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Abstract

Self-starting control chart based on recursive residuals is proposed for mon-
itoring the linear profiles when the nominal values of the process parameters
are not known. This chart can detect a shift in either the intercept or the
slope or the standard deviation. Due to the good properties of the plot statis-
tics, the proposed chart can be easily designed to match any desired In-control
average run length. The simulated results show that our approach has good
performance across the range of possible shifts and it can be used during the
start-up stages of the process.
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1 Introduction

Statistical Process Control (SPC) has been widely used to monitor various industrial

processes. Most of research in SPC focuses on the charting techniques. In most SPC

applications, it is assumed that the quality of a process can be adequately repre-

sented by the distribution of a quality characteristic. However, in some situations,

the quality of a process is better characterized and summarized by a relationship

between a response variable and one or more explanatory variables. In particular,

most of studies are focused on the simple linear regression profiles. In recent years,
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some monitoring methods for the linear profiles have been proposed in the litera-

ture. Kang and Albin (2000) proposed two control charts for Phase II monitoring

of linear profiles. One is multivariate T 2 chart and the other is the combination of

exponential weighted moving average (EWMA) chart and R chart. In Kim, Mah-

moud and Woodall (2003), the method based on combination of three EWMA charts

was proposed for detecting a shift in the intercept, slope and standard deviation si-

multaneously. Simulation study showed the for detecting the sustained shifts in

the parameters the three EWMA charts perform better than the methods in Kang

and Albin (2000) in terms of average run length (ARL) and their methods also

seem much more interpretable. Mahmoud and Woodall (2004) studied the Phase

I method for the linear profiles. A discussion about the problems of linear profiles

was given in Woodall et al. (2004).

The parameters of the process are assumed to be known for all of the control

charts for linear profile mentioned above. However, in the early stages of process

improvement, the process parameters, the intercept, slope and standard deviation

are usually unknown, and they are usually estimated by m in-control (IC) historical

samples of size n. Some authors have recommended using 20 to 30 samples of size

4 or 5 to estimate the process parameters for the traditional control charts (see

Montgomery (1997), Ryan (1989)). Several authors have investigated the effect of

the estimated parameters on the performance of traditional control charts, such as

Quesenberry (1993), Jones, Champ and Rigdon (2001, 2004), etc. They indicated

that when the number of reference samples is small, the control charts with estimated

parameters will produce rather large bias in the IC ARL from the nominal value

and reduce the sensitivity of the chart to detect the process changes in term of

out-of -control (OC) ARL. To attain the similar performance of the chart with

known parameters, 20 or 30 historical samples are too small. For example, for the

traditional EWMA chart with λ = 0.2, 300 samples of five observations are needed

to achieve the desired level of IC performance. Whereas, in most cases, it may not

be feasible to wait for the accumulation of sufficient large subgroups, because the

users usually want to monitor the process at start-up stages. Hence, many authors

had studied the design procedures of the tranditional control charts with estimated

parameters, such as Hiller (1967, 1969), Yang and Hiller (1970), Nedumaran and
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Pignatiello (2001) and Jones (2002).

Specially, Self-starting methods which update the parameter estimates with new

observation and simultaneously check for the OC conditions are developed for the

situations when samples sufficiently large to approximate control chart performance

with the true parameters are unavailable, such as Hawkins (1987), Hawkins and

Olwell (1997), Quesenberry (1991,1995), and Sullivan and Jones (2002). Hawkins,

Qiu and Kang (2003) and Hawkins and Zamba (2005) proposed the change-point

model based on the likelihood ratio for on-line monitoring which can also be seen

as a self-starting method.

In this paper, a self-starting control chart based on recursive residuals is proposed

for monitoring the linear profiles when the process parameters are not known. This

means that it is not necessary to assemble a large number of reference samples

before the control scheme begins (although it is generally advisable to collect a few

preliminary observations). The combination of two EWMA charts are used which

monitoring the regression coefficients and standard deviation respectively. Given the

desired overall IC ARL, the control limits of each charts can be obtained through the

Markov chain method. We demonstrate the effectiveness of our proposed approach

by the Monte Carlo method.

This paper is organized as follows: In the next section the description and design

of our proposed control chart is given; An example of our proposed control chart

is illustrated in section 3; The performance assessment is considered in section 4;

The discussions and conclusions are given in section 5. The involved deductions are

given in the Appendix of this paper.

2 The Self-Starting Chart for Linear Profiles

In this section, the model of linear profiles considered in this paper and a brief

description of the recursive residuals are firstly given in this section. And then, our

proposed Self-starting control chart, its design, and some diagnostic aids are also

considered in this section.

Assume the jth random sample collected over time is (xi, yij). When the process

is IC, the relationship between the response and explanatory variables is assumed
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to be

yij = A0 + A1xi + εij, i = 1, 2, · · · , n, (1)

where the εij/σ are independent identically distributed (i.i.d) as a standard Normal

random variable, the explanatory variable X is assumed to be fixed at n values.

