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The use of statistical process control (SPC) in monitoring and diagnosis of process and product quality
profiles remains an important problem in various manufacturing industries. The SPC problem with a non-
linear profile is particularly challenging. This article proposes a novel scheme to monitor changes in both
the regression relationship and the variation of the profile online. It integrates the multivariate exponen-
tially weighted moving average procedure with the generalized likelihood ratio test based on nonpara-
metric regression. The proposed scheme not only provides an effective SPC solution to handle nonlinear
profiles, which are common in industrial practice, but it also resolves the latent problem in popular para-
metric monitoring methods of being unable to detect certain types of changes due to a misspecified,
out-of-control model. Our simulation results demonstrate the effectiveness and efficiency of the proposed
monitoring scheme. In addition, a systematic diagnostic approach is provided to locate the change point
of the process and identify the type of change in the profile. Finally, a deep reactive ion-etching example
from semiconductor manufacturing is used to illustrate the implementation of the proposed monitoring
and diagnostic approach.

KEY WORDS: Exponentially weighted moving average; Generalized likelihood ratio test; Lack-of-fit
test; Local linear smoother; Nonlinear profile; Statistical process control.

1. INTRODUCTION

Because of recent advances in sensor and information tech-
nologies, automatic data acquisition techniques are commonly
used in industrial processes, and large amounts of data and in-
formation related to quality measurement have become avail-
able. Statistical process control (SPC) to monitor and control
the quality of such data-rich processes is important, yet chal-
lenging. In many situations, the quality of such a process may
be better characterized and summarized by the relationship be-
tween the response variable and one or more explanatory vari-
ables; that is, the focus should be on monitoring the profile that
represents such a relationship, instead of on monitoring a sin-
gle quality characteristic. An extensive discussion of research
problems on this topic has been given by Woodall, Spitzner,
Montgomery, and Gupta (2004).

Studies focusing on simple linear profiles have been partic-
ularly popular (see, e.g., Mestek, Pavlik, and Suchanek 1994;
Stover and Brill 1998; Kang and Albin 2000; Kim, Mahmoud,
and Woodall 2003; Mahmoud and Woodall 2004; Gupta, Mont-
gomery, and Woodall 2006; Zou, Zhang, and Wang 2006; Mah-
moud, Parker, Woodall, and Hawkins 2007). Zou, Tsung, and
Wang (2007) recently extended the focus from a simple lin-
ear profile to a general linear profile that included both a poly-
nomial regression and a multiple linear regression relationship
by using a multivariate exponentially weighted moving aver-
age (MEWMA) scheme (Lowry, Woodall, Champ, and Rigdon

1992) for the transformations of estimated parameters. A recent
review of the literature has been given by Woodall (2007).

In practice, however, there are many situations in which the
profile cannot be represented well by a linear model. For exam-
ple, the vertical-density profile (which apparently is nonlinear)
has been analyzed and discussed by Walker and Wright (2002)
and Woodall et al. (2004). Williams, Woodall, and Birch (2007)
gave three general approaches to the formulation of T2 statis-
tics based on nonlinear model estimation in the Phase I analysis.
Colosimo and Pacella (2007) proposed methods for monitoring
dimensional requirements on manufactured items, with a focus
on monitoring roundness. Williams, Birch, Woodall, and Ferry
(2007) used the nonlinear regression approach of Williams,
Woodall, and Birch (2007) to monitor dose–response profiles
used in high-throughput screening, using illustrative data pro-
vided by DuPont. A three-parameter logistic regression model
was used to represent the profiles. A stamping tonnage profile
is also a typical nonlinear profile that has been studied by Jin
and Shi (1999) using dimension-reduction techniques. Lada,
Lu, and Wilson (2002) and Ding, Zeng, and Zhou (2006) in-
vestigated a general category of nonlinear profiles by applying
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dimension-reduction techniques, including wavelet and inde-
pendent component analysis. How to apply SPC in monitoring
and diagnosing such general profiles, including nonlinear pro-
files, remains a challenge, however.

In this article we focus on a study of the Phase II method
for monitoring a general profile that can be well represented by
a regression function, including a nonlinear regression model.
To be specific, assume that for the jth random sample collected
over time, we have the observations (Xj,Yj), where Yj is an
nj-variate response vector and Xj is an nj × p regressor matrix.
It is assumed that when the process is in statistical control, the
underlying model is

yij = g
(
X(i)

j ,β
) + εij, i = 1, . . . ,nj, j = 1,2, . . . , (1)

where X(i)
j denotes the ith row of Xj, β is a q-dimensional pa-

rameter vector, and the εij’s are iid normal random variables
with mean 0 and variance σ 2

j . The function g can be either lin-
ear or nonlinear, and it has some degree of smoothness, such as
continuity or the existence of derivatives.

In a nonlinear profile case, the parametric control schemes,
such as the multicharts of Kim et al. (2003) and the MEWMA
scheme of Zou et al. (2007), still may be applied by obtaining
the least squares estimators of the parameters of each profile.
This is usually accomplished by using the Gauss–Newton pro-
cedure and iterating until convergence (see Gallant 1987). Note
that unlike linear regression, the exact small-sample distribu-
tion of parameter estimators in nonlinear regression is unob-
tainable. That said, these parameter-based charts still may be
used, because the estimated parameters usually are asymptot-
ically normally distributed (Seber and Wild 1989). Neverthe-
less, our limited simulations indicate that such a “rough” con-
trol scheme not only will deteriorate the properties of in-control
(IC) average run length (ARL), but also will have a significant
effect on the out-of-control (OC) performance. Moreover, when
the process is OC, nonconvergence or slow convergence often
occurs, resulting in extensive computational efforts or even a
failure in monitoring and detection. This makes the practical
implementation of parametric methods infeasible and inconve-
nient.

Besides the foregoing problems of nonlinear profiles, the
parametric methods for monitoring model (1) with both lin-
ear and nonlinear regressions have an inherent problem; that
is, they are based on the assumption that the IC and OC model
have the same form, but only the parameters may be different.
Although the IC model can be determined before online mon-
itoring begins, the OC model often cannot be specified easily,
especially when the IC curves have complicated forms, such
as various nonlinear models. The parametric monitoring meth-
ods are generally powerful when matched with the specific OC
model for which they were designed, but they can have very
poor ARL performance with other types of OC models. This is
related to the lack-of-fit tests in the statistical regression con-
text. Some classical examples have been given by Hart (1997,
chap. 5). In the literature, the fundamental method for testing
the lack of fit that is free of any specific alternative model
is based on the nonparametric regression approach (see, e.g.,
Azzalini and Bowman 1993; Hardle and Mammen 1993; Fan
and Huang 2001; Horowitz and Spokoiny 2001; Hart 1997 for
overviews and references). These works have motivated us to

tackle the smooth profile monitoring problem with the non-
parametric regression approach. Williams, Birch, Woodall, and
Ferry (2007) presented parametric nonlinear profile monitoring
where replicates are observed, allowing the user to identify not
only changes in the parameter values of the proposed nonlinear
model, but also the lack of fit of the proposed parametric model.

The present work has two objectives: to deal with the non-
linear profile monitoring problem and to resolve the latent issue
of popular parametric monitoring methods that are unable to
detect certain types of changes due to misspecified OC mod-
els. Although there have been many collective efforts on hy-
pothesis testing in nonparametric regression problems, online
sequential detection of OC conditions in the general profile
model (1) has several unique challenges, including (a) how to
integrate an appropriate regression function nonparametric test
with classical SPC techniques, such as EWMA and cumulative
sum (CUSUM) procedures; (b) how to monitor an increase or
decrease in the variation of the general profile, because the vari-
ance in the profile is also an important quality characteristic;
(c) how to design a scheme that can be implemented relatively
easily and conveniently; and (d) how to establish a systematic
diagnostic approach when the control scheme triggers a change
in the general profile. These remain challenging problems, and
we address them in the remainder of the article.

In the next section we present our proposed control chart,
which integrates the MEWMA procedure with the generalized
likelihood ratio (GLR) test of Fan, Zhang, and Zhang (2001).
We give both a diagnostic approach and a design guideline.
In Section 3 we compare the performance of our proposed
scheme with other methods through simulations. The results
demonstrate the robustness and effectiveness of our proposed
approaches. In Section 4 we use an industrial example from
semiconductor manufacturing to illustrate the step-by-step im-
plementation of the proposed approach. We conclude in Sec-
tion 5 by summarizing its contributions and suggesting some
future research issues. We detail several necessary derivations
and proofs in the Appendix.

