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a b s t r a c t

A control chart based on the likelihood ratio is proposed for monitoring the linear profiles.
The new chart which integrates the EWMA procedure can detect shifts in either the
intercept or the slope or the standard deviation, or simultaneously by a single chart which
is different from other control charts in literature for linear profiles. The results by Monte
Carlo simulation show that our approach has good performance across a wide range of
possible shifts. We show that the new method has competitive performance relative to
other methods in literature in terms of ARL, and another feature of the new chart is that it
can be easily designed. The application of our proposed method is illustrated by a real data
example from an optical imaging system.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In most statistical process control (SPC) applications, it is assumed that the quality of a process or product can be
adequately represented by the distribution of a univariate quality characteristic, or by the general multivariate distribution
of a vector consisting of several quality characteristics. In many practical situations, however, the quality of process or
product is characterized and summarized better by a relationship between a response variable and one ormore explanatory
variables. In particular, there has been recent interest in monitoring processes characterized by simple linear regression
profiles. Most of the studies conducted in the monitoring of such linear profiles have been motivated by calibration
applications. Mestek et al. (1994), Stover and Brill (1998), Lawless et al. (1999) and Kang and Albin (2000) presented some
practical applications in industrial engineering.
Process monitoring mainly using control charts can be seen as a two stage process-Phase I and Phase II (Woodall, 2000).

The goal in Phase I is to evaluate the stability of the process and, after dealing with any assignable causes, to estimate the in-
control values of the process parameters. In contrast, themain concern in the analysis of Phase II is to quickly detect shifts in
the process from the in-control parameter values estimated in Phase I. Different types of statistical methods are appropriate
for the two phases, with each type requiring differentmeasures of statistical performance. In Phase I it is important to assess
the rate of false signals of a control chart with a given type one error determined by practitioners. In Phase II, the emphasis is
on detecting process changes as quickly as possible. That is usually measured by parameters of the run length distribution,
where the run length is the number of samples taken before an out-of-control signal is given.
Most of the literature concerned with profile monitoring deals with the Phase II analysis of linear profiles when the

underlying in-control model parameters are assumed to be known. Kang and Albin (2000) proposed two control charts for
Phase IImonitoring of linear profiles. One of these is amultivariate T 2 chart and the other is a combination of an exponentially
weighted moving average (EWMA) chart and a range (R) chart. Kim et al. (2003) proposed transforming the x values to
achieve an average coded value of zero, and a method based on the combination of three EWMA charts was proposed for
detecting a shift in the intercept, the slope and the standard deviation. Gupta et al. (2006) compared the performance of
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two phase II monitoring schemes for linear profiles, the control charting schemes proposed by Croarkin and Varner (1982)
and Kim et al. (2003). The simulation study shows that the Croarkin and Varner (1982) method performed poorly compared
to the combined control charting scheme of Kim et al. (2003). Recently, Zou et al. (2007) proposed a novel multivariate
exponentially weighted moving average scheme for monitoring general linear profiles. They showed that their approach
performed better than Kim et al. (2003) for small and moderate shifts.
For Phase I analysis, Kim et al. (2003) suggested replacing the Phase II EWMA charts with Shewhart charts. Mahmoud and

Woodall (2004) studied the Phase I method for monitoring the linear profiles. Mahmoud et al. (2007) proposed a change-
point method, based on the likelihood ratio statistics, to detect sustained changes in a linear profile data set in Phase I. They
concluded that to protect against both kinds of changes, sustained and randomly occurring unsustained shifts, one could
employ the change-pointmethod in conjunctionwith themethods proposed byMahmoud andWoodall (2004). A discussion
about the problems inmonitoring linear profiles is given inWoodall et al. (2004). Recently, Jensen et al. (2008) proposed the
use of linear mixed models to monitor the linear profiles in order to account for any correlation structure within a profile
and Williams et al. (2007) extended the use of the T 2 control chart to monitor the coefficients resulting from a parametric
nonlinear regression model fit to profile data.
Based on the generalized likelihood ratio test, we propose a new method to detect shifts in the linear profile. Moreover,

the comparisons among our proposedmethod, themultivariate exponentiallyweightedmoving average scheme of Zou et al.
(2007) (henceforth referred to as MEWMA) and the combined control chart of Kim et al. (2003) (henceforth referred to as
KMW) are carried out in this paper. We compare these three methods in terms of ARL performance under sustained shifts
of different magnitudes in the intercept, slope and the error variance.
The rest of this paper is organized as follows. In Section 2, we review the existing two competitive monitoring methods,

theMEWMAandKMWcharts and present our proposed scheme.Wepresent the proposed chartwith VSI feature in Section 3
and compare the monitoring performance of the proposed scheme with those two methods in Section 4. In Section 5, the
application of our proposed method is illustrated by a real data example from an optical imaging system. We summarize
this paper in Section 6 with some conclusions.

