Appendix A, for

any points s1, s2 ∈ [0, 1], we have

(i) ĝ(s1) = g(s1){1 +Op[m
− 1

2 +O(h2)]};

(ii) γ̂(s1, s2) = γ(s1, s2){1 +Op[h
2 + (nh)−

1
2 +m−

1
2 + (mnh3)−

1
2 ]}; and

(iii) σ̂2 = σ2{1 +Op[h
2 + (nh)−

1
2 +m−

1
2 + (mnh3)−

1
2 ]},

where Condition (C6) assumes that ni ∼ n, for all i.

Result (i) of Proposition 1 is a direct conclusion of Theorem 1 in Wu and Zhang (2002), except

that certain conditions have been modified. The other two results establish the consistency

of the estimators of γ and σ2, which is important for the Phase II profile monitoring problem

discussed in the following sections.

2.3 Phase II Nonparametric Profile Monitoring

In this part, we present a Phase II nonparametric profile monitoring scheme in the general

case when within-profile data might be correlated and the design points within and between

profiles are arbitrary. This is a challenging task due to the following two major reasons.
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First, because the within-profile data might be correlated, estimation of the profile function

g involves a considerable amount of computation if the NME modeling is also used in Phase

II SPC, as described in Section 2.2. However, a good on-line control chart should maintain

a reasonable efficiency while being effective in detecting profile shifts. Second, in cases when

the design points X i = {xi1, xi2, . . . , xini} are unchanged from profile to profile, one method

that comes to mind is to first average observed responses yijs across individual profiles and

then detect potential profile shifts using a generalized likelihood ratio test statistic (c.f.,

Fan et al. 2001). This idea can not be applied to the current problem directly because the

response is observed at different design points in different profiles. One immediate alternative

is to estimate g from individual profile data at a given set of points in [0, 1]. But the resulting

estimates would be inefficient since they are constructed from individual profile data instead

of from all observed data.

To overcome the above difficulties, at any point s ∈ [0, 1], we consider the following local

weighted negative log likelihood:

WL(a, b; s, λ, t) =
t∑
i=1

ni∑
j=1

[yij − a− b(xij − s)]2Kh (xij − s) (1− λ)t−i/ν2(xij),

where λ is a weighting parameter and ν2(x) = γ(x, x) + σ2 is the variance function of

the response. Note that WL(a, b; s, λ, t) combines the exponential weighting scheme used

in EWMA at different time points through the term (1 − λ)t−i and the local linear kernel

smoothing procedure (cf., Fan and Gijbels 1996). At the same time, it takes into account the

heteroscedasticity of observations by using ν2(xij). Then, the local linear kernel estimator

of g(s), defined as the solution to a of the minimization problem mina,bWL(a, b; s, λ, t), has

the expression

ĝt,h,λ(s) =
t∑
i=1

ni∑
j=1

U
(t,h,λ)
ij (s)yij

/
t∑
i=1

ni∑
j=1

U
(t,h,λ)
ij (s), (9)
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where

U
(t,h,λ)
ij (s) =

(1− λ)t−iKh(xij − s)
ν2(xij)

[
m

(t,h,λ)
2 (s)− (xij − s)m(t,h,λ)

1 (s)
]
,

m
(t,h,λ)
l (s) =

t∑
i=1

(1− λ)t−i
ni∑
j=1

(xij − s)lKh(xij − s)/ν2(xij), l = 0, 1, 2. (10)

Note that m
(t,h,λ)
0 (s) is not used in (9); but, it will be used in Section 2.4 below.

From (9) and (10), we can see that ĝt,h,λ(s) makes use of all available observations up

to the current time point t, and different profiles are weighted as in a conventional EWMA

chart (i.e., more recent profiles get more weight and the weight changes exponentially over

time). When λ = 0 (i.e., all profiles receive equal weight), the resulting estimator is similar

to the local linear generalized estimating equations (GEE) estimator considered in Lin and

Carroll (2000). The GEE estimator can accommodate within-profile correlation without

specifying the correlation structure (it uses the so-called independent working correlation

matrix). Under certain mild conditions, Lin and Carroll show that it is asymptotically the

best estimator. Although Wu and Zhang (2002) demonstrate that their LLME estimator

performs better in certain cases, especially when within-profile correlation is strong, this

latter estimator involves a considerable amount of computation, and may not be feasible for

Phase II profile monitoring which is an on-line sequential procedure. As a comparison, the

estimator (9) has an explicit formula, and the related computation is relatively fast.

Following the convention in Phase II analysis, we assume that the IC regression function,

denoted as g0, and the variance function ν2(·) are both known. In practice, they need to

be estimated from an IC dataset, as described in Section 2.2. Let ξij = [yij − g0(xij)], for

all i and j, and ξ̂t,h,λ(s) be the estimator defined in (9) after yij are replaced by ξij. Then,

the IC distribution of ξ̂t,h,λ(s) does not depend on g0, and the original testing problem with

H0 : g = g0 versus H1 : g 6= g0, which is associated with the profile monitoring problem, is

changed to the one with H0 : g = 0 versus H1 : g 6= 0. Consequently, the IC distribution

of the proposed control chart defined below and all quantities related to this distribution

(e.g., the control limit L) do not depend on g0 either, which would simplify the design and
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implementation of our proposed control chart.

