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Abstract
As we know, the measurement error often exists in practice, and affects the performance of

quality control in some cases. The autoregressive process with the measurement error is investigated

in this paper. For detecting the step shift of the autoregressive process mean with measurement er-

ror, a CUSUM control chart based on the maximum log-likelihood ratio test is obtained. Simulated

in-control and out-of-control ARL’s are made for various measurement error and autocorrelation

coefficients. The simulation results show that this new CUSUM scheme works well when the process

is negatively autocorrelated.
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§1. Introduction

Statistical process control (SPC) is widely used in industry for process monitoring

and quality improvement. Several control charts has been appeared, such as Shewhart

chart, cumulative sum (CUSUM, Page (1954)) and exponentially weighted moving average

(EWMA, Roberts (1959)). CUSUM and EWMA charts perform better in detecting small

or moderate shift than does the Shewhart control chart, but, Shewhart control chart is

optimal for detecting the large shift.

There is no measurement error in the traditional control charts. However, the mea-

surement error exists in practice. In general, the measurement error model is as follows:

yt = xt + et,
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462 应用概率统计 第二十五卷

which is called simple measurement error model, where yt’s are the independent obser-

vations, xt denotes the true value of quality characteristic of interests and comes from

N(1, σ2
p), and et represents the measurement error and is a normal random variable with

zero-mean and variance σ2
m. Thus, yt’s are independently distributed as N(µ, σ2

p + σ2
m).

The performance of control charts under the simple measurement error model had

been studied by many researchers. Bennett (1954) suggested measurement error can be

ignored for Shewhart control chart when the variance of measurement error is smaller

than the process’s. Abraham (1977) suggested to use the control limits without measure-

ment error as the control limits with measurement error, and then considered the effect

of measurement error on chart performance. Kanazuka (1986) considered the effect of

measurement error on the power of joint X and R charts. He observed that significant

measurement error can diminished the power and the larger sample size can recover the

lost power. Walden (1990) also discussed the effect of measurement error on the ARL

of control charts, including the X chart and the R chart, the joint X and R chart, and

the X chart with runs rules, and provided various sampling methods that may be used

to compensate for the presence of measurement error, including increased sample sizes,

taking repeated measurements etc.

Moreover, Linna and Woodall (2001) generalized the simple measurement error model

to a covariate measurement error model as follows:

yt = A + Bxt + et,

where A and B are constants. They discussed the impact of measurement error on the

performance of control charts and indicated that multiple measurements can be used to

increase the power.

Meanwhile, with the widespread use of high-speed data collection schemes, process

measurement values are often serially correlated even when there are no special causes of

variation affecting the system. This autocorrelation violates the in-control independence

assumption associated with many SPC control charting procedures. Such a violation has

a significant impact on the performance of the classical SPC procedures. A number of

papers have developed various methods to detect the shifts in the mean of autocorrelated

process (Johnson and Bagshaw (1974), Bagshaw and Johnson (1975), Harris and Ross

(1991), Alwan (1992), Wardell, Moskowitz and Plante (1994), Runger, Willemain and

Prabhu (1995), Krieger, Champ and Alwan (1992), Alwan and Alwan (1994), Apley and

Tsung (2002), Atienza, Tang and Ang (2002), Yashchin (1993)).

This paper will discuss the effect of measurement error on the CUSUM chart for the

autoregressive data. This CUSUM control chart is approximated to be the maximum like-

lihood ratio test, and its parameter design is close to the design of CUSUM when the data
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is independently from normal distribution. The simulation results show that measure-

ment error can be ignored when the process is positively autocorrelated and variance of

measurement error is smaller than that of the process; but when the process is negatively

autocorrelated, it’s necessary to decrease the measurement error.

The autocorrelated data model with measurement error is described in Section 2. A

new CUSUM statistic is obtained in Section 3. The parameter design of the new CUSUM

is given in Section 4. The comparisons with traditional or standard CUSUM chart and

standard Shewhart chart are made in Section 5. Section 6 gives several conclusions and

discussions.