2. METHODOLOGY

2.1 Model and Assumption

To facilitate the presentation, we choose to use the one-
dimensional covariant case of model (1); that is, the underlying
model is

yij = g(xij) + εij, i = 1, . . . ,nj, j = 1,2, . . . , (2)

where xij denotes the value of the regressor for the ith obser-
vation in the jth profile. Note that in model (2) we suppress the
parameter β , because we focus on the nonparametric regression
method. The nj’s are taken to be equal (denoted as n), and the
explanatory variable, x1j, x2j, . . . , xnj, is assumed to be fixed for
different j’s (denoted as X = {x1, x2, . . . , xn}). In the nonpara-
metric regression context, this case is the so-called “common
fixed design.” This is usually the case in practical calibration
applications in industrial manufacturing and also is consistent
with the work of Kim et al. (2003) on simple linear regression,
Zou et al. (2007) on general linear regression, and Williams,
Woodall, and Birch (2007) on nonlinear regression.
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Without loss of generality, we assume that x1 ≤ x2 ≤ · · · ≤ xn

and that xi varies in the interval [0,1]. Otherwise, we can ob-
tain this form through some appropriate linear transformations
and permutation. This assumption facilitates the technical ar-
guments and eases the exposition. In practice, making such a
transformation in advance is not necessary.

Here we consider the Phase II case in which the IC regres-
sion function and variance, say g0 and σ 2

0 , are assumed to be
known; that is, it is assumed that the IC data set used in Phase I
is sufficient to estimate the regression model well. Once the IC
models are established as a baseline, in Phase II we would want
to detect any change in the regression function and variance of
the profile. Usually the change in the regression function indi-
cates the existence of a special cause that leads to bias, dilata-
tion, contraction, and skewness of the profile. An increase in the
variation may be due to a coarse profile, and a decrease in the
variation of the profile would indicate a possible improvement
in the process (Woodall et al. 2004).

In later sections we propose using a single chart to monitor
the regression function and variation simultaneously, so that the
design and operation of the monitoring scheme can be simpli-
fied.

2.2 The Generalized Likelihood Ratio Test
for Profile Data

To monitor a general profile model (2), the regression func-
tion, g, and the standard deviations, σ , should be controlled si-
multaneously. Our nonparametric monitoring approach for g is
based on the GLR statistics proposed by Fan et al. (2001). Sup-
pose that {yi, xi}n

i=1 is a random profile sampled from model (2).
Consider the simple null hypothesis testing problem

H0 : g = g0, σ = σ0 ←→
(3)

H1 : g �= g0, σ = σ0.

According to the normality assumption of the error, the loga-
rithm of the likelihood function is given by

−n ln(
√

2πσ) − 1

2σ 2

n∑

i=1

(yi − g(xi))
2. (4)

Then the maximum likelihood under H0 can be expressed by

l0 = −n ln(
√

2πσ0) − 1

2σ 2
0

n∑

i=1

(yi − g0(xi))
2.

Fan et al. (2001) proposed replacing the unknown function g
under H1 with a reasonable nonparametric estimator that leads
to the logarithm of likelihood function H1,

l1 = −n ln(
√

2πσ0) − 1

2σ 2
0

n∑

i=1

(yi − ĝ(xi))
2,

and the GLR test statistic

lr = −2(l0 − l1) = 1

σ 2
0

[
n∑

i=1

(yi − g0(xi))
2 − (yi − ĝ(xi))

2

]

.

(5)

Large values of lr lead to a rejection of the null hypothesis.

Fan et al. (2001) used the local linear smoother (see Fan and
Gijbels 1996) to estimate, g. We also follow this approach. The
local linear estimator for any given point, x, takes the form
ĝ(x) = ∑n

i=1 Wni(x)yi, where

Wni(x) = Uni(x)
/ n∑

j=1

Unj(x);

Unj(x) = Kh(xj − x)[mn2(x) − (xj − x)mn1(x)];

mnl(x) = 1

n

n∑

j=1

(xj − x)lKh(xj − x), l = 1,2;

and Kh(·) = K(·/h)/h, with K a symmetric probability density
function and h a bandwidth. Here, to ease the exposition, we
define an n × n smoothing matrix, W, as

W = (Wn(x1),Wn(x2), . . . ,Wn(xn))
T ,

where Wn(xi) = (Wn1(xi),Wn2(xi), . . . ,Wnn(xi))
T . Then, the lr

in (5) can be rewritten in vector matrix notation as

lr = 1

σ 2
0

[(Y − G0)
⊗ − (Y − WY)⊗],

where G0 = (g0(x1),g0(x2), . . . ,g0(xn))
T , Y = (y1, y2, . . . ,

yn)
T , and A⊗ means ATA.
Fan et al. (2001) revealed the following Wilks phenomenon:

Under some regular conditions, the asymptotic null distrib-
utions of (5) are independent of nuisance functions and ap-
proximately follow a scaled chi-squared distribution. Thus, we
now can develop a control chart based on the lr statistics. But
the dependence of the small-sample distribution of lr on g0

makes constructing the control chart for monitoring the gen-
eral profile difficult and infeasible. To overcome this difficulty,
we consider transforming each profile data set, {yi, xi}n

i=1, to
{yi − g0(xi), xi}n

i=1 first, because the function, g0, is known in
advance. As pointed out by Fan et al. (2001), now the test-
ing problem (3) is equivalent to the problem H0 : g = 0, σ =
σ0 ←→ H1 : g �= 0, σ = σ0. Write zi = (yi − g0(xi))/σ0 and
Z = (z1, z2, . . . , zn)

T . Then the GLR statistics will be

lrz = Z⊗ − (Z − WZ)⊗ = ZTVZT , (6)

where V = WT + W − W⊗. The lrz is something like the
pseudolikelihood ratio test statistics based on residuals of Az-
zalini and Bowman (1993) that focus on checking the linearity
of a regression relationship, although the parameters under H0

were unknown in that work. Proposition 1, which is a direct ap-
plication of theorems 5 and 8 of Fan et al. (2001), shows the
good properties of the GLR test statistics, lrz.

Proposition 1. Suppose that the conditions presented in the
Appendix A hold. Then the following hold:

a. Under H0, lrz
L→N(μz, σ

2
z ), where

μz = 2

h

(
K(0) − 1

2

∫
K2(t)dt

)
,

σ 2
z = 8

h

∫ (
K(t) − 1

2
K ∗ K(t)

)2

dt.
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b. The GLR test has nontrivial power against contiguous al-
ternative g(u) − g0(u) = �n(u) ∝ n−4/9, for which �n(u) has a
continuous second derivative.

Because the GLR test is indeed general, simple, and power-
ful for nonparametric testing problems based on the regression
function estimation, next we integrate it with the MEWMA pro-
cedure for monitoring the general profile.

2.3 The Control Scheme for Monitoring
a General Profile

With the jth random profile collected over time, we have the
observation set {xi, yi}n

i=1. Using the notation presented in the
previous section, we write

Yj = (yj1, yj2, . . . , yjn)
T

and

Zj = (Yj − G0)/σ0.

Because both the regression relationship and variance must
be monitored, a nonparametric test for the σj also is needed.
Note that under the conditions (A)–(D) in Appendix A, we have
the following well-known fact (Fan et al. 2001; Hall and Marron
1990):

σ̂ 2
j = 1

n
(Z − WZ)⊗ = σ 2

j + Op
(
n−1/2) + Op((nh)−1), (7)

regardless of whether or not the regression function has
changed. Thus we can use the statistic (Z − WZ)⊗ to conduct
an appropriate test for a possible change in variance, in which a
very large (small) value indicates an increase (decrease) in the
variance of the process.

In adopting the GLR test and the foregoing test for variance
for charting, we consider developing an EWMA-type chart,
which is known to be more sensitive to small and moderate
shifts compared with a Shewhart-type chart. First, we transform
the σ̂ 2

j to a normal random variable, that is,

σ̃j = �−1{ψ(nσ̂ 2
j ; I − V)},

where �−1(·) is the inverse of the standard normal cumulative
distribution function (cdf) and ψ(·;A) is the cdf of random vari-
able nσ̂ 2

j when the process is IC. Note that this type of vari-
ance transformation with the use of an EWMA chart has been
suggested by Quesenberry (1995) and Chen, Cheng, and Xie
(2001). The advantage of this transformation is that the distri-
bution of σ̃j is symmetric, so that the EWMA control chart not
only is relatively easy to construct, but also is sensitive to de-
creases in variance (see also the discussion in Zou et al. 2007).