When the process is IC, |ξ̂t,h,λ(s)| should be small. So, a natural statistic that can be

used for SPC would be

Tt,h,λ = c0,t,λ

∫
[ξ̂t,h,λ(s)]

2

ν2(s)
Γ1(s)ds,

where

ct0,t1,λ = a2t0,t1,λ/bt0,t1,λ, at0,t1,λ =

t1∑
i=t0+1

(1− λ)t1−ini, bt0,t1,λ =

t1∑
i=t0+1

(1− λ)2(t1−i)ni,

and Γ1 is some pre-specified density function. In the expression of Tt,h,λ, quantities c0,t,λ and

ν(·) are used for unifying its asymptotic variance. See Theorem 1 below and its proof in the

appendix for details. In practice, we suggest using the following discretized version:

Tt,h,λ ≈
c0,t,λ
n0

n0∑
k=1

[
ξ̂t,h,λ(sk)

]2
ν2(sk)

, (11)

where {sk, k = 1, . . . , n0} are some i.i.d. random numbers generated from Γ1. Then, the

chart triggers a signal if

Tt,h,λ > L,

where L > 0 is a control limit chosen to achieve a specific IC ARL, denoted as ARL0. Here-

after, this chart is referred to as the mixed-effects nonparametric profile control (MENPC)

chart.

In Phase II SPC, it is a convention that the IC distribution of the process measurements

yijs is assumed known. Then, the control limit L can be searched for by simulation based on

this distribution. In practice, the IC distribution is often unknown. Instead, we usually have

a quite large IC dataset. In such cases, L can be searched for by a resampling algorithm,

briefly described below. In each simulation run, we resample the IC dataset by randomly

choosing a sequence of profiles with replacement. The sequence of profiles is sequentially

chosen until a signal of shift is triggered by chart MENPC. Then, an estimated ARL0 value
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is computed based on B simulation runs, and L is searched for by matching the estimated

ARL0 value to the nominal value. In our numerical examples in Section 3, B = 10, 000.

It should be pointed out that it is computationally faster to use points sk rather than

the original design points xij in (11). As shown in Section 2.4 below, Tt,h,λ can be calculated

in a recursive manner when sk are used in (11), and this recursive feature would be lost if xij

are used. Further, from theoretical properties of Tt,h,λ given in Theorem 2 below and from

our numerical results, selection of {sk, k = 1, 2, . . . , n0} has little effect on the performance

of the MENPC chart, as long as n0 is not too small. See related discussion in Section 2.5

about practical guidelines on selection of certain procedure parameters. In the special case

when design points X i are unchanged for different profiles, we could use X i directly (instead

of {sk, k = 1, 2, . . . , n0}) when computing the charting statistic.

Next, we give some asymptotic properties of the charting statistic Tt,h,λ, which could

justify the performance of the MENPC chart to a certain degree and shed some light on

practical design of the chart as well. Theorem 1 below gives the asymptotic null distribution

of Tt,h,λ, where design points xijs in each IC profile are assumed to be i.i.d. with a density

Γ2.

Theorem 1 Assume that the process is IC and that Conditions (C1)–(C7) given in Appendix

A all hold. Then, we have the following results.

(i) If nih is bounded, for each i, and Condition (C8)-II in Appendix A holds, then

(Tt,h,λ − µ̃h) /σ̃h
L−→ N(0, 1),

where

µ̃h =

∫
[K(u)]2du

h

∫
Γ1(x)

Γ2(x)
dx, σ̃2

h =
2
∫

[K ∗K(u)]2du

h

∫
Γ2
1(x)

Γ2
2(x)

dx.

(ii) If nih→∞, for each i, and Conditions (C8)-III and (C10) in Appendix A hold, then

1

d0,t,λ
Tt,h,λ

D∼ 1

n0

ζTζ,
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where
D∼ denotes asymptotic equivalence in distribution, dt0,t,λ =

∑t1
i=t0+1(1−λ)2(t1−i)n2

i /bt0,t,λ,

and ζ is an n0-dimensional multivariate normal random vector with mean 0 and co-

variance matrix

Ω =


γ(s1,s1)
ν2(s1)

. . .
γ(s1,sn0 )

ν(s1)ν(sn0 )

...
. . .

...

γ(sn0 ,s1)

ν(sn0 )ν(s1)
. . .

γ(sn0 ,sn0 )

ν2(sn0 )

 .

From Theorem 1-(i), we can see that Tt,h,λ is asymptotically independent of the nuisance

parameters γ(·, ·) and σ2. The condition that nih is bounded for each i is satisfied when ni

is finite and bounded for each i, which is often the case in practice. When nih → ∞ for

each i, the within-profile correlation would play an important role in the expansion of the

variance of Tt,h,λ, which leads to a different asymptotic distribution, as described in Theorem

1-(ii). In such situations, it seems desirable to incorporate the covariance matrix Ω into the

test statistic. However, Ω may not be positive definite in certain cases (e.g., the case of

compound symmetry correlation). Therefore, it is not obvious how to do so, which is left to

our future research.

The next theorem investigates the asymptotic behavior of Tt,h,λ under the OC model

yij =

 g0(xij) + fi(xij) + εij, if 1 ≤ i ≤ τ

g1(xij) + fi(xij) + εij, if i > τ
(12)

where τ is an unknown change point, and g1(x) = g0(x) + δ(x) is the unknown OC profile

function. In the theorem, we use the following notations:

ζδ =

∫ [
δ(u) +

h2η1
2
δ′′(u)

]2
Γ1(u)

ν2(u)
du, η1 =

∫
K(t)t2dt,

ζ1 =

∫
δ2(u)

Γ1(u)γ(u, u)

ν2(u)
du, ζ2 =

∫
[δ′′(u)]2Γ1(u)du.