2. Control chart for linear profiles

Denote by {(xi, yij), i = 1, 2, . . . , n} the jth random sample collected over time. When the process is in control, the
relationship between the response and explanatory variables is assumed to be

yij = A0 + A1xi + εij, i = 1, 2, . . . , n, (1)

where the εij/σ are independently identically distributed (i.i.d) as a standard normal random variable, and the explanatory
variable x is assumed to be fixed at n values. This is usually the case in the practical applications and is consistent with Kang
and Albin (2000), Kim et al. (2003) and Mahmoud andWoodall (2004). In this paper, we consider the Phase II case in which
the in-control (IC) values of the parameters A0, A1 and σ 2 are assumed to be known.

2.1. The existing work

The KMW chart (Kim et al., 2003): In Kim et al. (2003), using the coded explanatory values, they obtained the following
alternative form of the underlying model

yij = B0 + B1x∗i + εij, i = 1, 2, . . . , n, (2)

where B0 = A0 + A1x̄, B1 = A1, x∗i = xi − x̄ and x̄ =
1
n

∑n
i=1 xi. For the jth sample, the least square estimators for B0, B1 and

σ 2 are

b0j = ȳj, b1j =
Sxy(j)
Sxx

, MSEj =
1
n− 2

n∑
i=1

(yij − b1jx∗i − b0j)
2,

where ȳj = 1
n

∑n
i=1 yij, Sxx =

∑n
i=1(xi − x̄)

2 and Sxy(j) =
∑n
i=1(xi − x̄)yij. Note that these three estimators are independent.

Thus, they proposed to use three EWMA charts (EWMAI , EWMAS, EWMAE) to detect if the Y -intercept (B0), slope (B1) and
standard deviation (σ ) had changed, respectively. They are

EWMAI(j) = θb0j + (1− θ)EWMAI(j− 1),
EWMAS(j) = θb1j + (1− θ)EWMAS(j− 1),

EWMAE(j) = max
{
θ ln(MSEj)+ (1− θ)EWMAE(j− 1), ln(σ 2)

}
,

where EWMAI(0) = B0, EWMAS(0) = B1, EWMAE(0) = ln(σ 2) and θ is a smoothing constant. The three EWMA charts are
used jointly, with the combination of charts signaling with the first chart to signal. Their ARL comparisons show that the
three EWMA charts are more effective than the methods of Kang and Albin (2000) in terms of ARL in Phase II for detecting
sustained shifts in either Y -intercept or slope or increases in the error variance. In particular, the three EWMA charts are
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more effective in detecting shifts in the slope of the line when the average Y -value does not change — i.e. the shifts in
parameter B1 of Eq. (2). Also, their method seems much more interpretable.

The MEWMA chart (Zou et al., 2007): In Zou et al. (2007), they considered the general linear profile model. Assume that
for the jth random sample collected over time, they have the observations (Xj, Yj), where Yj is nj-variate vector and Xj is a
nj × p(nj > p)matrix. When the process is in-control, the underlying model is

Yj = Xj Eβ + Eεj, (3)

where Eβ = (β(1), β(2) . . . , β(p)) is the p-dimensional coefficient vector and the Eε′js are i.i.d as an nj-variate multivariate
normal random vector withmean E0 and σ 2I covariancematrix. Without loss of generality, suppose that Xj is of form (1,X∗j ),
where X∗j is orthogonal to 1 and 1 is a nj-variate vector of all 1

′s. The n′js are equal and Xj is assumed to be fixed for different
j, denoted as n and X, respectively. Following the notation in (3), they define

Zj(Eβ) = (
Ê
β j − Eβ)/σ ,

and
Zj(σ ) = Φ−1{F((n− p)σ̂ 2j ; n− p)},

where Êβ j = (X
′X)−1X′Yj, σ̂ 2j =

1
n−p (Yj−X Êβ j)′(Yj−X Êβ j),Φ−1 is the inverse of the standard normal cumulative distribution

function, and F(·; ν) is the chi-squared distribution function with ν degrees of freedom. Denote Zj by (Z′j(
Êβ), Zj(σ )′), which

is a (p+1)-variate random vector.When the process is in-control, the vector is multivariate normally distributedwithmean
E0 and covariance matrix 6 =

(
(X′X)−1 0
0 1

)
.

The EWMA charting statistic is defined as
Wj = λZj + (1− λ)Wj−1, j = 1, 2, . . . , (4)

whereW0 is a (p+ 1)-dimensional starting vector and λ is a smoothing constant parameter. The chart signals when

Uj = W′j6
−1Wj > L

λ

2− λ
, (5)

where L > 0 is chosen to achieve a specified IC ARL. This control scheme can be deemed a special application of MEWMA
charts. TheMEWMA chartwas first proposed by Lowry et al. (1992); the design ofMEWMA chartwas investigated by Prabhu
and Runger (1997).