Before proceeding, we need to determine the ψ(·;A) cdf.
Due to the fact that Zj is an n-variate standard multivariate nor-
mally distributed random vector, nσ̂ 2

j = (Z − WZ)⊗ = ZT(I −
V)Z is a quadratic form of the normal random vector. Its distri-
bution can be shown to be equivalent to the distribution of the
linear combination of independent χ2

1 -variates with coefficients
given by the eigenvalues of (I − V) (see Box 1954). Various al-
gorithms exist for computing the distribution of such a linear
combination (see, e.g., Imhof 1961); however, for our online
detection purposes, the exact evaluation of this distribution is
unnecessary and computationally burdensome. Here we use the

method that matches the first three moments of the distribution
of nσ̂ 2

j with those of a chi-squared distribution (see Johnson
1959; Imhof 1961), which has been shown to be quite accurate
for approximating the distribution of the quadratic forms (see
Imhof 1961; Azzalini and Bowman 1993; Young and Bowman
1995). Our numerical simulation also shows that this method
not only eases the computation, but also is quite accurate and
effective for our monitoring problem. The details of the method
are given in Appendix B.

Next we denote Uj as (ZT
j , σ̃j)

T , which is an (n + 1)-variate

random vector, and � = (V 0
0 1

)
, which is a (n + 1)-dimensional

symmetric matrix. The proposed EWMA charting statistic then
can be defined as

Ej = λUj + (1 − λ)Ej−1, j = 1,2, . . . , (8)

where E0 is a (n + 1)-dimensional starting vector and λ is
a weight, (0 < λ ≤ 1), that regulates the magnitude of the
smoothing. The chart signals if

Qj = E′
j�Ej > L

λ

2 − λ
, (9)

where L > 0 is chosen to achieve a specified IC ARL. Herein-
after we call this nonparametric control scheme a NEWMA
chart for brevity. The form of the NEWMA chart is analogous
to the MEWMA charts used by Zou et al. (2007) for parametric
monitoring of a linear profile; however, different issues arise in
the present context where nonparametric regression is used.

One issue is that Zj and σ̃j usually are dependent, but we
have not considered their correlation in the matrix �. In fact,
putting Zj and σ̃j together makes the resulting Uj an obscure
joint distribution with normal marginal distributions. We may
expect the proposed schemes to remain effective, however, be-
cause ignorance of the correlation of Zj and σ̃j does not affect
the testing of the regression relationship and the variance to any
important extent, in agreement with the simulation results in the
next section.

Remark 1. Here we discuss two possible extensions of the
NEWMA chart to demonstrate its versatility. In practical ap-
plications, engineers may use the Phase I IC samples directly
rather than fitting a linear or nonlinear regression model before
starting the Phase II monitoring. In such a case, the local linear
estimator of g0 based on the IC profile samples, say ĝ0, may
be used as a replacement for g0 in the NEWMA chart. There
is no need to have equal design points for each IC profile sam-
ple, but the number and positions of the design points should be
properly chosen to describe the regression function well. More-
over, the number of IC samples should be sufficiently large to
result in a sufficient signal-to-noise ratio so that the properties
of the IC ARL can be obtained. Note that a larger number of ob-
servations in each profile can be collected for Phase I analysis
than for Phase II monitoring; that is, more measurement effort
may be expended on the Phase I analysis, so that the under-
lying regression model can be estimated accurately and, corre-
spondingly, the desired IC run-length behavior can be achieved,
whereas a large n may not be necessary in Phase II because the
OC condition usually can be captured effectively using rela-
tively small or moderate n (see the simulation results in Sec. 3
and the example in Sec. 4). Based on extensive simulations and
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theoretical properties of the local linear smoother (Fan 1993) in
the Phase I analysis, we recommend using at least 40 IC profile
samples, and the number of observations in each profile should
not be fewer than 50. Of course, this is a general guide, and
engineers need to take the engineering knowledge about a spe-
cific profile, such as the smoothness and variation of the profile
curve, into consideration in practical applications. Determina-
tion of Phase I sample sizes is a topic where further research
would be useful.

Another natural extension of NEWMA charts is in dealing
with profiles with multidimensional regressors. For this case,
a multivariate local linear regression estimator may be used in
place of the univariate one, and the NEWMA chart still can be
used. Technical details of the multivariate local linear regres-
sion estimator have been given by, for example, Ruppert and
Wand (1994) and Fan and Gijbels (1996, sec. 7.8). In this ar-
ticle we make no attempt to evaluate the performance of these
two extensions, but we believe that such evaluation certainly
merits future research.

Remark 2. Note that we assume that the error variables, εij,
come from normal distributions. In fact, we use this assumption
only to motivate our proposed method (the derivation of GLR);
it is not necessary in asymptotic theory (Fan et al. 2001) and
practical use. In fact, the error distribution needs to satisfy only
E[εij] = 0 and E(|εij|4) < ∞. But without knowing the error
distribution before monitoring, how we accurately approximate
the ψ(·;A) function and how we determine the control limit
remain challenges. We do not address this issue further in this
article, but believe that it certainly merits future research.

2.4 Guidelines for Design and Implementation

This section provides guidelines on how to design and im-
plement the proposed scheme. Several practical issues are dis-
cussed, including the choices of the kernel function, K(·); the
bandwidth, h; and the smoothing weight, λ; and determination
of the control limits, L.

On Choosing the Smoothing Weight, λ. First, the smooth-
ing weight, λ, in (8) is taken to be .2 in our numerical study,
consistent with the studies of Kim et al. (2003) and Zou et al.
(2007). In general, a smaller λ leads to more rapid detection
of smaller shifts (Lucas and Saccucci 1990). The starting vec-
tor, E0, is chosen to be the zero vector. In fact, the fast initial
response (Lucas and Saccucci 1990) also can be extended to the
NEWMA chart.

On Choosing the Sample Size and Regressor Positions. For
the NEWMA chart to perform well, a relatively large sample
size, n, of the profile is needed, especially with complicated
profiles. This is because, due to its flexibility, the nonparamet-
ric smoother absorbs considerably more degrees of freedom
compared with parametric approaches. But, this has become
a less significant limitation with advances in electronic, sen-
sor, and information technologies. New instruments can cap-
ture more information, making a large amount of data available
at one time. In addition, we recommend that engineers care-
fully choose the regressors, xi’s (i.e., the design point positions),
in terms of the IC profile model. Because the shifts often tend
to appear but are difficult to detect in the regions of the pro-
file with more curvature, we suggest that a good design should

have a higher concentration of points at the x’s where g0(x) has
a sharp peak. This is borne out by the optimal design theory of
Muller (1984).

On Choosing the Kernel Function, K(·). As introduced in
Section 2.2, a local linear smoothing technique is used in this
article. As noted by Fan et al. (2001), construction of the GLR
test does not depend on the special structures of the smoothing
procedure, although proofs of the theorems may need minor
modification. For the kernel function, many kernels are avail-
able to meet the requirements, such as uniform, Epanechnikov,
quadratic, and Gaussian kernels. We observe that the perfor-
mance of the NEWMA chart is mostly unaffected by the choice
of the kernel according to our simulations. For simplicity, we
use the Epanechnikov kernel,

KE(u) = 3

4
(1 − u2)I(|u| ≤ 1),

in our simulations in Section 3.
On Choosing the Bandwidth, h. In the context of nonpara-

metric regression estimation, the optimal bandwidth, h, is usu-
ally determined by minimizing the asymptotic mean squared
error of the estimator. Frequently used bandwidth selection
techniques are data-driven methods, such as least squares cross-
validation and generalized cross-validation (see Fan and Gijbels
1996; Hart 1997). The data-driven bandwidth methods that are
well suited for producing visually smooth estimates of the un-
derlying curves may not be generally appropriate for our online
monitoring problem, however.

If an observed profile of data indeed comes from the IC
model, then the optimal bandwidth for local fitting of the
Z should be close to 1 (according to our assumption that
xi ∈ [0,1]), and data-driven bandwidth selectors will lead to a
large bandwidth. But the distributional properties of GLR statis-
tics rely implicitly on the assumption that h → 0. Moreover, we
usually do not have specific information about the OC model,
so we cannot choose an optimal h for the OC condition be-
fore we start Phase II monitoring. Roughly speaking, the size
of the optimal bandwidth would be expected to be proportional
to the smoothness of the underlying function. In other words, a
very smooth difference between IC and OC regression models
requires larger bandwidths compared with less smooth differ-
ences, all other factors being equal.