Theorem 2 Under Conditions (C1)-(C7) given in Appendix A and the extra condition that

ζ2 < M for some constant M > 0, we have
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(i) If nih is bounded for each i, c0,t,λnhζ1 → 0, and Condition (C8)-IV in Appendix A

holds, then (Tt,h,λ − µ̃h − c0,t,λζδ) /σ̃h
L−→ N(0, 1);

(ii) If nih is bounded for each i, ζ2 → 0, and Condition (C8)-IV in Appendix A holds, then

Tt,h,λ has nontrivial power (i.e., greater than the nominal level) when δ ∝ c
−4/9
0,t,λ and

h = O(c
−2/9
0,t,λ ).

(iii) If nih → ∞ for each i, and Conditions (C8)-III and (C10) in Appendix A hold, then

1
d0,t,λ

Tt,h,λ
D∼ 1

n0
ζTζ, where ζ is an n0-dimensional multivariate normal random vector

with mean δ = [δ(s1), . . . , δ(sn0)]
T and covariance matrix Ω.

2.4 Some computational issues

Although computing power has improved dramatically and it is computationally trivial to

do nonparametric function estimation for individual profiles, for on-line process monitoring,

which generally handles a large number of profiles, fast implementation is still important

and some computational issues deserve our careful examination. For the proposed chart,

computing the test statistic Tt,h,λ by formulas (9)–(11) requires a considerable amount of

computing time and a substantial amount of storage space as well to save all past profile

observations. In this part, we provide updating formulas for computing Tt,h,λ, which can

greatly simplify the computation and reduce the storage requirement. Let

m̃
(t,h)
l (s) =

nk∑
j=1

(xtj − s)lKh(xtj − s)/ν2(xtj), l = 0, 1, 2,

q̃
(t,h)
l (s) =

nk∑
j=1

(xtj − s)lKh(xtj − s)ytj/ν2(xtj), l = 0, 1.

Then, m
(t,h,λ)
l (s) in (10) can be recursively updated by

m
(t,h,λ)
l (s) = (1− λ)m

(t−1,h,λ)
l (s) + m̃

(t,h)
l (s), l = 0, 1, 2,
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where m
(0,h,λ)
l (s) = 0, for l = 0, 1, 2. Let q

(t,h,λ)
l (s), for l = 0, 1, be two working functions

defined by the recursive formula

q
(t,h,λ)
l (s) = (1− λ)q

(t−1,h,λ)
l (s) + q̃

(t,h)
l (s), l = 0, 1,

where q
(0,h,λ)
l (s) = 0, for l = 0, 1. Then, we have

ĝt,h,λ(s) =
[
M (t,h,λ)

]−1{
(1− λ)2M (t−1,h,λ)ĝt−1,h,λ +

[
q̃
(t,h)
0 m

(t,h,λ)
2 − q̃(t,h)1 m

(t,h,λ)
1

]
+ (1− λ)

[
q
(t−1,h,λ)
0 m̃

(t,h)
2 − q(t−1,h,λ)1 m̃

(t,h)
1

]}
, (13)

where M (t,h,λ)(s) = m
(t,h,λ)
2 (s)m

(t,h,λ)
0 (s)− [m

(t,h,λ)
0 (s)]2. On the right hand side of the above

equation, dependence on s in each function is not made explicit in notation for simplicity,

which should not cause any confusion.

Using the above updating formulas, implementation of the MENPC chart can be briefly

described as follows. At time point t, we first compute quantities m̃
(t,h)
l (s), for l = 0, 1, 2,

and q̃
(t,h)
l (s), for l = 0, 1, at n0 pre-determined s locations (see related discussion in Sections

2.3 and 2.5 about selection of {sk, k = 1, . . . , n0}). Then, m
(0,h,λ)
l (sk), for l = 0, 1, 2, and

q
(0,h,λ)
l (sk), for l = 0, 1, are updated by the above formulas. Finally, ĝt,h,λ(s) is computed

from (13), and the test statistic Tt,h,λ is computed by ĝt,h,λ(s), after yij is replaced by ξij.

This algorithm only requires O(n0nih) operations for monitoring the i-th profile, which is

the same order as the computation involved in conventional local linear kernel smoothing. If

ni and n0 are both large, we could further decrease the computation to the order of O(nih),

by using the updating algorithm proposed by Seifert et al. (1994). See Fan and Marron

(1994) for a similar algorithm. Obviously, using the proposed updating formulas, computer

storage does not grow sequentially with time t.

2.5 Certain practical guidelines

On the sizes of m and ni: The number of IC profiles should be large enough to generate

accurate estimates of IC g, γ, and σ2. This has become a less significant issue nowadays
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because a large amount of IC data is often available due to advances in data acquisition

techniques. Empirically speaking, to attain desirable IC distributional properties, we recom-

mend using IC data with ni ≥ 20 and m ≥ 500, although more systematic future research is

required to determine the size of a necessary IC dataset.