2.2. Our proposed methodology

We consider model (2) and assume that σ 2 = 1 when the process is in-control, without loss of generality. For the tth
random sample collected over time, we have observations (x∗i , yit), i = 1, 2, . . . , n. If the coded model at time t is assumed
to be

yit = b
(t)
0 + b

(t)
1 x
∗

it + εit ,

then we consider the following hypothesis test

H0 : b
(t)
0 = B0, b(t)1 = B1, σ 2 = 1←→ H1 : b

(t)
0 6= B0 or b(t)1 6= B1 or σ 2 6= 1.

It is straightforward (see the Appendix) to obtain the generalized likelihood ratio statistic as follows

LRt = Ct − n log σ̂ 2t − n, (6)
where

Ct =
n∑
i=1

(yit − B0 − B1x∗i )
2, σ̂ 2t =

1
n

n∑
i=1

(yit − b1tx∗i − b0t)
2,

b0t = ȳt , b1t =
Sxy(t)
Sxx

.

Subsequently, we incorporate EWMAprocedure to the construction of LRt . Here the EWMA scheme is not to directly average
the LRt statistics but rather to getmore precise ‘‘estimates’’ of the current process intercept, slope and variance. To be specific,
three EWMA statistics are introduced by

EIt = λb0t + (1− λ)EIt−1,
ESt = λb1t + (1− λ)ESt−1,
EEt = λS∗t + (1− λ)EEt−1,

where S∗t =
1
n

∑n
i=1(yit−EStx

∗

i −EIt)
2, EI0 = B0, ES0 = B1, EE0 = 1 and λ is the smoothing parameter satisfying 0 < λ < 1.

In general, a smaller λ leads to a quicker detection of smaller shifts (Lucas nad Saccucci, 1990). Note that themoving average
estimation of process variance EIt and ESt is used in the variance estimation to replace B0 and B1. It would be expected to
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be more accurate by using these sequentially updated estimations and thus may improve the ability to detect the possible
process change. It should be noted that the first term of the statistics LRt also contains much information about the process,
so we introduce another EWMA statistic, as follows:

ECt = λCt + (1− λ)ECt−1,

where EC0 = n as the starting value. Our extensive simulation results verified at this point that the performance of the chart
improved significantly.
Finally, substituting ECt and EEt for Ct and σ̂ 2t in (6), we obtain the charting statistics

ELRt = ECt − n log EEt − n, t = 1, 2, . . . .

If ELRt > h, an alarm is trigged, where h > 0 is chosen to achieve a specified IC ARL.
Although our method is to use omnibus-type test statistics to implement a single control scheme for detecting shifts in

intercept, slope and the variance simultaneously, when the process has gone out of control, we can also obtain some useful
information about the process parameters. For example, when an alarm is trigged at point t and at the same time we find
that the term EEt , in the test statistics, deviated from its target significantly, then we can say that the process variance has
gone out of control. See more details in the example in Section 5.

3. Adding the VSI performance to the proposed ELR chart

The variable sampling interval (VSI) scheme is a known approach to enhance the efficiency of SPC monitoring schemes.
In recent years, several modifications have been suggested to improve traditional fixed sampling rate (FSR) policies that
provide better performance than conventional charts in the sense of quicker responses to a process change. Among these,
adding VSI in a control chart instead of a fixed sampling interval (FSI) is one of the most popular and useful approaches to
improve the detection ability. In a VSI control chart, the sampling interval is varied as a function of the control statistics. The
basic idea of the VSI feature is to use a shorter sampling interval if there is an indication of a possible change, but a longer
sampling interval if there is no such indication.
Many researchers have contributed to the theory and application of the VSI chart. Most work on developing VSI control

charts focuses on monitoring the mean (e.g., Reynolds et al. (1988, 1989, 1990), Runger and Montgomery (1993), Reynolds
and Stoumbos (2001) and Reynolds and Amold (2001). Chengular et al. (1989) introduced a VSI Shewhart chart for
monitoring the mean and variance with a sample of size of n > 1. Reynolds and Stoumbos (2001) added the VSI feature to
various combinations of control charts to detect the shift inmean and variance using individual observations. Aparisi (2001)
considered a VSI control chart based on Hotelling’s statistic. Reynolds and Kim (2005a), and Reynolds and Kim (2005b)
recently investigated MEWMA control charts based on sequential sampling and unequal sample size.
Past work on VSI control charts has shown that using only two possible values for the sampling intervals is sufficient.