But we expect the value of h to be less important, because the
performance of the chart indeed is insignificantly affected by h.
The amount of smoothing applied will affect the power of the
test, but in many simulation results (not reported here, but avail-
able from the authors), we see that the observed significance
changes little over a wide range of values of h. These findings
also have been found in many other studies in the context of
the nonparametric lack-of-fit tests, such as those by Azzalini
and Bowman (1993), Dette and Neumeyer (2001), and Zhang
(2003), and others. Thus we recommend using the following
empirical bandwidth formula:

hE = c ×
(

1

n

n∑

i=1

(xi − x̄)2

)1/2

n−1/5, (10)

where x̄ = ∑n
i=1 xi and c is a constant. Empirically, c can be

any value in the interval [1.0, 2.0]. In the next section we use
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c = 1.0, 1.5, and 2.0 to conduct our simulations and present
some further discussion. Note that here n−1/5 is the order
of the classical optimal bandwidth for curve estimation and
1
n

∑n
i=1(xi − x̄)2 is a measure of the sparseness of the design

points, which also is involved in an asymptotic optimal h for-
mula in the context of nonparametric estimation (see Fan 1993
for details).

Remark 3. It can be verified that using (10) to determine the
bandwidth guarantees that the design of the NEWMA chart is
affine-invariant to covariate x; that is, the smoothing matrix, W,
remains unchanged if we do the same linear transformation for
all xi’s.

On Determining the Control Limits, L. Finally, there is a
vital issue remaining to be addressed: how to determine the
control limit, L, after all of the preceding functions and pa-
rameters have been chosen. Note that Zou et al. (2007) ex-
tended the work of Runger and Prabhu (1996) and calculated
the IC and OC ARL of their proposed MEWMA chart through
the Markov chain model. Although the NEWMA chart and the
MEWMA chart have similar forms, it does not seem possible
that the method for the MEWMA chart can be generalized to
evaluate the ARL of the NEWMA chart, because the Qj process
cannot be modeled as a Markov chain. But the NEWMA chart
is a single two-sided chart, and thus only one control limit,
L, must be determined. As mentioned in Section 2.2, the L is
free of the IC model, g0(x). Thus, once n, X, λ, K(·), h, and
the desired IC ARL are fixed, the values of L can be deter-
mined using Monte Carlo simulations by generating a random
series, Zi. Although the simulations involve calculations in the
quadratic form, considering that the matrix � is fixed, the com-
putational task is trivial by virtue of the massive computing and
data storage capabilities of modern computers. Determining the
control limit of such a nonparametric scheme is slightly more
time-consuming than determining that of a parametric approach
(such as the MEWMA charts in Zou et al. 2007), but much more
efficiency will be gained when their assumption on OC models
is violated. (To conveniently determine L, a computer program
is available from the authors on request.)

2.5 Diagnostic Aids in Profile Monitoring

In the practice of quality control, besides quickly detecting a
process change, it is also critical to determine when the process
change occurs and to identify the kind of change that occurs
in a profile after an OC signal is triggered. A diagnostic aid
to locating the change point in the process and to isolating the
type of changes in the profile will help an engineer quickly and
easily identify and eliminate the root cause of the problem. In
this section we discuss the diagnosis of a general profile and
provide operational steps for systematic diagnosis.

Step 1: Identify the Location of the Change Point. This is
the first and critical step in our diagnostic procedure, because
we need it to separate the OC profiles from the entire observed
profile samples so that we can make an accurate inference about
this type of change. Here we use the generalized maximum like-
lihood estimator of the change point statistic. We assume that an
OC signal is triggered at the profile, k, by the NEWMA chart.

Our suggested estimator of the change point, τ , of the step shift
is given by

τ̂ = arg
0≤t<k

max{lr(tn, kn)}, (11)

where lr(tn, kn) is the GLR statistic. The expressions of
lr(tn, kn) and the involved deductions are given in Appen-
dix C. The foregoing formulation parallels that of Zou et al.
(2007), which is used to estimate the change point after the
MEWMA chart gives a signal. The difference is that nonpara-
metric smoothing is applied to maximally select the GLR in
the case of the NEWMA chart, whereas a parametric maximum
likelihood estimator was used by Zou et al. (2007). Next we
present an asymptotic result on the consistency of the change
point estimator (11), which ensures that the proposed estimator
is asymptotically effective.

Proposition 2. Suppose there are k profile samples to be
monitored and that the first τ and the latter k−τ samples are IC
and OC. Assume that 0 < limk→∞ τ/k = θ < 1. Suppose that
conditions (A)–(D) in Appendix A hold and that nh5 = O(1).
Consider the following two types of OC models:

a. g(u) = g0(u)+�n(u), where �n(u) has a continuous sec-
ond derivative and its rate satisfies nh

∫ 1
0 �2

n(u)f (u)du → ∞ as
n → ∞

b. σ = δσ0, where the size of shift δ satisfies n1/2

×|δ − 1| → ∞ as n → ∞.

Then, under a or b, as k → ∞, we have |̂τ − τ | = Op(1).

Although this proposition is based on the fixed sample analy-
sis and requires the assumption that the number of OC profiles
goes to infinity (which is not quite reasonable in online monitor-
ing), it indeed provides some theoretical support for using the
estimator (11). In addition, note that the validity of this proposi-
tion also requires that n go to infinity. In practical applications,
for any finite n (not too small, say larger than 20), the estimator
(11) generally would be quite accurate if nh

∫ 1
0 �2

n(u)f (u)du
or n1/2|δ − 1| were sufficiently large. Pignatiello and Samuel
(2001) showed the estimator’s good performance in conven-
tional nonprofile monitoring, and our simulations for general
profile monitoring also demonstrate its effectiveness.

Step 2: Determine Whether the Variance Is Stable. After
obtaining the estimate of the change point, we first suggest test-
ing whether the variance of the profile has changed based on
(k − τ̂ ) OC samples. This is because once the variation of the
process has shifted, we usually cannot make an accurate infer-
ence on the regression relationship. By using an extension of
the variance estimator introduced in Section 2.3 to the multiple-
sample case, we may apply the following test statistic and ac-
ceptance region:

ψ−1
1

(
α

2
; I − V, k − τ̂

)
<

k∑

j=τ̂+1

ZT
j (I − V)Zj

< ψ−1
1

(
1 − α

2
; I − V, k − τ̂

)
, (12)

where ψ1(·;A, l) is the cdf of the sum of l independent ran-
dom variables ZTAZ and, correspondingly, ψ−1

1 (α;A, l) is the
α percentile of the ψ1(·;A, l) distribution. ψ1(·;A, l) can be
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easily approximated by ψ(·;A) and by using the additive prop-
erty of chi-squared random variables. If the null hypothesis is
rejected, then an increase in the variation corresponds to greater
inaccuracies in the manufacturing process or increased mea-
surement error, and a decrease in the variation about the curve
indicates an improvement in the process.

Step 3: Determine Whether the Regression Function Has
Changed. If the stability of the variance is ensured in step 2,
we then need to determine whether the regression relationship
in the profile has changed. Again, the GLR test can be adopted,
and simple derivations lead to the following test statistic:

1

(k − τ̂ )

(
k∑

j=τ̂+1

Zj

)T

V

(
k∑

j=τ̂+1

Zj

)

> ψ−1(1 − α;V), (13)

where ψ−1(α;A) is the α percentile of the distribution of
quadratic form ZTAZ. If we accept the null hypothesis that
there is no change in the regression function, we may conclude
that a false alarm is triggered by the NEWMA chart. Otherwise,
we can proceed to the next step.

Step 4: Perform Further Diagnosis by Graphical Analysis.
At this point, the engineer may care about the following prob-
lems: which part of the regression curve changes; what is the
OC regression function, and how great is the difference between
the IC and OC models. It is obvious that using the traditional
hypothesis testing method to get the answers seems inappro-
priate and infeasible. However, some simple methods, such as
graphical analysis, may shed light on these problems. We sug-
gest plotting the nonparametric smoothing curve of the average
of (k − τ̂ ) sample profiles, say 1

k−τ̂

∑k
j=τ̂+1 WYj, and the IC

profile model together.
Based on this, a priori engineering knowledge and experience

then can be fused to offer a visual and practical interpretation
of the foregoing problems. Such graphical analysis has been
commonly adopted in various industrial applications with the
emergence of massive computing and data storage capabilities.
We illustrate this with a semiconductor manufacturing example
in Section 4.