On choosing the bandwidth: In estimation of the NME model (1) by the iterative pro-

cedure described in Section 2.2 for Phase I analysis, people often use data-driven bandwidth

selection techniques, such as the least squares cross-validation (CV) and the generalized

cross-validation (GCV) procedures. Wu and Zhang (2002) propose a CV method by com-

bining leave-one-subject-out and leave-one-point-out CV schemes. Their study shows that

this method can effectively track estimates of both g and fi. We adopt it in our numerical

analysis of the IC data. With respect to Phase II on-line profile monitoring, like many other

smoothing-based tests, performance of the MENPC chart depends on selection of the band-

width parameter h used in (9). Optimal selection of h remains an open problem in this area,

and it is widely recognized that optimal h for nonparametric curve estimation is generally

not optimal for testing (cf., e.g., Hart 1997). A uniformly most powerful test usually does

not exist due to the fact that nonparametric regression functions have infinite dimensions.

We suggest using the following empirical bandwidth formula,

hE =

 c1n
− 1

5

(
n∑
i=1

(xi − x̄)2/n

) 1
2

for balanced design

c2[ñ(2− λ)/λ]−1/5
√

Var(x) for random design,

(14)

where x̄ =
∑n

i=1 xi is the mean of the n design points in the balanced design case, ñ and

Var(x) are the average number of design points and the variance of design points within a

profile, respectively, in the random design case, which can be estimated from the IC data,

and c1 and c2 are two constants. Empirically, c1 and c2 can be any values in the interval

[1.0,2.0]. By (14), a smaller bandwidth is suggested for the random design case because the

actual number of observations used in the MENPC chart at each time point is about c0,t,λ

in such cases which is roughly ñ(2− λ)/λ.

On choosing λ: Traditionally, a larger λ leads to a quicker detection of larger shifts (cf.,
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e.g., Lucas and Saccucci 1990). However, in the mixed-effects modeling, efficient estimation

of the common profile function g requires use of observations across a number of different

profiles, due mainly to the existence of random effects. From Theorems 1 and 2, we can

see that the effective number of profiles used in the MENPC chart at each time point is

asymptotically (2−λ)/λ. So, to estimate g properly, (2−λ)h/λ should be large enough (cf.,

Condition (C8)-II in Appendix A). Consequently, λ cannot be chosen too large. Otherwise,

even for a shift of large magnitude, Tt,h,λ may not be able to detect it quickly, due to a large

bias in estimating g. Empirically, we suggest choosing λ ∈ [0.02, 0.1] if hE in (14) is used.

On choosing {sk, k = 1, 2, . . . , n0}: Based on our numerical experience, selection of {sk, k =

1, 2, . . . , n0} does not affect performance of the MENPC chart much, as long as n0 is not too

small and sks cover all the key parts of g0 (e.g., peaks/valleys or oscillating regions) well.

In our numerical examples presented in Section 3, we find that results would hardly change

when n0 ≥ 40.

3 A Simulation Study

We present some simulation results in this section regarding the numerical performance

of the proposed Phase II nonparametric profile monitoring chart MENPC. Throughout this

section, the kernel function is chosen to be the Epanechnikov kernel function K(x) = 0.75(1−

x2)I(−1 ≤ x ≤ 1), which is commonly used in the local smoothing literature due to some

of its optimality properties. See Chapter 2 of Fan and Gijbels (1996) for related discussion.

The IC ARL is fixed at 200. The error distribution is assumed to be standard Normal. For

simplicity, we assume that ni = n = 20 for all i, xij ∼ Uniform(0, 1), for j = 1, . . . , n,

sk = (k − 0.5)/n0, for k = 1, . . . , n0, and n0 = 40. All ARL values reported in this section

are averages of 10,000 replicated simulations. In addition, as suggested by Hawkins and

Olwell (1998), here we focus on the steady-state OC ARL behavior of the chart, and assume

that shifts can only occur after time τ = 30. When computing the OC ARL values, any
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simulation run in which a signal occurs before the (τ + 1)th profile would be ignored.

It is challenging to compare the proposed method with alternative methods, since there

is no obvious comparable method in the literature. Here, we first consider the control

chart based on fixed-effects modeling for monitoring nonparametric profiles as an alternative

method, denoted as FENPC. In this approach, fi in model (1) is assumed to be zero, and

consequently ν2(x) = σ2 is used in the construction of Tt,h,λ (cf., expressions (9)–(11)). Note

that the FENPC chart can be regarded as a generalization of the NEWMA chart by Zou

et al. (2008); the latter assumes that design points in different profiles are deterministic

and unchanged from one profile to another while the former can handle arbitrary designs.

By comparing the MENPC chart with the FENPC chart, we can see what will happen if

within-profile correlation exists but is ignored. Following the recommendations in Section

2.5, for both charts, we use h = 1.5[n(2 − λ)/λ]−1/5
√

Var(x) in Phase II SPC, and use the

CV method by Wu and Zhang (2002) for choosing bandwidths in modeling the IC data.

First, we study the possible effect of within-profile correlation on the IC run-length

distributions of the two charts in the following four cases:

(I) : fi(xij) = 0; (II) : fi(xij) = bαixij;

(III) : fi(xij) = bαi cos(2πxij); (IV) : [fi(xi1), . . . , fi(xin)]T ∼ b ·MNn(0,Σ),

where αi, i = 1, 2, . . . , are independent standard normal random variables, MNn(0,Σ) de-

notes the n-dimensional multivariate normal distribution with mean 0 and covariance matrix

Σ, and b is a constant. In all cases, we assume that g0(·) = 0. Obviously, in case (I), there is

no within-profile correlation. In case (II), the random component fi(x) is a linear function

of the covariate x. In case (III), it is a cosine function of the covariate x. In case (IV), the

random component vector has a joint Normal distribution. In this case, we further assume

that Σ = (ρjk) and ρjk = 0.2|xij−xik|, for j, k = 1, . . . , n. In each case, a large IC sample

with m = 500 and n = 200 is generated. By using estimated γ(·, ·) and σ2 from this IC

data, the control limits of the two control charts are computed, as described in Section 2.3.