Thus in this article, we consider two possible interval values, say 0 < d1 < d2. To apply the VSI feature to the ELR chart, we
apply additional warning limits 0 < ω < h inside the control limits to determine which sampling interval to use next. In
particular, a long sampling interval d2 should be used after the sample is obtained if ELRt falls inside the warning limits of
ω. On the other hand, a short sampling interval d1 should be used if ELRt falls outside of the warning limits of ω, but inside
the control limits h. If ELRt falls outside of the control limits, then an out-of-control signal would be triggered. The choices
of d1 and d2 are determined in practice. When they are determined, then warning limit ω is chosen to achieve a specified IC
ATS. In this paper, the warning limit ω is determined through simulation when d1 and d2 are fixed.
The speedwithwhich a control chart detects process shifts measures its statistical efficiency.When the interval between

samples is fixed, the speed can be measured by ARL. When evaluating the statistical performance of a VSI control chart, the
average time to signal (ATS) should be considered. But at the same time, the average number of samples to signal (ANSS)
should be considered, too. When a process is in control, it is desirable that the mean time from the beginning of the process
until a signal be long, which guarantees fewer false alarms. When a process is out of control, it is desirable that the mean
time from the occurrence of the assignable cause until a signal be short, as this guarantees the fast detection of process
changes. In the comparative study, we require that all of the charts being compared have the same in-control sampling rate
and the same false-alarm rate. This ensures that the charts being compared have the same ATS and ANSS when the process
is in-control. When different control charts being compared are designed to have the same IC ATS and ANSS, these charts
can be fairly compared according to the steady-state ATS (SSATS). The SSATS is defined as the expected time from the point
of the shift to the point at which the chart signals, under the assumption that the control statistic has reached a steady-state
distribution by the time that the shift occurs. In this article, we use simulation to approximate the SSATS.

4. Performance comparisons

When evaluating and comparing the performances of static control charts, the ARL performance is considered. This ARL
performance is referred to as the zero-state ARL performance. In practice, it may be reasonable to assume that the process
starts in control and then shifts at some random time t in the future. For an arbitrarily t > 0, the ARL performance of a control
chart is called steady-state ARL performance. In this paper, we only tabulate the zero-state ARLs in order to be consistent
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Table 1
The ARL comparisons between ELR, MEWMA and KMW chart for the shift in A0, A1 , standard deviation σ and B1 .

A0 A1
δ ELR MEWMA KMW δ ELR MEWMA KMW

0.0 200.0 200.0 200.0 0.0 200.0 200.0 200.0
0.1 131.9 131.5 133.7 0.025 99.4 99.0 101.6
0.2 61.2 59.9 59.1 0.0375 58.0 57.4 61.0
0.3 30.8 29.6 28.3 0.05 36.1 35.0 36.5
0.4 18.2 17.2 16.2 0.0625 24.2 23.1 24.6
0.5 12.2 11.5 10.7 0.075 17.3 16.4 17.0
0.6 9.0 8.5 7.9 0.1 10.5 9.8 10.3
0.8 5.8 5.8 5.1 0.125 7.3 6.9 7.2
1.0 4.2 4.1 3.8 0.15 5.5 5.3 5.5
1.5 2.4 2.6 2.4 0.2 3.7 3.7 3.8
2.0 1.6 2.0 1.9 0.25 2.7 2.9 2.9

σ B1
δ ELR MEWMA KMW δ ELR MEWMA KMW

1.0 200.0 200.0 200.0 0.0 200.0 200.0 200.0
1.1 73.3 76.2 72.8 0.05 120.6 120.5 120.8
1.15 44.0 48.7 48.1 0.075 77.8 77.3 77.3
1.2 28.6 33.2 33.5 0.1 51.2 50.0 49.1
1.25 20.0 24.1 24.9 0.15 25.0 24.0 22.8
1.3 14.9 18.4 19.4 0.2 14.9 14.0 13.1
1.4 9.5 12.1 12.7 0.25 10.1 9.5 8.9
1.6 5.3 7.0 7.2 0.3 7.6 7.1 6.6
1.8 3.7 4.9 5.1 0.4 4.9 4.7 4.4
2.2 2.3 3.1 3.2 0.5 3.6 3.6 3.3
2.6 1.7 2.3 2.5 0.7 2.2 2.5 2.3
3.0 1.5 1.9 2.1 0.9 1.6 2.0 1.9

with Kang and Albin (2000) and Kim et al. (2003). In fact, the steady-state ARLs show similar conclusions (available from
the authors), thus they are omitted here.
For simplicity, we only consider the case of overall IC ARL=200. The underlying IC model is the same as that of Kang and