§2. The Model Description and Some Donations

In this paper, the model of the measurement error is the same as simple measurement

error model:

yt = xt + et, (2.1)

where et is normally distributed as N(0, σ2
m) and independent of xt, which is a stationary

AR(1) series (for simplicity):

xt = ψxt−1 + εt, (2.2)

where |ψ| < 1, εt is a sequence of IID N(0, σ2
ε).

Combining equations (2.1) and (2.2), the in-control model is given by





yt = xt + et,

xt = ψxt−1 + εt,
(2.3)

where et and εt are independent, et is independent of {xt, xt−1, · · · }, and εt is independent

of {xt−1, xt−2, · · · }. In fact, the method in this paper can be easily generalized to the

ARMA(p, q) model with measurement error.

Model (2.3) is one of the classical state-space models. So, we can use the results

about the state-space model to deal with our detecting problem. Here are some useful

conclusions about the state-space model.

For observations Yt = (y1, · · · , yt), define

Xt = E(xt|Yt−1), Pt = E(xt −Xt)2.

Since all distributions are normal, Pt can be rewritten as

Pt = E((xt −Xt)2|Yt−1).
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Let the initial value X0 = 0, P0 = Var (x0), we can obtain the recursive formula for

evaluating the Xt and Pt by the Kalman Filter (see Durbin and Koopman (2001)), which

is well known in time series analysis and given by




Xt = ψ[Xt−1 + Kt−1(yt−1 −Xt−1)],

Pt = ψ2(1−Kt−1)Pt−1 + σ2
ε ,

Kt = Pt/(Pt + σ2
m),

(2.4)

where Kt is called Kalman gain.

Furthermore, it’s easy to get the following conditional expectation and variance under

in-control model (2.3):

E(yt|Yt−1) = E(xt|Yt−1) = Xt,

Var (yt|Yt−1) = E[(yt −Xt)2|Yt−1]

= E[(xt −Xt)2 + 2et(xt −Xt) + e2
t |Yt−1]

= E[(xt −Xt)2 + e2
t |Yt−1] = Pt + σ2

m. (2.5)

§3. The CUSUM Based on the Maximum Likelihood Ratio

The cumulative sum (CUSUM) control charts were, initially, proposed by Page (1954).

Bagshaw and Johnson (1975) proved that the optimal reference value k is equal to the half

of the shift to be detected. Brook and Evans (1972) proposed a Markov chain method to

evaluate the ARL of one-sided CUSUM procedure.

In this paper, the model parameters ψ, σ2
m, σ2

ε are assumed to be known, and the

method in Yashchin (1993), which transforms the autocorrelated data to an independent

sequence, will be used.

Suppose a shift of size µ > 0, occurs in {xt} on the r + 1th step. Therefore, the

out-of-control model is



yt = xt + et,

xt = ψxt−1 + εt, t = r,

xt − µ = ψxt−1 + εt, t = r + 1,

xt − µ = ψ(xt−1 − µ) + εt, t > r + 1.

(3.1)

Let µj = E(yr+j −Xr+j) (j = 1). Then we have the following results:

Proposition Under the out-of-control model (3.1), the conditional random vari-

ables
yr+j −Xr+j − µj√

Pr+j + σ2
m

∣∣∣Yr+j−1, j ≥ 1
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are mutually independently distributed as N(0, 1).

It’s easy to prove this proposition, so, the proof is omitted here.

For given n observations (y1, · · · , yn), the interesting hypothesis to us is

H0 : Ex1 = · · · = Exn = 0 ↔ H1 : Ex1 = · · · = Exr = 0,Exr+1 = · · · = Exn = µ.