Then, their IC ARLs and the corresponding standard deviations of the run length, denoted
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Table 1: IC ARL and SDRL values of the MENPC and FENPC charts.

Model (I) Model (II) Model (III) Model (IV)

b ARL0 SDRL0 ARL0 SDRL0 ARL0 SDRL0 ARL0 SDRL0

0.25 205 203 196 197 198 199 206 208

MENPC 0.50 205 203 201 200 195 194 208 204

1.00 205 203 193 190 194 194 206 205

0.25 199 197 110 109 170 172 38.3 34.0

FENPC 0.50 199 197 29.8 29.2 105 104 21.5 20.0

1.00 199 197 8.48 8.29 35.5 34.6 15.1 14.2

as ARL0 and SDRL0 respectively, are summarized in Table 1. From the table, it can be seen

that, in case (I) when the assumption of within-profile independence is valid, the ARLs and

SDRLs of both charts are close to their nominal values 200, as expected. However, in cases

(II)-(IV) when within-profile correlation is substantial, the FENPC chart has large biases in

both ARL0 and SDRL0, especially when b is large. As a comparison, our proposed MENPC

chart still performs well in these cases.

Next, we investigate the OC performance of the two control charts. The following two

representative OC models are considered here:

(i) : g1(x) = 2θ(x− 0.5); (ii) : g1(x) = θ sin(2π(x− 0.5)).

In case (i), δ(x) = g1(x)−g0(x) is a straight line; it oscillates much in case (ii). The parameter

θ controls the shift magnitude. For each control chart, two λ values 0.1 and 0.2 are used.

With each λ value, the bandwidth (14) is used. In this comparison, we pretend that the

IC model is known exactly, and the control limit of the FENPC chart is adjusted to attain

the desired IC ARL value 200. Therefore, the difference between the MENPC and FENPC

charts in this comparison is mainly in whether or not the within-profile correlation is taken

into account in Phase II SPC. Obviously, for IC models (I) and (IV), ν2(x) is independent of

x; thus, the two charts would be equivalent in such cases. For this reason, Table 2 presents

the OC ARL values of the two charts for IC models (II) and (III) only.
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Table 2: OC ARL comparison of the MENPC and FENPC charts when ARL0=200, n = 20,
n0 = 40 and λ = 0.1 or 0.2.

λ = 0.1
OC Model (i) OC Model (ii)

IC model θ MENPC FENPC MENPC FENPC
0.20 130 (1.36) 139 (1.48) 85.3 (0.83) 100 (0.98)
0.30 80.5 (0.78) 98.0 (0.99) 40.5 (0.32) 52.2 (0.46)
0.40 48.6 (0.42) 62.6 (0.59) 22.3 (0.15) 29.0 (0.21)

(II) 0.60 20.7 (0.13) 28.4 (0.20) 10.6 (0.05) 13.1 (0.06)
0.80 12.1 (0.06) 16.0 (0.09) 6.81 (0.03) 8.57 (0.03)
1.20 6.64 (0.02) 8.43 (0.03) 4.06 (0.02) 5.14 (0.02)
1.60 4.60 (0.02) 5.82 (0.02) 2.93 (0.01) 3.71 (0.01)
2.00 3.51 (0.01) 4.49 (0.01) 2.33 (0.01) 2.96 (0.01)
2.40 2.88 (0.01) 3.68 (0.01) 1.95 (0.01) 2.50 (0.01)
0.20 131 (1.38) 162 (1.73) 68.3 (0.64) 121 (1.25)
0.30 81.0 (0.79) 121 (1.26) 31.2 (0.24) 65.7 (0.60)
0.40 48.1 (0.42) 81.2 (0.76) 17.6 (0.11) 34.2 (0.25)

(III) 0.60 21.4 (0.14) 33.3 (0.24) 9.05 (0.04) 14.4 (0.06)
0.80 12.4 (0.06) 17.7 (0.09) 6.02 (0.02) 9.14 (0.03)
1.20 6.59 (0.03) 9.04 (0.03) 3.70 (0.01) 5.39 (0.02)
1.60 4.51 (0.02) 6.10 (0.02) 2.68 (0.01) 3.92 (0.01)
2.00 3.43 (0.01) 4.71 (0.01) 2.20 (0.01) 3.15 (0.01)
2.40 2.81 (0.01) 3.85 (0.01) 1.85 (0.01) 2.65 (0.01)

λ = 0.2
OC Model (i) OC Model (ii)

IC model θ MENPC FENPC MENPC FENPC
0.20 162 (1.70) 167 (1.83) 137 (1.51) 136 (1.43)
0.30 128 (1.36) 131 (1.38) 85.3 (0.89) 87.2 (0.92)
0.40 93.8 (0.97) 97.1 (1.02) 47.4 (0.46) 52.5 (0.51)