Remark 4. It is worth noting that the preceding test statistics
in steps 2 and 3 do not really follow the given null distributions
when the process is IC, because these statistics are obtained
under the condition that the proposed NEWMA chart has trig-
gered a signal and change point estimate has been obtained.
This fact may not fundamentally change anything we do in the
diagnostic analysis, but it perhaps should affect interpretation
of the type I error. Moreover, the effectiveness of such a testing
method depends on the accuracy of the estimate of the change
point. Moreover, controlling the overall type I error seems in-
tractable, because of the unknown dependency between the test
statistics. Thus, although this testing diagnostic method indeed
can work well in most cases, engineers still may need to en-
gage their technical/engineering knowledge about the profile
after obtaining guidance from the statistical diagnostic results.

Remark 5. In some cases, the difference between IC and OC
models lies in the variation of the values of the parameters, not
in the variation in the form of the model itself. These cases oc-
cur in some simple linear models as well, such as the simplest

linear regression (Kim et al. 2003) and the quadratic polyno-
mial regression (Zou et al. 2007). For diagnosis in such cases,
we may just add one more step after step 3 to construct a model-
checking test; that is, we use the function with estimated para-
meters to replace the g0(x) in Z and still apply the GLR test
(see Fan et al. 2001 for more details). If the null hypothesis is
accepted (i.e., no variation in the form of the model), then the
parametric tests of Zou et al. (2007, sec. 7.2) can be adopted to
identify which parameter has changed. The performance of this
method in profile diagnostics is beyond the scope of this article
but should be a subject of future research.

3. CHARTING PERFORMANCE COMPARISONS

In this section we investigate the monitoring performance of
the proposed NEWMA scheme through ARL comparisons. Al-
though our proposed control chart can be used to monitor the
general profile model (2), the literature seems to contain no
other effective and comparable methods for such a model. Note
that Williams, Woodall, and Birch (2007) proposed smoothing
the individual profile at first and then using various metric-
based statistics for measuring how “different” each individual
profile is from a baseline profile. But their method focuses on
the Phase I analysis and may not be appropriate for our compar-
isons. To evaluate the performance of the proposed NEWMA
chart, we still follow two related approaches for comparisons.
The first approach that comes to mind is a “naive” approach that
treats Zj as a long multivariate vector and uses the MEWMA
scheme to construct control charts. Despite its simplicity and
convenience, this approach has two serious drawbacks, how-
ever: It completely ignores the continuity of the responses at
neighboring covariate points, whereas too many dimensions (n)
may accumulate large stochastic noise and thus decrease the ef-
ficiency. The second approach is the parametric control scheme
proposed by Zou et al. (2007), which obtains the estimates
of parameters for each profile and then applies the MEWMA
scheme for the transformation of the estimated parameters. For
brevity, we designate these two schemes NM charts and PM
charts.

For the sake of simplicity and consistency with the literature,
the change point is assumed to be τ = 0, and only the case of
overall IC ARL = 200 is considered. Moreover, we restrict our
study to the following equally spaced design points:

xi = i − .5

n
, i = 1, . . . ,n.

For NEWMA charts, the bandwidth, h, is chosen from (10),
where c = 1.0,1.5, and 2.0 are considered. All the ARL results
in this section are evaluated with 10,000 simulations.

To illustrate the effectiveness of our proposed monitoring
scheme, our simulations cover two IC models: a quadratic
model and a nonlinear model. Note that the quadratic regres-
sion model falls within the domain of linear statistical models.
For each model, n = 20 and 40 are considered. The number
and variety of OC models and combinations of parameters are
too great to allow a comprehensive, all-encompassing compar-
ison. Because our goal is to demonstrate the effectiveness, ro-
bustness, and sensitivity of the NEWMA chart, we choose only
certain representative OC models for illustration.
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Table 1. Parameters of three OC models for Scenario 1

Model (I) Model (II) Model (III)

β0 β1 β2 σ β0 β1 β2 β3 σ β1 β2 σ

(i) 1.0 2.0 3.1 1.0 .8 4.4 −3.0 4.0 1.0 .1 1.0 1.0
(ii) 1.0 2.1 3.1 1.0 .8 4.4 −3.0 4.1 1.0 .2 1.0 1.0
(iii) 1.1 2.1 3.1 1.0 .8 4.4 −3.2 4.1 1.0 .2 .8 1.0
(iv) 1.0 2.0 3.0 1.1 1.0 4.4 −3.2 4.1 1.0 .2 1.3 1.0
(v) 1.0 2.0 3.0 .7 .8 4.4 −3.0 4.0 1.1 .3 1.5 1.0
(vi) 1.1 2.1 3.1 1.1 .8 4.5 −3.0 4.0 1.1 .3 1.5 1.1

Scenario 1 (Quadratic IC model).

yij = 1 + 2xi + 3x2
i + εij, i = 1, . . . ,n,

where σ 2
0 = 1. Three OC models are chosen, as follows:

(I): yij = β0 + β1xi + β2x2
i + εij

(II): yij = β0 + β1xi + β2x2
i + β3x3

i + εij

(III): yij = 1 + 2xi + 3x2
i + β1 sin(2πβ2xi) + εij.

These three OC models correspond to the following three
cases: (a) The structure of the regression relationship does not
change, and only the parameters shift; (b) The regression rela-
tionship changes to another linear model; and (c) The regres-
sion relationship changes to a nonlinear model. Some chosen
parameters of the three OC models are listed in Table 1. Table 2
gives the OC ARLs of the NEWMA chart and those of NM and
PM charts for detecting changes under OC models, and corre-
sponding parameters are tabulated in Table 1. The control lim-
its (L) of these control schemes are tabulated in the last row of
Table 2.

Under the OC model (I), the PM chart has superior efficiency,
as we would expect, because the hypothesis is the correct one in
this case (a quadratic polynomial vs. a quadratic polynomial).
The NEWMA chart also offers satisfactory performance, and
the difference between the NEWMA and PM charts is not sig-
nificant, even when a relatively small bandwidth (c = 1.0) is
used. It is worth noting that the OC ARL is a decreasing func-
tion of the bandwidth under (I), which is consistent with our
claim in Section 2.4 that more smooth statistics usually have
better performance when the difference between the IC and
OC models is quite smooth. Of course, the “smooth” method,
whether the NEWMA chart or the PM chart, outperforms the
NM chart, the one based to no smoothing in this case.

But in cases (i)–(iii) of model (II), the PM chart is dramat-
ically outperformed by the NEWMA chart and is even less
efficient than the NM chart. More seriously, in case (i) of
model (II), the IC and OC ARL of the PM chart are equal, be-
cause when a quadratic is fitted to the data using least squares,
the estimated coefficients each will be very close to those of the
IC model. This phenomenon demonstrates the claimed disad-

Table 2. ARL comparisons of the NEWMA, NM, and PM charts for Scenario 1 (IC ARL = 200)

n = 20 n = 40

NEWMA NEWMA

c = 1.0 c = 1.5 c = 2.0 NM PM c = 1.0 c = 1.5 c = 2.0 NM PM

(I) (i) 150.1 144.7 140.0 171.3 137.1 120.6 115.3 110.1 162.3 103.1
(ii) 66.6 60.8 56.7 98.2 54.2 37.9 34.0 31.8 79.4 29.2
(iii) 20.7 18.3 17.5 33.1 16.5 11.2 10.3 9.8 22.4 9.1
(iv) 30.5 27.4 27.0 43.7 26.5 17.5 16.2 15.5 30.5 14.8
(v) 8.2 6.6 5.9 ∗ 5.3 4.2 3.7 3.5 ∗ 3.2
(vi) 12.5 11.4 11.0 17.3 10.8 7.4 7.0 6.7 11.8 6.3

(II) (i) 104.6 104.2 113.4 132.2 199.7 66.5 64.0 67.5 114.2 200.1
(ii) 89.4 87.5 92.5 119.2 154.1 52.5 50.3 52.1 99.3 120.2
(iii) 78.8 75.7 79.2 109.3 121.0 45.0 42.4 42.8 89.3 84.9
(iv) 24.2 22.1 21.1 38.9 22.8 12.7 11.6 11.2 26.2 12.2
(v) 24.5 23.7 22.6 35.8 25.7 13.9 13.0 12.8 24.4 14.0
(vi) 22.4 20.6 20.3 32.3 22.5 12.6 12.0 11.6 21.7 12.6