Obviously, we can use the following maximum likelihood ratio test statistic Tn to test

the above hypothesis:

Tn = max
0≤r≤n−1

ln
f(y1, y2, · · · , yr, · · · , yn|H1)
f(y1, y2, · · · , yr, · · · , yn|H0)

,

the rejected region is Tn > h, where h is a given constant.

For simplicity, let φ(·) denote the probability density function of N(0, 1). Using the

results of conditional distribution and the above proposition, we can rewrite Tn as

Tn = max
0≤r≤n−1

ln
φ
(yr+1 −Xr+1 − µ1√

Pr+1 + σ2
m

)
· · ·φ

(yn −Xn − µn−r√
Pn + σ2

m

)

φ
( yr+1 −Xr+1√

Pr+1 + σ2
m

)
· · ·φ

( yn −Xn√
Pn + σ2

m

)

= max
0≤r≤n−1

n−r∑
j=1

µj
(yr+j −Xr+j)− µj/2

Pr+j + σ2
m

, (3.2)

which is similar to the traditional CUSUM statistic, but there is no the recursive expression

for it. However, we could use the method described in Yashchin (1993) to simplify the

above statistic.

Appendix gives the convergent limits of Pt, Kt, EXr+j and µj , respectively, which

are

P∞ =
−σ2

m(1− ψ2) + σ2
ε +

√
(σ2

m(1− ψ2)− σ2
ε)2 + 4σ2

mσ2
ε

2
,

K∞ =
P∞

P∞ + σ2
m

, E∞ =
ψK∞µ

1− ψ(1−K∞)
,

µ∞ = µ
[
1− ψK∞

1− ψ(1−K∞)

]
. (3.3)

Using the similar method in Yashchin (1993) to substitute µ∞ and P∞ for µj and

Pi+j into (3.2), we have

Tn ≈ max
0≤r≤n−1

n−r∑
j=1

µ∞√
P∞ + σ2

m

(yr+j −Xr+j)− µ∞/2√
P∞ + σ2

m

. (3.4)

From equations (2.3) we know the sign of µ is the same as µ∞. Considering an upward

shift, so the above statistic Tn is approximately equivalent to the following traditional
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CUSUM statistic

Sn ≈ max
0≤r≤n−1

n−r∑
j=1

{yr+j −Xr+j√
P∞ + σ2

m

− µ∞/2√
P∞ + σ2

m

}
. (3.5)

To simplify the above expression, let

Zn =
yn −Xn√
P∞ + σ2

m

, (3.6)

k =
µ∞/2√
P∞ + σ2

m

= µ

1− ψK∞
1− ψ(1−K∞)√

P∞ + σ2
m

. (3.7)

The statistic Sn can be rewritten in the following recursive form





S0 = 0;

Sn = max{Sn−1 + Zn − k, 0} n = 1, 2, · · · .
(3.8)

Note that {Zn}, the residual of model (2.3), are independent of each other and almost

have the same distributions. And Yashchin (1993) has proved that under some conditions,

this approximation is quite precise.

Similarly, if we want to detect an downward shift, then the downward CUSUM can

be derived as 



D0 = 0;

Dn = min{Dn−1 + Zn + k, 0} n = 1, 2, · · · ,
(3.9)

where k > 0.

Table 1 The out-of-control ARL’s of our CUSUM scheme with

ψ = ±0.5, σ2
m/σ2

x = 1, in-control ARL = 300

ψ = −0.5 ψ = 0.5

mean shift mean shift

µ k h 0.5 1.0 2.0 3.0 k h 0.5 1.0 2.0 3.0

0.50 0.188 7.45 32.19 13.76 6.34 4.17 0.108 9.64 61.39 28.42 13.34 8.70

1.00 0.375 4.84 35.93 12.46 4.99 3.15 0.217 6.89 64.59 26.75 11.12 6.98

2.00 0.750 2.74 52.08 15.19 4.32 2.43 0.433 4.35 79.81 30.28 9.99 5.63

3.00 1.125 1.83 71.27 21.73 4.73 2.25 0.650 3.13 96.32 37.73 10.71 5.30
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§4. The Design of Parameters