(II) 0.60 43.6 (0.40) 48.1 (0.47) 15.7 (0.11) 19.6 (0.15)
0.80 19.5 (0.15) 24.4 (0.20) 7.94 (0.04) 9.81 (0.05)
1.20 7.48 (0.03) 9.23 (0.05) 4.06 (0.01) 4.82 (0.02)
1.60 4.59 (0.02) 5.49 (0.02) 2.79 (0.01) 3.28 (0.01)
2.00 3.39 (0.01) 3.97 (0.01) 2.16 (0.01) 2.55 (0.01)
2.40 2.70 (0.01) 3.15 (0.01) 1.84 (0.01) 2.11 (0.01)
0.20 164 (1.77) 181 (1.94) 124 (1.32) 156 (1.66)
0.30 133 (1.41) 156 (1.66) 69.2 (0.70) 113 (1.17)
0.40 93.7 (0.98) 125 (1.33) 35.2 (0.32) 71.5 (0.71)

(III) 0.60 41.6 (0.38) 70.1 (0.72) 12.0 (0.07) 24.3 (0.19)
0.80 18.8 (0.14) 32.0 (0.27) 6.69 (0.03) 10.7 (0.05)
1.20 7.25 (0.03) 9.94 (0.05) 3.60 (0.01) 5.04 (0.02)
1.60 4.39 (0.02) 5.73 (0.02) 2.53 (0.01) 3.42 (0.01)
2.00 3.23 (0.01) 4.13 (0.01) 2.03 (0.01) 2.70 (0.01)
2.40 2.60 (0.01) 3.27 (0.01) 1.73 (0.01) 2.21 (0.01)

NOTE: Standard errors are in parentheses.
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From Table 2, we can have the following results. First, the MENPC chart outperforms

the FENPC chart in all cases, which demonstrates the fact that the former chart is more

effective because it explicitly incorporates within-profile heteroscedasticity of observations

into its charting statistic. Second, the control charts with λ = 0.2 do not have satisfactory

performance in most cases, compared to the charts with λ = 0.1. That is because the charts

use about [(2 − λ)h/λ]n observations at each given point and the factor (2 − λ)h/λ = 1.37

is fairly small in the case when λ = 0.2. Consequently, the charts estimate the regression

function g with large bias and its ability to detect profile shifts is thus greatly reduced. This

result confirms our recommendation in Section 2.5 that λ should be chosen smaller for mon-

itoring profiles with within-profile correlation than for monitoring profiles with independent

observations. By the way, further simulations (not reported here) also show that, when n0

is chosen larger than 40, performance of either chart would not change much.

Next, we compare our proposed MENPC control chart, which is based on nonparametric

mixed-effects modeling, with the control charts by Jensen et al. (2008) and Jensen and Birch

(2009) that are based on linear and nonlinear mixed-effects modeling. It should be pointed

out that both charts by Jensen and co-authors focus on Phase I SPC only. To compare

with the proposed Phase II MENPC chart, they need to be modified for online sequential

profile monitoring. With the nonlinear profile monitoring chart by Jensen and Birch (2009),

this modification turns out to be difficult for the following reason. As pointed out by Zou

et al. (2008) and Williams et al. (2007b), when nonlinear regression methods are used for

constructing a control chart, non-convergence or slow convergence of numerical algorithms

is often an issue, because Newton-Raphson iterative algorithms are routinely used in such

cases to obtain parameter estimates. For Phase I analysis, this issue may not be serious

as long as the initial values of the iterative algorithm are properly chosen. However, for

Phase II online process monitoring where a large number of tests are performed, it is usually

difficult to find proper initial values to guarantee the convergence of the iterative algorithm,

especially when the profile model (instead of just the model parameters) changes after the

process goes OC. For this reason, only the linear mixed-effects (LME) modelling approach
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by Jensen et al. (2008) is considered here, and it is modified for Phase II profile monitoring

as follows. Assume that the i-th profile data follow the LME model

yi = X iβ +X ibi + εi, i = 1, 2, . . . ,

where X i is the design matrix, yi = (yi1, · · · , yini)T , β is the coefficient vector of the fixed-

effects term, bi ∼ Np(0,D) the coefficient vector of the random-effects term, and εi =

(εi1, · · · , εini)T . Then, β can be estimated by the following weighted least squares estimator

constructed from the i-th profile data:

β̂i = (XT
i V−1i X i)

−1XT
i V−1i yi,

where Vi = X iDX i
T + σ2I. Following the framework of the MEWMA chart by Zou et al.

(2007), which is for online monitoring of general linear profiles using multivariate EWMA

schemes, let us consider a sequence of EWMA working vectors

wi = (1− λ)wi−1 + λ(β̂i − β0),

where β0 denotes the IC value of β. Then, the control chart triggers a signal if

Qi =
2− λ
λ

wT
i (XT

i V−1i X i)wi > L,

where L > 0 is a control limit chosen to achieve a specific IC ARL. This chart is called the

linear mixed-effect profile (LMEP) monitoring chart hereafter.

In the next example, we compare the LMEP and MENPC charts under the IC model:

yij = 1 + 2xij + 3x2ij + αixij + εij,

where αi, for i = 1, 2, · · · , are i.i.d. standard normal random variables. This model assumes

that the fixed-effects part is a quadratic function of the predictor, and the random-effects

part is a linear function. So, it is a LME model. In the simulation, ni, λ, xij, and εij are

chosen or generated in the same way as that in the example of Tables 1 and 2. The following

two OC models are considered here:

(1) : yij = β0 + β1xi + β2x
2
i + εij; (2) : yij = 1 + 2xi + 3x2i + β4 sin(2πβ5xi) + εij,
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where βs are deterministic coefficients. Obviously, OC model (1) is a LME model, and OC

model (2) is not a LME model. Six sets of values of βs are listed in Table 3, which correspond

to OC models that differ from the IC model with different degrees. The OC ARL values of

the LMEP and MENPC charts are presented in Table 4. From the table, we can see that,

even for OC model (1) which is a LME model, results of MENPC are compatible with results

of LMEP. For OC model (2), MENPC outperforms LMEP uniformly.