(III) (i) 106.8 103.1 102.3 137.2 119.6 69.9 66.7 66.2 122.0 81.3
(ii) 37.8 35.6 34.8 60.1 47.1 20.0 18.4 18.0 43.1 25.0
(iii) 35.8 32.2 31.3 57.7 31.5 19.0 16.9 16.5 40.6 16.3
(iv) 37.3 36.2 38.2 58.1 51.8 19.5 18.3 18.6 41.7 27.2
(v) 18.0 18.3 20.4 29.5 27.4 9.7 9.5 10.0 18.3 15.6
(vi) 11.2 11.1 11.4 15.5 13.4 6.8 6.6 6.6 10.6 7.7

L 20.25 17.25 15.63 38.69 13.87 21.66 18.28 16.50 65.20 13.87

*The NM chart cannot detect a decreasing shift in the variance.
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Table 3. Parameters of three OC models for Scenario 2

Model (I) Model (II) Model (III)

β1 β2 σ β1 β2 σ β1 β2 σ

(i) 1.0 1.3 1.0 .2 3.0 1.0 10.0 .1 1.0
(ii) 1.0 1.5 1.0 .3 3.0 1.0 10.0 .2 1.0
(iii) 1.1 1.0 1.0 .2 2.0 1.0 40.0 1.5 1.0
(iv) 1.3 1.0 1.0 .3 2.0 1.0 60.0 1.5 1.0
(v) 1.2 1.0 1.1 .2 4.0 1.1 50.0 1.2 1.1
(vi) 1.0 1.2 .7 .2 4.0 1.3 −3.0 4.0 1.1

vantage of parametric control charts, that is, their inefficiency
when the OC model is misspecified. In fact, these two curves
have very slight differences in the overall profile but have some
deviation in the vicinity of the design points. The NEWMA
chart can capture such details more effectively and trigger a
faster alarm.

The third OC model is the IC quadratic model plus an oscilla-
tion of a sine function. The PM chart still can pick up the differ-
ence on most occasions, although the parametric hypothesis is
clearly not the correct one. But it generally is outperformed by
the NEWMA chart, except for case (iii), where the differences
between the IC and OC model are indeed rather “flat.”

Scenario 2 (The nonlinear IC model). Next, we consider a
nonlinear IC model,

yij = 1 − exp(−xi) + εij, i = 1, . . . ,n, j = 1,2, . . . .

Again, three OC models are considered:

(I): yij = 1 − β1 exp(−xβ2
i ) + εij

(II): yij = 1 − exp(−xi) + β1 cos(β2π(xi − .5)) + εij

(III): yij = 1

1+β1x
β2
i

+ εij.

The chosen parameters of the three OC models are tabulated
in Table 3. As mentioned in Section 1, the PM control scheme
is not appropriate for use in monitoring such a nonlinear model.
Here we show only the OC ARL comparisons of the NEWMA
and NM charts. Note that the control limits of NEWMA charts
are equal to those in Table 2, because they do not depend on the
choice of the IC model but only of n, h, and X. From this table,
we can see that no matter how the OC models and parameters
vary, the NEWMA chart performs significantly better than the
NM chart.

In general, compared with PM and NM charts, the pro-
posed NEWMA chart has both robustness and sensitivity to
the changes in regression functions and variance. Using the
NEWMA chart can significantly alleviate the problem of the
PM chart in misspecified OC models at the small cost of effi-
ciency when indeed the OC model assumption is correct. More-
over, the NEWMA chart can conveniently and effectively tackle
the problem of nonlinear profile monitoring.

Table 4. ARL comparisons of the NEWMA and NM charts for Scenario 2 (IC ARL = 200)

n = 20 n = 40

NEWMA NEWMA

c = 1.0 c = 1.5 c = 2.0 NM c = 1.0 c = 1.5 c = 2.0 NM

(I) (i) 144.5 139.9 134.2 168.3 110.3 103.1 100.6 155.0
(ii) 99.1 93.0 86.2 131.2 63.8 58.7 55.1 113.3
(iii) 113.7 109.1 102.2 143.0 79.5 72.7 67.4 129.1
(iv) 19.9 17.8 16.6 31.8 10.6 9.8 9.4 21.0
(v) 17.9 16.6 15.7 25.4 10.3 9.7 9.2 17.1
(vi) 8.2 6.5 5.8 ∗ 4.2 3.7 3.5 ∗

(II) (i) 39.4 40.9 45.9 59.3 20.3 20.1 21.4 43.3
(ii) 17.9 18.1 20.6 27.1 9.7 9.4 9.9 18.4
(iii) 37.9 35.2 34.4 60.2 20.0 18.4 17.8 43.4
(iv) 17.3 16.0 15.5 27.0 9.4 8.8 8.7 18.3
(v) 17.4 17.8 19.0 24.1 9.8 9.9 10.3 16.1
(vi) 5.4 5.0 4.9 8.5 3.5 3.3 3.3 6.0

(II) (i) 69.2 61.9 58.4 99.4 39.1 34.9 33.2 80.1
(ii) 40.2 36.7 33.9 64.8 21.5 19.4 18.1 46.5
(iii) 11.8 10.9 10.6 17.9 6.9 6.4 6.2 12.1
(iv) 15.4 14.6 13.9 23.7 8.4 8.0 7.7 15.7
(v) 14.0 13.3 12.9 19.8 7.9 7.5 7.4 12.8
(vi) 7.8 7.3 7.0 11.8 4.8 4.5 4.4 8.0

L 20.25 17.25 15.63 38.69 21.66 18.28 16.50 65.20
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The choice of bandwidth has some effect on the OC ARLs,
but using our recommended formula (10) can have generally
satisfactory performance in all of the foregoing simulations.
The different values of c ∈ [1.0,2.0] offer similar ARL results
and thus can be determined by engineers without too many
considerations. Of course, if one has some a priori informa-
tion about the OC model, then c can be chosen to make the
NEWMA chart nearly optimal. A smaller c usually is more ef-
fective in detecting the sharp change in the local area and a
larger c performs better when the difference between the IC
and OC models is flat or smooth.

4. ILLUSTRATIVE EXAMPLE: MONITORING
NONLINEAR PROFILES IN A DEEP REACTIVE

ION–ETCHING PROCESS

Here we apply the proposed monitoring scheme to a deep re-
active ion-etching (DRIE) process in semiconductor manufac-
turing, which is very critical to the quality of the output wafer
and requires careful control and monitoring on a run-to-run ba-
sis. In the DRIE process, the desired profile has smooth and ver-
tical sidewalls, called the anisotropic profile. Ideally, the side-
walls of a trench are perpendicular to the bottom of the trench,
with certain a degree of smoothness around the corners. Var-
ious shapes of profiles, such as positive and negative profiles,
which are due to underetching and overetching, are considered
unacceptable. More detailed discussion of the DRIE example
has been given by, for example, Wang and Tsung (2007) and
Zou et al. (2007).

In practice, monitoring the entire DRIE profile is not neces-
sary, because the two sides of each profile are usually symmetri-
cal. Here, similar to the approach of Zou et al. (2007), we focus
on one side of the profile (e.g., the left side), and then rotate the
side of the profile by 45 degrees along a reference point accord-
ing to a prescribed chosen coordinate, as shown in Figure 1. We
use he transformed nonlinear profile in Figure 1 to demonstrate
the proposed monitoring scheme.

It can be seen that each side of the DRIE profile may be con-
stituted by three key parts: the smooth and straight sidewall,
corresponding to (i) in Figure 1; the smooth and curly corner,
corresponding to (ii) in Figure 1; and the flat bottom, corre-
sponding to (iii) in Figure 1. Here we select only the segments
near the corner for our investigation, because engineers con-
sider those segments to contain sufficient critical information
to distinguish the out-of-control conditions in the process.

Figure 1. Modeling the DRIE profile.

Zou et al. (2007) found that the part (ii) profile may be
adequately described by the following quadratic polynomial
model:

yij = .62 · x2
i + εij, i = 1, . . . ,n, (14)

and the data set was tabulated in the appendix of Zou et al.
(2007), which contains five IC profile samples and nine OC pro-
file samples. Here we apply our proposed NEWMA scheme to
monitoring this data set. For each profile, xi, i = 1, . . . ,11, are
fixed as equally spaced values, −2.5, (.5),2.5. Detailed imple-
mentation steps of the proposed scheme are as follows:

Step 1. Choose the kernel function K(·), bandwidth h,
smoothing weight λ, and the desired IC ARL following the
guidelines given in Section 2.4. Here we adopt the Epanech-
nikov kernel, and determine h by (10) with c = 1.5. According
to the values of the design points, xi’s, we can obtain L = 18.09
given that ARL = 370 and λ = .2. Consequently, L λ

2−λ
will

be 2.01. Then we can construct the NEWMA control chart as
shown in Figure 2.