Because the model parameters ψ, σ2
m and σ2

ε are supposed to be known, P∞ and K∞
are easily obtained by equation (3.3), the reference value k is calculated through equation

(3.7) for the given shift µ. Therefore, there is only one parameter h, the decision interval,

is necessary to design for given in-control ARL. We use the bisection method to search

the decision interval. Moreover, we also calculate the out-of-control ARL by simulation

for ψ = ±0.5, σ2
m/σ2

x = 1, in-control ARL = 300, the results are included in Tables 1.

From Tables 1 we can see that the design of reference value k, which is given by

equation (3.7) is optimal. This is the same as that of the traditional CUSUM. In fact, we

had got the same conclusions for various values of σ2
m/σ2

x and ψ.

In order to consider the effect of ψ, k, h on the in-control ARL of our CUSUM, we

simulate some ARL’s, which are shown in Table 2, where ψ = ±0.5, σ2
m/σ2

x = 1 (for

other cases, the results are the same as this case). According to Table 2, the ARL of our

CUSUM scheme depends only on the values of (k, h), but ψ and σ2
m, σ2

x (Of course, the

reference value k here depends on ψ, σ2
m and σ2

x). This property is similar to the standard

CUSUM scheme.

Table 2 The in-control ARL for given (k, h) (σ2
m/σ2

x = 1)

ψ = −0.5 ψ = 0.5

k 0.0 0.50 1.00 1.50 0.0 0.50 1.00 1.50

µ 0.0 3.71 7.42 11.14 0.0 4.16 8.33 12.49

h

1.00 4.74 11.2 35.3 142.8 4.76 11.1 35.2 142.2

1.50 7.09 21.0 93.4 548.0 7.10 21.2 94.3 549.3

2.00 9.98 38.5 259.6 9.98 38.6 259.7

3.00 17.33 118.1 17.37 117.5

5.00 37.90 928.3 38.03 934.5

Note that the bisection method, which is used in calculating h, will need a great

deal of computing time when the in-control ARL is very large. As mentioned in Section

3, the {Zn, n = 1, · · · } in our CUSUM statistic, which is given by (3.6) are mutually

independently distributed as the standard normal distribution. So the decision interval h

would be approximatively equal to that in the standard CUSUM design. Hence, for given

fixed k and in-control ARL, we can use the decision interval of the standard CUSUM as

that of ours.
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As we know, for the standard CUSUM control charts, Hawkins and Olwell (1998) has

evaluated the in-control ARL for a wide range of k and h values. Comparing the results in

Hawkins and Olwell (1998) with those in Table 2, we observed that the in-control ARL’s

of our CUSUM and the standard CUSUM are almost the same for any pairs of (k, h). So,

we can use the results in Hawkins and Olwell (1998) to evaluate the h or in-control ARL

of our CUSUM.

Therefore, the steps of our CUSUM design are summarized as follows:

• Determine the model parameters: ψ, σ2
m and σ2

ε ;

• Specify the shift µ;

• Calculate P∞, K∞, E∞ and µ∞ by equations (3.3);

• Calculate the reference value k by equation (3.7);

• Evaluate the decision value h (in-control ARL) by the results in Hawkins and Olwell

(1998) for given in-control ARL(h).

§5. Comparisons

Many researchers, such as Bennett (1954), Kanazuka (1986), have indicated that

measurement error could reduce the performance of Shewhart chart for the independent

observations. So, we’d like to know the effect of measurement error on the performance

of our CUSUM control chart described in (3.8). We will discuss it in this section by

simulations.

In this section, the in-control ARL’s for all charts are taken to be 300, shifts in the

mean are taken to be 0.5, 1.0, 2.0 and 3.0. For better comparisons, we take ψ = ±0.1, ±0.9

and σ2
m/σ2

x = 0.1, 10. Three designs of our CUSUM, which are the optimal for detecting

mean shift 0.5, 1.0 and 3.0 are considered.