Table 3: Six sets of parameters of the two OC models for comparing the MENPC and LMEP
control charts

Model (1) Model (2)
β0 β1 β2 β4 β5

(i) 1.3 2.0 3.0 0.1 1.5
(ii) 1.5 2.0 3.0 0.3 1.5
(iii) 1.0 2.3 3.0 0.5 1.5
(iv) 1.0 2.5 3.0 0.1 2.5
(v) 1.0 2.0 3.3 0.3 2.5
(vi) 1.0 2.0 3.5 0.5 2.5

Table 4: OC ARL comparison of the MENPC and LMEP charts when ARL0=200, n = 20,
λ = 0.1 or 0.2.

OC Model (1) OC Model (2)
MENPC LMEP MENPC LMEP

(i) 18.9 (0.13) 18.3 (0.12) 73.1 (0.69) 154 (1.61)
(ii) 8.93 (0.04) 8.67 (0.04) 24.4 (0.15) 109 (1.15)
(iii) 63.3 (0.60) 91.7 (0.91) 12.5 (0.05) 75.1 (0.77)

λ = 0.1 (iv) 29.0 (0.25) 44.1 (0.38) 107 (1.10) 166 (1.75)
(v) 108 (1.08) 102 (1.03) 44.6 (0.35) 130 (1.38)
(vi) 59.4 (0.54) 50.9 (0.46) 20.5 (0.10) 94.2 (0.98)
(i) 25.0 (0.21) 22.0 (0.19) 127 (1.20) 149 (1.57)
(ii) 9.90 (0.06) 8.54 (0.05) 59.4 (0.57) 102 ( 1.07)
(iii) 76.0 (0.73) 113 (1.17) 23.3 (0.18) 64.5 (0.68)

λ = 0.2 (iv) 35.4 (0.35) 56.9 (0.57) 163 (1.74) 165 (1.75)
(v) 121 (1.27) 123 (1.29) 114 (1.13) 124 (1.33)
(vi) 69.6 (0.71) 67.5 (0.70) 68.8 (0.64) 87.9 (0.92)

NOTE: Standard errors are in parentheses.
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4 A Real-Data Application

In this section, we demonstrate the proposed methodology by applying it to a dateset from a

manufacturing process of aluminium electrolytic capacitors (AECs). This process transforms

raw materials, such as anode aluminum foil, cathode aluminum foil, guiding pin, electrolyte

sheet, plastic cover, aluminum shell and plastic tube, into AECs that are appropriate for use

in low leakage circuits and are well adapted to a wide range of environmental temperatures.

The whole manufacturing process consists of a sequence of operations, including clenching,

rolling, soaking, assembly, cleaning, aging and classifying. Before packing, a careful quality

monitoring step is required by sampling from a batch of products.

Regarding quality of AECs, the most important characteristic is dissipation factor (DF),

which can be automatically measured by an electronic device. However, it is known that

DF measurements would change significantly with environmental temperature, and there

is a specific requirement about the adaptability of AECs to the temperature. In order to

monitor the adaptability, engineers put a sampled AEC in a container. Then, the container’s

temperature is controlled, and the temperature is supposed to stably increase from −26oF to

78oF . In this process, measurements of DF and the actual temperature inside the container

are taken at 53 equally spaced time points. The actual temperature inside the container is

reported by a temperature sensor. So, for each sampled AEC, a set of 53 observations of the

pair (temperature, DF), which corresponds to (x, y) in model (1), are obtained for monitoring

the adaptability of the AEC to the temperature. Figure 1 shows three AEC profiles along

with an NME estimate of the IC profile function (see related discussion below). It should be

noted that the actual temperature inside a container would fluctuate around its nominal level

at each observation time. Therefore, actual temperature readings of different containers at a

given observation time are all different, although the differences are usually small. For this

dataset, profile monitoring charts requiring deterministic and fixed design points in different

profiles (e.g., the one by Zou et al. 2008) would be difficult to use.

The entire AEC dataset contains 144 profiles, and each profile has n = 53 observations.
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Figure 1: Three AEC profiles (lines connecting points with three different symbols) and the NME
estimate (solid curve) of the IC profile function.

We use the first 96 profiles to calibrate the proposed model and the remaining ones to test

the model. A calibration sample of this size might be smaller than one would like to fully

determine the IC distribution, but suffices to illustrate the use of the method in a real-world

setting. Since the DF measurements are taken in consecutive time intervals, the AEC data

exhibit a considerable amount of positive serial autocorrelation, which is confirmed by our

analysis described below.