Albin (2000) and the parameters in the in-control model are A0 = 3, A1 = 2 and σ 2 = 1, xi = 2(2)8. In Kim et al. (2003),
the control limits LI , LS and LE are set to be 3.0156, 3.0109 and 1.3723 for the three EWMA charts, respectively, when the
smoothing constant λ is chosen to be 0.2. In the case of known parameters, this design will have an overall IC ARL of roughly
200 and the IC ARL of each chart is about 584.
Note that the monitoring statistics ECt , EEt involved in ELRt do not have an explicit in-control distribution, although b0t

and b1t are known to be normally distributed with means B0 and B1 and variances σ 2/n and σ 2/Sxx, respectively. Because
the distribution of ELRt is quite complicated and there is no direct and simple method to compute the transition matrix
for our chart, the ARL results are evaluated by 100,000 Monte Carlo simulations. The methods have been implemented in a
FORTRAN program (available from the authors upon request) that uses the routines ‘‘rnmvn’’ ‘‘rnnor’’ and ‘‘rnun’’ to generate
multivariate Normal vectors, Normal random variables and Uniform random variables, respectively.
In Zou et al. (2007), the results are obtained through Markov chain approximation. Moreover, the types of shifts

considered in this paper are the same as those in Kim et al. (2003), although some other scales, instead of the scale σ ,
can be used to measure the size of shifts in all parameters.
Next we compare our proposed ELR chart with the KMW chart and the MEWMA chart in terms of OC ARL. The OC ARL’s

of our proposed ELR chart and those of the KMW chart and the MEWMA chart for detecting the shift in A0, A1, σ and B1 are
shown in Table 1. From this table, we observed

• The performance of our proposed ELR chart is comparable for detecting the small and moderate shifts in A0, A1 and B1.
For detecting the shifts in A0 and B1, the KMW chart does better, and for detecting the shifts in A1, the MEWMA chart
does better. The ELR chart seems a little better than the KMW chart, although the difference is negligible. Note that three
monitor statistics EWMAI , EWMAS and EWMAE should be compared with three corresponding control limits to detect
whether the process has gone out of control in the KMW chart, which is not easier than our ELR chart for practitioners
to implement in practice.
• For detecting the shift in standard deviation σ , our proposed ELR chart performs almost uniformly significantly better
than the other two charts. This is a very important case in practice because the variance increase means that the quality
of the product deteriorates. So it should be detected quickly. This implies that our ELR chart can guard against process
and product deterioration quite effectively, which shows the superiority of our ELR chart.

Note that the KMW chart, in detecting the change of standard deviation, is an upper-sided scheme. In Kim et al. (2003),
authors suggested using the appropriate methods discussed by Acosta-Mejia et al. (1999) if one wished to detect the
decreases in variance. However, our approach can also detect decreases in variance verywell. The simulated ARL’s are shown
in Table 2. For purpose of comparison, we also list the results of the MEWMA chart.
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Table 2
The ARL’s of the MEWMA and ELR chart for detecting the decrease in variance.

δ 0.10 0.15 0.20 0.25 0.30 0.35 0.40

MEWMA 3.3 3.9 4.5 5.3 6.4 7.8 9.7
ELR 5.6 5.9 5.9 6.0 6.1 6.4 6.9

δ 0.45 0.50 0.55 0.60 0.65 0.70 0.75

MEWMA 12.5 16.5 22.9 33.0 49.1 74.9 114.5
ELR 7.5 8.4 9.5 11.3 14.2 18.9 27.6

Table 3
The ARL comparisons between MEWMA, KMW and ELR chart under combinations of intercept (δ1) and slope (δ2) shifts in model (2).

δ1 δ2 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

0.05 MEWMA 155.8 111.0 72.9 48.0 32.8 23.5 17.7 13.9 11.3 9.5
KMW 157.6 114.7 74.8 48.3 32.2 22.5 16.9 13.2 10.7 8.9
ELR 154.8 111.3 73.9 49.0 33.9 24.5 18.6 14.7 12.0 10.0

0.10 MEWMA 118.0 89.2 62.1 42.8 30.2 22.2 16.9 13.5 11.0 9.3
KMW 122.1 94.6 66.4 44.9 30.7 21.9 16.6 13.1 10.6 8.9
ELR 118.3 89.7 62.8 43.7 31.3 23.1 17.9 14.2 11.7 9.8

0.15 MEWMA 82.2 66.3 49.5 36.1 26.7 20.2 15.8 12.8 10.6 9.0
KMW 84.6 70.8 54.5 39.6 28.5 20.9 16.1 12.8 10.4 8.8
ELR 83.0 67.5 50.6 37.3 27.9 21.1 16.7 13.6 11.3 9.6

0.20 MEWMA 56.4 48.0 38.2 29.6 22.9 18.1 14.5 12.0 10.4 8.8
KMW 57.1 51.1 42.4 33.3 25.4 19.5 15.4 12.4 10.2 8.7
ELR 57.0 49.2 39.3 30.7 24.0 18.9 15.3 12.2 9.6 9.0