Step 2. Start monitoring the process, and sequentially com-
pute the Zj and Ej vectors. Then compute the plot statistic, Qj,
in (9) and compare it with the control limit, L λ

2−λ
. In Figure 2

the NEWMA chart signals at the 14th sample, just as effectively
as the parametric MEWMA chart of Zou et al. (2007) does.

Step 3. By computing the values of lr(jn,14n) for j =
0,1, . . . ,13, we can find that its maximum occurs at j = 6
when lr(6n,14n) is 18.60. In fact, the true change point is
τ = 5, which is precisely indicated by the parametric likelihood
method given by Zou et al. (2007). In this case the nonparamet-
ric method provides less accurate but close diagnosis results.

Step 4. By computing the test statistics given in (12) and
(13), we can obtain the corresponding p values of .209 and .002,
which indicate that the variance is stable but there may be a shift
in the regression function.

Step 5. Finally, we plot the local linear smoothing curve of
the average of the last eight sample profiles and the IC pro-
file model together, as shown in Figure 3. From this figure, we
can see that the OC profile model presents an apparent negative
trend, which may be due to overetching of the DRIE process.

Figure 2. NEWMA chart for monitoring the example of Zou et al.
(2007).
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Figure 3. Graphical diagnosis of the example of Zou et al. (2007).
The solid line represents the IC model; the dotted line, the estimated
OC models.

Next, to demonstrate the effectiveness of our proposed ap-
proach, we consider monitoring the whole transformed DRIE
profile (i.e., all three parts) shown in Figure 1. Obviously, these
three parts cannot be readily viewed as a polynomial or a gen-
eral linear model, and so existing parametric methods (as in Zou
et al. 2007) cannot be applied directly. Thus we choose to apply
the proposed NEWMA chart to monitor such a profile.

As discussed in Section 2, considering the efficiency of mon-
itoring and diagnosing inferences in using the NEWMA chart,
35 design points, xi’s, are chosen: −3.6, (.3), −1.8; −1.5, (.15),
1.5; and 1.8, (.3), 3.6. Note that the corner requires more design
points (i.e., smaller-spaced values) than the other two parts of
the profile. This setting is consistent with our previously men-
tioned principle on the choice of design points in Section 2.4.
Here we collect dimensional readings (70 design points) by
scanning electron microscopy from m = 18 anisotropic profiles
that are known to be IC (available from the authors on request).
The local linear smoothing curve of the average of these 18 IC
profiles is plotted in Figure 4. This curve can be considered an
estimate (Ĝ0) of the true IC profile model (G0), and thus we
do not need to model this profile as some piecewise polynomial
(or other nonlinear model) (see Remark 1). In addition, the esti-
mate of variance is .409. From here, we can start the monitoring
and diagnosing procedure.

Similar to the preceding monitoring case, here we use
ARL = 370, λ = .2, and c = 1.5, and thus the control limit
is 2.30. For ease of illustration, we generate 6 IC profiles
by adding random errors to the G0 estimated by those 18
anisotropic profiles. We also obtain three OC sample profiles,
which are classified as inferior profiles based on engineering
knowledge. In this example we artificially assume that we first
monitor the six simulated IC samples and then obtain the three

Figure 4. Graphical diagnosis of the new DRIE profile. The solid
line represents the IC model; the dotted line, the estimated OC model.

Figure 5. NEWMA chart for the new example.

OC profiles. Accordingly, we construct the NEWMA chart and
plot the test statistics, Qj, one by one, as shown in Figure 5.

We can see that the NEWMA chart signals after the third
OC sample is monitored. Then, by looking at the values of
lr(jn,9n) for j = 0,1, . . . ,8, we find that its maximum occurs
at j = 6 with lr(6n,9n) = 41.09. This maximum accurately in-
dicates the change point location, τ , of the shift. In addition,
by computing the test statistics given in (12) and (13), we can
obtain the corresponding p values of .633 and 10−6, which indi-
cate that the regression function has changed. Finally, the local
linear smoothing curve of the average of these three sample pro-
files, coupled with the IC curve, are shown in Figure 4. From
this figure, we can see that the OC profile model indicates an ap-
parent positive trend possibly due to underetching of the DRIE
process; thus we suggest that the ICP machine settings and the
DRIE process conditions should be reexamined.

5. CONCLUSIONS AND CONSIDERATIONS

In this article, we have proposed a control scheme that in-
tegrates the EWMA procedure with the GLR test based on lo-
cal linear regressions. It can be applied to monitoring a gen-
eral profile that includes both linear and nonlinear regression
models. The proposed scheme can be easily designed and con-
structed and has satisfactory performance. We have provided
a systematic diagnostic approach to locating the change point
of the process and identifying the type of changes in a profile.
As demonstrated by the DRIE example, the proposed monitor-
ing and diagnostic approach may be implemented in industrial
practice as long as the quality of a process can be characterized
by a general smooth regression profile.

Several issues not addressed here could be worthy topics of
future research. First, note that this article and the previously
published works on profile monitoring are based mainly on the
assumption that the profiles are independent of one another and
that the random errors associated with the measurements within
a profile also are independent of one another. Engineering ap-
plications that give rise to profile data may lead to autocorre-
lated error terms (see Walker and Wright 2002 for discussion).
A common source of autocorrelated errors is the spatial or ser-
ial manner in which the data are collected. Dependency of the
observations not only affects the IC and OC properties of the
NEWMA scheme, but also makes the selection of the band-
width difficult (Opsomer, Wang, and Yang 2001). Therefore,
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some necessary modifications that take the correlation struc-
ture within profiles into account are desirable. Second, as we
showed in the simulations, the bandwidth, h, has some effect on
the OC ARL performance, although not a large effect with our
recommended choice. In the context of testing the regression
model, some “data-driven” nonparametric methods have been
proposed recently, including those of Horowitz and Spokoiny
(2001) and Guerre and Lavergne (2005). One ongoing effort of
ours is to develop a control scheme that integrates a sequential
“data-driven” adaptive smoothing parameter selection method
to make monitoring profiles nearly optimal. Finally, as shown
by Fan et al. (2001), the GLR testing method is widely applica-
ble in nonparametric lack-of-fit tests. The NEWMA scheme
could be generalized monitor various more complex profile data
models, such as the additive model, the single-index model,
the semiparametric model, and the varying-coefficient model,
whenever these models can closely represent industrial profiles.

ACKNOWLEDGMENTS

The authors thank the editor, associate editor, and two anony-
mous referees for their many helpful comments that have re-
sulted in significant improvements in the article. This work
was completed when Zou was a research assistant at the Hong
Kong University of Science and Technology, whose hospitality
is appreciated and acknowledged. This research was supported
by RGC Competitive Earmarked Research Grant 620606, Na-
tional Science Foundation of Tianjin Grant 07JCYBJC04300,
and NNSF of China Grants 10771107 and 10711120448.

APPENDIX A: CONDITIONS

(A) There exists a positive density, f (u), that is Lipschitz-
continuous and bounded away from 0 such that the design point,
xi, satisfies

∫ xi

0
f (u)du = i

n
, i = 1, . . . ,n.

(B) g0(u) has a continuous second derivative.
(C) The function K(t) is symmetric and bounded. Fur-

thermore, the functions t3K(t) and t3K′(t) are bounded, and∫
t4K(t)dt < ∞.
(D) The bandwidth h satisfies that h → 0, nh3/2 → ∞, and

nh8 → 0.

APPENDIX B: APPROXIMATE THE DISTRIBUTIONS
OF QUADRATIC FORMS LIKE ZT AZ

Recalling the assumption given in Section 2.2, Z is a standard
multivariate, normally distributed n-variate, and A is a symmet-
ric and semipositive matrix. By theorem 2.2 of Box (1954), the
sth cumulant of ZTAZ is

κs = 2s−1(s − 1)!tr(As).

This is used to match the first three moments of the distribution
of ZTAZ with those of a chi-squared distribution; that is, given
the mean, variance, and skewness of the distribution of ZT AZ
(using the relationship between cumulant and moment), we find

c1, c2, and c3 such that a c1χ
2
c2

+ c3 distribution has the same
mean, variance, and skewness. Simple calculations yield

c1 =
√

tr(A2)/tr(A3),

c2 = tr(A3),

and

c3 = tr(A) −
√

tr(A2) · tr(A3).

This c1χ
2
c2

+ c3 distribution is then used as an approximate null
distribution, to calculate a p value in the usual manner.