From our CUSUM of Tables 3 and 4, we observed:

1. The measurement error affects the performance of CUSUM chart, i.e., the out-of-

control ARL’s increase as measurement error increases.

2. When the data is negatively autocorrelated, the increasing of ARL is obvious as

σ2
m increases, especially, for the strongly negatively autocorrelated data. So, in

this situation, the reduction of measurement error is necessary for improving the

performance of CUSUM.
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3. When the data is positively autocorrelated, and the autocorrelation coefficients are

small or moderate, there are two cases need to consider: One is σ2
m is larger a lot

than σ2
x, other is σ2

m is less than σ2
x. For the fist case, the effect of measurement

error is obvious, but it’s not true for the latter. This is the same as obtained by

Bennett (1954) for the i.i.d. data.

4. When the data is highly positively autocorrelated, such as ψ = 0.9, the effect of

measurement error is very small. So, in this case, it is not necessary to reduce the

measurement error.

Besides the ARL’s of our CUSUM proposed in this paper, we also evaluated the out-

of-control ARL’s of traditional or standard CUSUM, which are also shown in Tables 3, 4

(See tiny numbers). For the standard CUSUM chart the reference value k = µ/(2σy).

Comparing our CUSUM with the standard CUSUM, we can see:

• When the data is negatively autocorrelated, our CUSUM performs uniformly better

than the standard in terms of out-of-control ARL for the small measurement error.

For example, when σ2
m/σ2

x = 0.1, ψ = −0.9 and design shift is 3.0, the ARL’s of our

CUSUM are 55.76 for detecting an actual shift µ = 0.5, and 1.13 for detecting the

shift µ = 3, but the ARL’s of standard CUSUM are 170.93 and 3.26, respectively.

But, for the large and moderate measurement error, their performance is almost the

same.

• When the data is positively autocorrelated, our CUSUM performs worse a bit than

the standard CUSUM.

In fact, our CUSUM is one of charts based on the residuals or the forecast error.

When σ2
m/σ2

x is small, i.e., the effect of measurement error is very small, the CUSUM is

close to a residual chart. Harris and Ross (1991), Longnecker and Ryan (1992) show that

the residual chart for AR(1) model may have poor capability to detect the process mean

shift. Wardell, Moskowitz and Plante (1994) shows that when the processes were positively

autocorrelated, the residual chart does not work very well. Zhang (1997a) showed that

sometimes the detection capability of a residual chart is small comparing with that of the

X chart. We also receive the same results as them, i.e., our CUSUM performs better than

the standard CUSUM when the data is negatively autocorrelated, but when the data is

positively autocorrelated. When σ2
m/σ2

x is very large, such as 10, the measurement error

plays an important role in the model, and the data is roughly independent, therefore, the

performances of our CUSUM and the standard CUSUM are very close.

For comparing, we also evaluated the out-of-control ARL’s of standard Shewhart

chart. For given the model parameter ψ and in-control ARL, the control limits L are
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obtained by simulation. The out-of-control ARL’s of standard Shewhart chart are given

in Table 5.

Table 3 The out-of-control ARL’s of our CUSUM and standard CUSUM (σ2
m/σ2

x =0.1)

mean shift

ψ µ k h 0.5 1.0 2.0 3.0

-0.9 0.50 0.279(0.104) 5.91(3.16) 18.94(21.70) 7.64(9.28) 3.45(4.58) 2.29(3.27)

1.50 0.837(0.312) 2.47(2.31) 29.23(72.08) 7.21(13.70) 2.18(4.41) 1.26(2.84)

3.00 1.674(0.623) 1.08(1.95) 55.76(170.93) 13.44(77.89) 2.20(7.11) 1.13(3.26)

-0.1 0.50 0.260(0.237) 6.18(5.82) 20.99(21.27) 8.66(8.80) 4.03(4.13) 2.72(2.79)