0.25 MEWMA 39.5 35.0 29.4 24.0 19.5 15.9 13.2 11.2 9.6 8.3
KMW 39.5 36.5 32.3 27.1 22.0 17.8 14.4 11.9 10.0 8.5
ELR 39.7 36.2 30.6 25.1 20.4 16.8 13.9 11.7 10.0 8.7

0.30 MEWMA 28.7 26.2 22.9 19.6 16.5 13.9 11.8 10.2 8.8 7.8
KMW 28.2 26.9 24.7 22.0 18.8 15.7 13.2 11.2 9.6 8.3
ELR 29.6 27.2 24.1 20.5 17.3 14.7 12.6 10.7 9.4 8.2

0.35 MEWMA 21.7 20.2 18.3 16.1 14.0 12.2 10.6 9.3 8.2 7.3
KMW 20.9 20.2 19.1 17.6 15.8 13.9 12.1 10.5 9.1 8.0
ELR 22.5 21.2 19.2 16.9 14.8 12.9 11.2 9.9 8.7 7.7

0.40 MEWMA 17.0 16.1 14.9 13.5 12.0 10.7 9.5 8.5 7.6 6.9
KMW 16.2 15.9 15.3 14.5 13.5 12.1 10.9 9.7 8.6 7.6
ELR 17.8 16.9 15.7 14.2 12.7 11.4 10.1 9.0 8.1 7.2

0.45 MEWMA 13.7 13.2 12.4 11.4 10.5 9.5 8.6 7.8 7.1 6.5
KMW 13.1 12.9 12.6 12.1 11.4 10.6 9.8 8.9 8.0 7.3
ELR 14.5 13.9 13.1 12.1 11.1 10.0 9.1 8.2 7.5 6.8

0.50 MEWMA 11.4 11.1 10.5 9.9 9.2 8.5 7.8 7.2 6.6 6.1
KMW 10.8 10.8 10.6 10.3 9.9 9.3 8.7 8.1 7.5 6.9
ELR 12.1 11.7 11.2 10.3 9.7 8.9 8.2 7.5 6.9 6.3

From Table 2, we can see that for detecting small andmoderate decrease in variance, our ELR chart performs significantly
better than the MEWMA chart. For example, when δ = 0.75, the OC ARL for the MEWMA chart is 114.5, but for the ELR
chart, the OC ARL reduce to 27.8. For very large shifts (e.g., δ < 0.3), the MEWMA chart works better. Note that it is the
small to moderate shifts that are difficult to detect for any control chart. We do not think the little inferior position relative
to MEWMA chart when detecting large shifts will hamper the use of our ELR chart in practice.
Simultaneous shifts in the intercept and slope in model (2) are also considered in this paper. The OC ARL values are

obtained and summarized in Table 3. The magnitudes of shifts in intercept (B0) and slope (B1) are consistent with Kim et al.
(2003). In general, it seems that the MEWMA chart performs better than the other two charts in most of the cases, but the
difference is not very significant. For the ELR and KMW charts, the ELR chart performs almost always better than the KMW
chart, especially when the shifts in intercept and slope are both small (e.g., δ1 ≤ 0.25 and δ2 ≤ 0.075) or both moderate
and large (e.g., δ1 ≥ 0.2 and δ2 ≥ 0.075).
Asmentioned in the last section, when comparing the performance of VSI control charts, ARL is not a proper criterion any

more. So, we demonstrate the improved performance in terms of SSATS gained by adding the VSI feature to the ELR chart.
Table 4 presents the SSATS values of the VSI and FSI ELR charts for the linear profiles model (1) by 100,000 simulations. The
shifts in intercept, slope and standard deviation are investigated. The IC ATS and ANSS of each chart are both set to 200; that
is, the average IC sampling rate of the VSI chart is 1 sample per unit time. The numerical results are given in Table 4. Zou et al.
(2007) also considered the VSI MEWMA charts for the shifts in intercept and standard deviation. The results are tabulated
in parentheses.
From Table 4, we conclude that adding the VSI feature can provide quite substantial reductions in the time required to

detect small and moderate shifts. The results presented here, are fairly consistent with previous research on univariate VSI
control charts. In general, the interval d1, should be as small as possible for better statistical performance (Reynolds et al.,
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Table 4
SSATS comparisons between FSI ELR and VSI ELR charts for the shift in intercept A0 , slope B1, A1 and standard deviation σ .