APPENDIX C: EXPRESSION OF lr (tn, kn)

Let gi(·) and σ 2
i denote the regression function and variance

of the ith profile sample {Yi,X}n
i=1. Then, after k samples have

been collected, we care about the following null hypothesis of
no change:

H0 : g1 = g2 = · · · = gk = g0

and

σ 2
1 = σ 2

2 = · · · = σ 2
k = σ 2

0 ,

against the following alternative of one change:

H0 : g0 = g1 = g2 = · · · = gt∗ �= gt∗+1 = · · · = gk

or

σ 2
0 = σ 2

1 = σ 2
2 = · · · = σ 2

t∗ �= σ 2
t∗+1 = · · · = σ 2

k ,

where 1 ≤ t∗ < k.
The logarithm of the likelihood function is given by

−1

2

k∑

j=1

[
n ln(2πσ 2

j ) + 1

σ 2
j

(Yj − Gj)
⊗
]
,

where Gi = (gi(x1),gi(x2), . . . ,gi(xn))
T . If the data are col-

lected under IC conditions (i.e., under the null hypothesis), then
the value of the logarithm of the likelihood function is

l0 = −1

2

k∑

j=1

[
n ln(2πσ 2

0 ) + 1

σ 2
0

(Yj − G0)
⊗
]
.

Assuming that a change occurs after t, the corresponding loga-
rithm of generalized likelihood is

l1 = −1

2

t∑

j=1

[
n ln(2πσ 2

0 ) + 1

σ 2
0

(Yj − G0)
⊗
]

− (k − t)n

2

[

ln

(
2π

(k − t)n

k∑

j=t+1

(Yj − Ĝ)⊗
)

+1

]

,

where Ĝ is the local linear estimator based on the profile sam-
ples {Yj,X}k

j=t+1.
Because g0 and σ0 are known in advance, recalling the no-

tation in Section 2.2, we can substitute the profile samples,
{Zj,X}k

j=1, g0 = 0, and σ 2
0 = 1, into the preceding expressions.

TECHNOMETRICS, NOVEMBER 2008, VOL. 50, NO. 4



524 CHANGLIANG ZOU, FUGEE TSUNG, AND ZHAOJUN WANG

This will result in the following final expression of lr(tn, kn):

lr(tn, kn) = −2(l0 − l1)

=
k∑

j=t+1

Z⊗
j − (k − t)n

×
[

ln

(
1

(k − t)n

k∑

j=t+1

(Zj − WZ̄t,k)
⊗
)

+ 1

]

,

(A.1)

where Z̄t,k = 1
k−t

∑k
j=t+1 Zj. Using the classical binary segment

procedure leads to the change point estimator (11).

APPENDIX D: PROOFS

Proof of Proposition 1

This proposition can be viewed as a corollary of theorems 5
and 7 of Fan et al. (2001). The conditions are the only differ-
ence. Note that the fixed design case is considered in this article,
whereas Fan et al. (2001) focused on the random design. Con-
dition (A) is imposed to replace condition (A1) of Fan et al.
(2001). The technical arguments in the proof of theorem 5 of
Fan et al. (2001) continue to hold.

Because g0 is known, the random part d1n in theorem 5 of
Fan et al. (2001) does not appear. Moreover, Rn10, Rn20, and
Rn30 in the proof of theorem 5 of Fan et al. (2001) also equal 0,
meaning that the conditions for the bandwidth h can be greatly
relaxed to condition (D). Note that this condition gives a wide
range [from O(n−1/3) to O(n−1/7)] of bandwidths that include
the optimal bandwidth, O(n−1/5) of nonparametric estimating
regression function g(·).

Proof of Proposition 2

To prove part a, we first consider that 1 ≤ t < τ . Assume
that when k → ∞, l/k → θ1, where θ1 ∈ (0,1) and θ1 < θ . By
similar arguments as in the proofs of theorems 5 and 8 of Fan
et al. (2001), it is easy to verify that

(k−1h)lrτ,k = nh(1 − θ)

×
∫ 1

0
�2

n(u)f (u)du(1 + op(1)) + Op(nh5) > 0.

Thus it is sufficient to show that when n → ∞, k → ∞, for any
τ < l < k,

k−1h(lrτ,k − lrl,k) > 0 a.e.

It then follows from expression (A.1) that

lrτ,k − lrl,k

= −
τ∑

j=t+1

Z⊗
j + kn(1 − θ1) ln

×
(

1

(k − t)n

k∑

j=t+1

(Zj − WZ̄t,k)
⊗
)

− kn(1 − θ) ln

(
1

(k − τ)n

k∑

j=τ+1

(Zj − WZ̄τ,k)
⊗
)

+ kn(θ − θ1)

= �1 + �2 + �3 + kn(θ − θ1).

Now we deal with �2. Decompose 1
(k−t)n

∑k
j=t+1(Zj −

WZ̄t,k)
⊗ as follows:

1

(k − t)n

k∑

j=t+1

(Zj − WZ̄t,k)
⊗

= 1

(k − t)n

[
τ∑

j=t+1

(Zj − WZ̄t,k)
⊗ +

k∑

j=τ+1

(Zj − WZ̄t,k)
⊗
]

= 1

(k − t)n

[
τ∑

j=t+1

(Zj − WZ̄t,τ )
⊗ +

k∑

j=τ+1

(Zj − WZ̄τ,k)
⊗
]

+ 1

(k − t)n

[
τ∑

j=t+1

(
1 − θ

1 − θ1
W(Z̄t,τ − Z̄τ,k)

)⊗

+
k∑

j=τ+1

(
θ − θ1

1 − θ1
W(Z̄τ,k − Z̄t,τ )

)⊗]

+ 2
(1 − θ)(θ − θ1)

n(1 − θ1)2

× [
(Z̄t,τ − WZ̄t,τ + WZ̄τ,k − Z̄τ,k)

T W(Z̄t,τ − Z̄τ,k)
]

= �21 + �22 + �23.

Then simple calculations yield

�21 = 1 + Op
(
(nk)−1/2) + Op((nh)−1) (A.2)

and

�22 = (1 − θ)(θ − θ1)

n(1 − θ1)2
(W�)⊗ + Op((knh)−1), (A.3)

where � = (�n(x1),�n(x2), . . . ,�n(xn))
T . It follows from the

Cauchy inequality and Lr-convergence properties of the local
linear smoother (see, e.g., lemma 3 in Zhu and Xue 2006) that

�23 ≤ 2(1 − θ)(θ − θ1)

(1 − θ1)2

× (
n−1(W�)⊗ · [Op((knh)−1) + Op(h

4)
])1/2

,

which leads to �23 = op(�22).
By using the fact that

1

(k − τ)n

k∑

j=τ+1

(Zj − WZ̄τ,k)
⊗

= 1 + Op
(
(nk)−1/2) + Op((nh)−1),

we have

�3 = kn(1 − θ)

(

1 − 1

(k − τ)n

k∑

j=τ+1

(Zj − WZ̄τ,k)
⊗

+ [
Op

(
(nk)−1/2) + Op((nh)−1)

]2

)

.
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Consequently, using Taylor expansion and combing equations
(A.2) and (A.3), we have

k−1(lrτ,k − lrl,k) = k−1

(

�1 +
τ∑

j=t+1

(Zj − WZ̄t,τ )
⊗
)

+ (1 − θ)(θ − θ1)

(1 − θ1)
(W�)⊗ + O((kh)−1).

Using similar arguments as in the proof of theorem 5 of Fan et
al. (2001), we can easily show that the term in the first bracket
is of order Op(k(θ − θ1)h−1); thus we have

k−1h(lrτ,k − lrl,k)

= nh
(1 − θ)(θ − θ1)

(1 − θ1)

×
∫ 1

0
�2

n(u)f (u)du(1 + O(h4)) + Op(k
−1).

The alternative hypothesis implies that k−1h(lrτ,k − lrl,k) > 0
almost everywhere, which completes the proof. The proof for
case where τ < t < k is analogous to the foregoing arguments
and thus is omitted here.

For part b, by similar arguments as those in the proof of
part a, the proof of consistency is straightforward and thus is
omitted here. The details are available from authors on request.

Remark A.1. To facilitate the technical arguments and pro-
vide concise illustration, the alternative hypothesis considered
here is free of k. In fact, for various contiguous alternatives with
respect to k (Bhattacharya 1987; Gombay and Horvath 1996;
Csorgo and Horvath 1997), the consistency of the foregoing
change point estimator still holds when some stronger condi-
tions are imposed.

[Received April 2007. Revised February 2008.]
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