1.50 0.779(0.712) 2.65(2.62) 31.73(32.52) 8.36(8.60) 2.75(2.89) 1.70(1.80)

3.00 1.558(1.423) 1.21(1.34) 59.37(64.27) 15.28(17.03) 2.91(3.22) 1.44(1.60)

0.1 0.50 0.216(0.237) 6.91(7.35) 27.02(26.81) 11.34(11.14) 5.24(5.12) 3.49(3.41)

1.50 0.649(0.712) 3.13(3.19) 38.08(37.03) 10.89(10.58) 3.62(3.47) 2.24(2.13)

3.00 1.298(1.423) 1.55(1.43) 66.91(62.19) 18.92(17.37) 3.89(3.56) 1.89(1.70)

0.9 0.50 0.025(0.104) 13.93(38.36) 179.77(174.72) 121.70(113.42) 70.00(60.42) 48.18(38.96)

1.50 0.075(0.312) 11.03(25.41) 183.01(174.98) 122.25(110.28) 67.12(55.63) 44.29(33.66)

3.00 0.150(0.623) 8.38(14.24) 191.40(179.01) 128.04(113.64) 67.66(53.71) 42.56(29.90)

Table 4 The out-of-control ARL’s of our CUSUM and standard CUSUM (σ2
m/σ2

x = 10)

mean shift

ψ µ k h 0.5 1.0 2.0 3.0

-0.9 0.50 0.034(0.033) 13.31(12.77) 154.71(153.97) 95.61(95.78) 51.41(51.44) 34.86(34.88)

1.50 0.103(0.099) 9.84(9.46) 158.47(157.87) 95.65(95.62) 47.38(47.39) 30.25(30.29)

3.00 0.206(0.197) 7.09(6.83) 169.26(169.12) 103.39(103.75) 48.37(48.38) 28.67(28.71)

-0.1 0.50 0.076(0.075) 10.96(10.90) 87.20(86.80) 43.79(43.85) 21.17(21.21) 13.93(13.93)

1.50 0.227(0.225) 6.72(6.66) 96.68(95.73) 43.44(43.26) 17.40(17.38) 10.54(10.54)

3.00 0.454(0.450) 4.20(4.17) 116.31(116.93) 53.63(53.39) 17.87(17.94) 9.42(9.42)

0.1 0.50 0.074(0.075) 10.96(11.09) 87.66(88.34) 44.42(44.66) 21.52(21.62) 14.18(14.19)

1.50 0.223(0.225) 6.79(6.83) 97.95(97.53) 44.54(44.29) 17.80(17.83) 10.82(10.84)

3.00 0.446(0.450) 4.25(4.28) 117.72(118.42) 53.92(54.29) 18.31(18.41) 9.74(9.68)

0.9 0.50 0.020(0.033) 14.40(18.95) 197.78(193.63) 140.52(135.39) 84.08(79.93) 58.22(54.52)

1.50 0.061(0.099) 11.74(14.55) 199.23(192.89) 139.60(134.20) 80.95(75.69) 54.14(49.91)

3.00 0.121(0.197) 9.19(10.45) 203.58(197.79) 144.53(137.61) 81.13(74.99) 52.07(47.38)
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Comparing our CUSUM with Shewhart chart in Table 5, we have:

• If the measurement error is very large, our CUSUM performs uniformly better than

standard Shewhart chart.

• If the measurement error is very small, standard Shewhart chart performs a little

better than our CUSUM in detecting large shift, especially when the data is highly

positively autocorrelated.

Thus, we suggest to use our CUSUM scheme to detect the mean shift for the negatively

autocorrelated data. Moreover, the design of our CUSUM is very simple, which is very

close that of standard CUSUM for IID normal data, but, the design of decision interval h

of standard CUSUM must be calculated by simulation. So, when parameter ψ is positive,

although our CUSUM is not as good as the standard CUSUM, we still recommend to use

our CUSUM rather than standard CUSUM and standard Shewhart chart.