A0 A1
δ FSI d1 = 0.5 d1 = 0.1 δ FSI d1 = 0.5 d1 = 0.1

d2 = 1.25 d2 = 1.9 d2 = 1.25 d2 = 1.9

0.1 126.4 (127.9) 122.8(124.4) 112.2(120.0) 0.025 96.0 90.4 80.8
0.2 57.7 (57.6) 52.1 (51.9) 44.2 (45.2) 0.0375 55.6 49.5 41.5
0.3 28.6 (28.1) 23.9 (23.3) 18.0 (18.1) 0.05 33.9 28.5 22.2
0.4 16.5 (16.1) 13.1 (12.6) 9.2 (9.2) 0.0625 22.3 18.0 13.1
0.5 11.0 (10.6) 8.4 (8.0) 5.7 (5.8) 0.075 15.7 12.3 8.6
0.6 8.0 (7.6) 6.0 (5.7) 4.2 (4.2) 0.1 9.4 7.1 4.9
0.8 5.1 (4.8) 3.8 (3.6) 2.8 (2.8) 0.125 6.4 4.8 3.5
1.0 3.7 (3.4) 2.8 (2.6) 2.2 (2.1) 0.15 4.9 3.7 2.7
1.5 2.1 (2.0) 1.6 (1.6) 1.4 (1.4) 0.2 3.2 2.4 2.0
2.0 1.4 (1.4) 1.0 (1.1) 0.9 (1.1) 0.25 2.4 1.8 1.6
3.0 1.0 (0.8) 0.5 (0.8) 0.5 (0.9) 0.3 1.8 1.4 1.2

σ B1
δ FSI d1 = 0.5 d1 = 0.1 δ FSI d1 = 0.5 d1 = 0.1

d2 = 1.25 d2 = 1.9 d2 = 1.25 d2 = 1.9

0.1 4.4 (2.7) 3.5 (2.1) 2.8 (1.8) 0.05 116.3 111.7 102.7
0.3 5.0 (5.8) 3.9 (4.3) 3.0 (3.3) 0.075 74.2 68.7 60.1
0.5 7.0 (15.9) 5.2 (11.2) 3.7 (7.1) 0.1 48.3 43.2 35.4
0.7 16.8 (73.8) 12.1 (63.9) 7.2 (51.1) 0.15 23.2 19.0 13.9
1.1 70.9 (73.2) 68.3 (68.9) 63.6 (63.9) 0.2 13.5 10.4 7.2
1.2 27.0 (31.2) 24.1(27.4) 20.7 (23.4) 0.25 9.0 6.8 4.8
1.4 8.7 (16.9) 7.1 (14.1) 5.6 (11.4) 0.3 6.7 5.0 3.6
1.8 3.3 (10.8) 2.6 (8.8) 2.2 (6.9) 0.4 4.3 3.3 2.5
2.2 2.1 (4.0) 1.6 (3.2) 1.4 (2.6) 0.5 3.1 2.4 1.9
2.6 1.6 (2.4) 1.1 (1.9) 1.1 (1.7) 0.7 2.0 1.5 1.4
3.0 1.4 (1.3) 0.9 (1.1) 0.9 (1.2) 0.9 1. 0.9 0.9

Table 5
The data set of the example from an optical imaging system.

t x1 x2 x3 y1 y2 y3

1 0.76 3.29 8.89 1.12 3.49 9.11
2 0.76 3.29 8.89 0.99 3.53 8.89
3 0.76 3.29 8.89 1.05 3.46 9.02
4 0.76 3.29 8.89 0.76 3.75 9.30
5 0.76 3.29 8.89 0.96 3.53 9.05
6 0.76 3.29 8.89 1.03 3.52 9.02

1990); therefore, it usually depends on how soon it is feasible to sample again after the current sample was obtained. On the
other hand, the sampling interval d2, should be chosen to be long so that the resulting control chartwould have an acceptable
average sampling rate. When compared with VSI MEWMA chart for detecting intercept shifts, our ELR chart has comparable
performance. But for variance shifts, our ELR chart shows much superiority. For example, when δ = 0.7, our ELR chart has
SSATS 12.1 and 7.2 while VSI MEWMA chart has SSATS 63.9 and 51.1 for d1 = 0.5, d2 = 1.25 and d1 = 0.1, d2 = 1.9,
respectively. Similar conclusions can be obtained for other types of changes as well.

5. A real data example

In this section, the application of our proposed ELR chart formonitoring linear profiles is illustrated by a real data example
Gupta et al. (2006) used to compare the performance of two phase II monitoring schemes for linear profiles, the control
charting schemes proposed by Croarkin and Varner (1982) and Kim et al. (2003). The data set consists of line widths of
photomasks reference standards on 10 units (40measurements) used formonitoring linear calibration profiles of an optical
imaging system. The linewidths are used to estimate the parameters of the linear calibration profile, yit = 0.2817+0.9767xi,
with a residual standard deviation of 0.06826 micrometers. Interested readers are referred to the NIST/SEMATECH e-
Handbook of statistical methods and Gupta et al. (2006) for deeper background.
In Gupta et al. (2006), the in-control ARL is set to 200. Although we have made a detailed comparative study in the last

section, we set the same in-control ARL with Gupta et al. (2006) for our proposed ELR chart for monitoring linear profiles to
show the application of our ELR chart more clearly. Table 5 shows the data set taken from Table 7 in Gupta et al. (2006), with
label ‘‘x1’’, ‘‘x2’’, ‘‘x3’’, ‘‘y1’’, ‘‘y2’’ and ‘‘y3’’. In order to be consistent with model (2), the original data had been standardized by

yit
0.06826

=

(
0.2817
0.06826

+
0.9767
0.06826

x̄
)
+
0.9767
0.06826

x∗i + εit ,
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Table 6
The statistics results of the example from an optical imaging system.