We first fit model (1) to the calibration sample of the first 96 profiles of the data by the

iterative procedure (3)–(6), using the suggested initial values of D and σ2 given in Section

2.2 and the CV bandwidth selection procedure suggested by Wu and Zhang (2002). The

resulting IC profile estimate ĝ is displayed in Figure 1 by the solid curve. From (7) and (8),

we can also compute the estimated correlation of two observations of the response variable

y at any two points s1 and s2 in the design interval

ρ̂(s1, s2) = γ̂(s1, s2)/ [ν̂(s1)ν̂(s2)],

26



0
10

20
30

40
50

0.0 0.2 0.4 0.6 0.8 1.0

j

Correlation

pho(j,j+1)
pho(j,j+3)
pho(1,j)
pho(j,53)

(a)

0
10

20
30

40
50

0.00 0.05 0.10 0.15

j

Estimated Standard Deviation

(b)

Figure 2: (a) Solid, dashed, dotted, and dash-dotted curves represent estimated within-
profile correlations ρ̂(x∗j , x

∗
j+1), ρ̂(x∗j , x

∗
j+3), ρ̂(x∗1, x

∗
j), and ρ̂(x∗j , x

∗
53), for j = 1, 2, . . . , 53,

where {x∗j , j = 1, 2, . . . , 53} are 53 equally spaced points in the design interval [−26, 78]. (b)
Estimated standard deviation ν̂(x∗j) of the response variable y at x∗j , for j = 1, 2, . . . , 53.

where γ̂(s1, s2) is defined in (7), ν̂2(s) = γ̂(s, s) + σ̂2 is the estimated variance of y at s,

and σ̂2 is defined in (8). Let x∗j = 2(j − 1) − 26, for j = 1, 2, . . . , 53, be 53 equally spaced

points in the design interval [−26, 78], which denote the nominal temperature levels used

in taking DF measurements of the sampled AECs. The estimated correlations ρ̂(x∗j , x
∗
j+1),

ρ̂(x∗j , x
∗
j+3), ρ̂(x∗1, x

∗
j), and ρ̂(x∗j , x

∗
53), for j = 1, 2, . . . , 53, are shown in Figure 2(a). From

the plot, we can see that correlation within AEC profiles is substantial; thus, it should

not be ignored. Figure 2(b) shows the estimated standard deviation ν̂(x∗j) of the response

variable y at x∗j , for j = 1, 2, . . . , 53, from which heteroscedasticity of the response variable

y at different positions of x is clearly seen. Therefore, the proposed MENPC chart would be

more appropriate to use in this case, compared to the FENPC chart discussed in the previous

section which ignores the heteroscedasticity. In addition, we can obtain an estimate of the

error standard deviation σ to be 0.016, by formula (8), which is much smaller than ν̂(x∗j),

especially when j ∈ [12, 50]. This result implies that the random-effects term in model (1)

describes a substantial amount of random variation in the data.
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Next, we construct the proposed MENPC chart for Phase II profile monitoring, using the

estimated IC parameters computed from the IC data. As in the simulation study discussed

in the previous section, the IC ARL is fixed at 200, and λ is chosen to be 0.1. For simplicity,

we choose n0 = n = 53 and {sk, k = 1, 2, . . . , n0} to be equally spaced in the design interval

[−26, 78] of the explanatory variable. All other parameters are chosen to be the same as those

used in the example of Table 1. The control limit is computed to be 18.24 by simulation.

The charting statistics Tt,h,λ, for t = 97, . . . , 144, are shown in Figure 3 along with the control

limit, by the solid curve and solid horizontal line, respectively. The corresponding FENPC

chart, using the same λ and h as those in the MENPC chart, is also presented in the figure

along with its control limit 34.52, by the dashed curve and the dashed horizontal lines. From

the plot, it can be seen that the MENPC chart gives a signal of profile shift around the

112-th time point, and remains above the control limit for several profiles until the 120-th

profile. This result confirms a marked step-change which seems to have occurred around the

108-th profile. The process seems to have been adjusted around the 119-th profile; thus, the

MENPC charting statistic goes back below its control limit afterward. As a comparison, the

FENPC chart does not give a signal until the 118-th profile.
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Figure 3: MENPC and FENPC control charts for monitoring the AEC process. The solid
and dashed horizontal lines indicate their control limits, respectively.
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5 Summary and Concluding Remarks

In this paper, we propose a Phase II control chart for monitoring nonparametric profiles.

This chart is based on nonparametric mixed-effects modeling, local linear kernel smoothing,

and EWMA process monitoring. It can accommodate within-profile correlation and arbitrary

design. Numerical studies show that it is effective in detecting step profile shifts in various

cases. Some numerical studies not reported in the paper show that it is also effective in

detecting certain drifts in profiles. The AEC example demonstrates that our method can be

implemented conveniently in industrial applications.

As pointed out in Section 1, this paper focuses on Phase II profile monitoring only. It

requires much future research to extend our method to Phase I analysis, in which detection

of outliers and spikes would also be of interest, besides detection of step shifts in profiles.

For Phase II profile monitoring, we only consider possible step shifts in the fixed-effects term

g of model (1). In some cases, the variance-covariance structure of the profiles may also

change over time. Such a change may or may not occur simultaneously with the shift in

g. Online detection of possible changes in the variance-covariance structure of the profiles

is not trivial, and we leave it for our future research. In addition, in some applications, we

might be interested in monitoring a multivariate relationship between a response variable

and several predictors over time. At this moment, we are not aware of any existing research

on this topic, and we leave it to our future research to generalize the proposed control chart

discussed in this paper to multivariate cases.

6 Supplemental Materials

supplement.pdf This pdf file provides certain technical details, including proofs of Propo-

sition 1 and Theorems 1 and 2 in Section 2.
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