Table 5 The out-of-control ARL’s of Shewhart chart

mean shift

σ2
m/σ2

x ψ L 0.5 1.0 2.0 3.0

0.1 -0.9 2.57 175.31 107.09 41.59 17.07

-0.1 2.71 78.61 25.33 4.68 1.76

0.1 2.71 79.20 26.12 5.01 1.85

0.9 2.41 190.58 126.61 58.90 29.87

10 -0.9 2.71 244.99 203.01 139.42 97.76

-0.1 2.71 191.38 125.67 57.43 28.33

0.1 2.71 191.81 125.56 57.65 28.54

0.9 2.70 247.01 206.05 142.78 101.25

§6. Conclusions and Discussions

Through the maximum likelihood ratio test and Kalman filter, a new CUSUM scheme

is introduced to detect the mean shift for the autoregressive data with measurement error,

and its design is very close to that of the standard CUSUM for the IID data.

The simulation results show the measurement error could be ignored, when the data

is positively autocorrelated and the measurement error is very small. When model is

negatively autocorrelated, it is necessary to decrease measurement errors.

For simplicity, we only considered the AR(1) model. As a matter of fact, the results

in this paper are easily generalized to the ARMA(p, q) model by the Kalman filter.

《
应
用
概
率
统
计
》
版
权
所
有



472 应用概率统计 第二十五卷

Moreover, it is not difficult to generalize our one-sided CUSUM to two-sided. Ac-

cording to the results in Yashchin (1985), in-control ARL of two-sided CUSUM could be

derived by the following expression

1
ARL

=
1

ARLup
+

1
ARLdown

.

Appendix

First of all, we consider the limit of Pt. By the Kalman Filter, the recursive formula

of Pt is

Pt = ψ2(1−Kt−1)Pt−1 + σ2
ε .

Because |ψ2(1−Kt−1)| < 1, Pt is convergent. Then we obtain the limit of Kt

K∞ =
P∞

P∞ + σ2
m

.

As t →∞, we have

P∞ = ψ2P∞
(
1− P∞

P∞ + σ2
m

)
+ σ2

ε ,

which is a quadratic equation of one variable, and obviously, which has only one positive

root. P∞ is the positive root and given by

P∞ =
−σ2

m(1− ψ2) + σ2
ε +

√
(σ2

m(1− ψ2)− σ2
ε)2 + 4σ2

mσ2
ε

2
.

Next we consider the convergence of µj . Because the expression of E(Xr+j) is given

by

E(Xr+j) = ψE[Xr+j + Kr+j−1(yr+j−1 −Xr+j−1)]

= ψ(1−Kr+j−1)EXr+j−1 + ψKr+j−1Eyr+j−1,

and |ψ(1−Kr+j−1)| < 1, both EXr+j and µj converge to

E∞ =
ψK∞µ

1− ψ(1−K∞)
, µ∞ = µ

[
1− ψK∞

1− ψ(1−K∞)

]
.

Obviously, whether ψ is positive or negative, 1−ψK∞/[1− ψ(1−K∞)] is greater than 0,

so µ∞ and µ have the same sign.
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带有测量误差的相关数据的CUSUM控制图

刘晓红

(香港城市大学管理科学系, 香港)

王兆军

(南开大学数学科学学院统计学系, 天津, 300071)

实际中测量误差不仅存在而且在某些情况下还影响质量控制的表现, 本文将考虑带有测量误差的相关数

据的监控问题. 为检测这类数据的飘移, 我们给出了一个基于极大似然比检验的CUSUM控制图及其多种情况

下的可控与失控的ARL. 模拟结果显示, 当过程负相关时, 我们提出的CUSUM控制图具有良好的表现.

关键词: 测量误差, 相关, CUSUM控制图, 状态空间模型, Kalman滤波.
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