t x∗1 x∗2 x∗3 y∗1 y∗2 y∗3 EIt ESt EEt ECt ELRt

1 11.134 48.198 130.237 16.408 51.128 133.460 66.075 14.309 1.123 3.705 0.357
2 11.134 48.198 130.237 14.503 51.714 130.273 65.957 14.309 1.031 3.304 0.231
3 11.134 48.198 130.237 15.328 50.689 132.142 65.980 14.326 0.881 2.857 0.236
4 11.134 48.198 130.237 11.134 54.937 136.244 66.272 14.510 3.231 12.897 6.379
5 11.134 48.198 130.237 14.064 51.714 132.581 66.241 14.519 2.616 10.859 4.974
6 11.134 48.198 130.237 15.089 51.508 132.142 66.246 14.494 2.115 8.848 3.600

where εit ∼ N(0, 1). Table 6 shows the standardized data with label ‘‘x∗1 ’’, ‘‘x
∗

2 ’’, ‘‘x
∗

3 ’’, ‘‘y
∗

1 ’’, ‘‘y
∗

2 ’’ and ‘‘y
∗

3 ’’, where x
∗

i = xi − x̄,
y∗i = 14.6498yi. Some other statistics results with label ‘‘EIt ’’, ‘‘ESt ’’,‘‘EEt ’’, ‘‘ECt ’’ and ‘‘ELRt ’’ are also listed in this table. Here,
the in-control model is y∗it = 65.8443 + 14.3085x

∗

i + εit . Note that the control limit h is 1.752 to achieve in-control ARL
200 when λ is chosen to be 0.2. From Table 6, we can observe our ELR chart gives an out-of-control signal at observation
4. Note that the EE4 statistics is 3.231, which deviated from its target value 1 significantly, so we can say that the process
variance has gone out of control and the variance increased. These results are consistent with those of Gupta et al. (2006).
Moreover, this signal is significant enough to show that the process has gone out of control. It is urgent for practitioners to
take effective measures. This, again, shows that our ELR chart is quite a useful tool for practitioners.

6. Conclusions and considerations

In this paper, we propose a new method for detecting shifts in intercept, slope and standard deviation for the linear
profiles by using a single chart. The proposed scheme integrates the EWMA procedure with the generalized likelihood ratio
statistics. The new chart can be easily designed and constructed. By the simulations, we show that the ELR chart performs
similarly to the existing charts in terms of OC ARL. For detecting the standard deviation, our proposed new chart works
significantly better than the existing competitive charts.
As Kim et al. (2003) pointed out, it is very necessary to justify which parameter or parameters have shifted after a signal

occurs. Since their proposed chart is the combination of the three EWMA charts, and each chart detects the corresponding
parameter, the diagnosis of any process change is easier than that of the omnibus methods of Kang and Albin (2000). It
should be noted that our proposed method is an omnibus chart, but when the process has gone out of control, we also can
observe some useful information from the statistics results, about which parameter has shifted. So it is still an advantage
of our new chart for practitioners. Of course, for this type of control chart, some diagnostic aids have been proposed and
developed in the literature. For example, Hawkins and Zamba (2005) used two conventional parametric tests: a two-sided
F test for detecting the changes in variance and an approximate t-test for detecting the changes in mean. So these methods
also can be used to diagnose the change of the process.
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Appendix

The derivation of Eq. (6):
As

yit − B0 − B1x∗i = εit ∼ N(0, 1), i = 1, 2, . . . , n,

then the Log likelihood function under H0 is

l0 = −
n
2
log 2π −

n∑
i=1
(yit − B1x∗i − B0)

2

2
.

When we get n samples, the MLE of the parameters are

B̂0 = ȳt , B̂1 =
Sxy(t)
Sxx

, σ̂ 2t =
1
n

n∑
i=1

(yit − B̂1x∗i − B̂0)
2,

respectively, then the Log likelihood function under H1 is

l1 = −
n
2
log 2πσ̂ 2t −

n
2
.
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Then we have the LRt statistics as follows:

−2(l0 − l1) =
n∑
i=1

(yit − B1x∗i − B0)
2
− n log σ̂ 2t − n.
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