This is usually the case in the practical applications and is consistent with Kang

and Ablin (2000), Kim et al. (2003) and Mahmoud and Woodall (2004).

When the parameters A0, A1 and σ2 are unknown, a wide used method is to

estimate them by the historical data. Suppose there are total m (m ≥ 1) IC historical

samples of size n {(xi, yij), i = 1, 2, · · · , n, j = 1, 2, · · · ,m}, the most often used

unbiased estimator for A0, A1 and σ2 are the average of the m least square estimators

a0j, a1j and MSEj given by

a0j = ȳj − a1jx̄, a1j =
Sxy(j)

Sxx

,

MSEj =
1

n− 2

n∑
i=1

(yij − a1jxi − a0j)
2,

where ȳj = 1
n

n∑
i=1

yij, x̄ = 1
n

n∑
i=1

xi, Sxx =
n∑

i=1

(xi − x̄)2 and Sxy(j) =
n∑

i=1

(xi − x̄)yij.

After we got the estimations, the parameters are assumed to be known and

the monitoring could be started. As more IC samples are obtained, one may wish

to update the estimations and start monitoring again. However, the statistical

properties of this procedure, such as the IC ARL, cannot be got easily, so that the

designs of this procedure seems very difficult.

Another way to deal with the unknown parameters is to use the self-starting

control charts, which update the parameter estimates with new observations and

simultaneously check for the OC conditions.

The application of the recursive residuals to the regression model were introduced

by Brown, Durbin and Evans (1975). First, we pool all of the historical and future

samples of size n into one sample, i.e. {(xi, yij), i = 1, 2, · · · , n, j = 1, 2, · · · ,m, m+

1,m + 2, · · · }, and then, for convenience, let y(j−1)n+i = yij, i = 1, 2, · · · , n, j =

1, 2, · · · . In this paper, the standardized recursive residuals for the future samples
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are defined by

eij =
y(j−1)n+i − z′iβ(j−1)n+i−1√

S(j−1)n+i−1(1 + z′i(X
′
(j−1)n+i−1X(j−1)n+i−1)−1zi)

(2)

i = 1, 2, · · · , n, j = m + 1,m + 2, · · ·

where

z′i = (1, xi), Y′
(j−1)n+i−1 = (y1, y2, · · · , y(j−1)n+i−1),

X′
(j−1)n+i−1 = (

(j−1)×n︷ ︸︸ ︷
z1, z2, · · · , zn, z1, z2, · · · , zn, · · ·, z1, z2, · · · , zi−1),

βt = (X′
tXt)

−1X′
tYt

St =
1

t− 2
(Yt −Xtβt)

′(Yt −Xtβt)

Under the IC model (1), it well know that eij has a Student-t distribution t(j−1)n+i−3

(see Brown, Durbin and Evans (1975)). Using a lemma due to Basu (Lehmann 1991),

we can show that the eij’s are statistically independent. So, through a transforma-

tion, we obtain the following statistics

wij = Φ−1
[
T(j−1)n+i−3

(
eij

)]
(3)

which is called Q-statistics in Quesenberry (1991), where Φ−1 denotes the inverse

of the cumulative distribution function (CDF) of standard normal random variable,

Tν is the CDF of Student-t distribution with ν degrees of freedom. Therefore,

{wij, i = 1, 2, · · · , n, j = m + 1,m + 2, · · · } is a sequence of independent standard

normal random variables.

When an assignable cause occurs after some observation, say kth observation,

the distribution of Q-statistics {wij, i = 1, 2, · · · , n, j = k, k + 1, · · · } is different

from that of {wij, i = 1, 2, · · · , n, j = m + 1,m + 2, · · · ,m + k − 1}. So, the

difference between them could be used to detect the assignable cause. This is the

motivation of our proposed method. At the first glance, the method based on

{wij, i = 1, 2, · · · , n, j = m + 1,m + 2, · · · } may be a omnibus one, i.e. it is not

easy to diagnose which parameters have been shifted. But, a convenient method

will be given to aid the method based on the transformed recursive residuals in this

paper.
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For the transformed residuals {wij, i = 1, 2, · · · , n, j = m + 1,m + 2, · · · }, let

w̄j = 1
n

n∑
i=1

wij and Swj
= 1

n−1

n∑
i=1

(wij − w̄j)
2 denote, respectively, the sample mean

and variance of jth subgroup of them. Define two EWMA statistics, EWMAIS and

EWMAσ, as follows

EWMAIS(j) = λ
√

nw̄m+j + (1− λ)EWMAIS(j − 1), (4)

EWMAσ(j) = max
(
0, λ

√
n− 1

2
(Swm+j

− 1) + (1− λ)EWMAσ(j − 1)
)
, (5)

where j = 1, 2, · · · , EWMAIS(0) = EWMAσ(0) = 0, and λ (0 < λ ≤ 1) is a smooth-

ing constant.

Our proposed self-starting scheme is defined to be the combination of above two

EWMA charts, i. e., an out of control signal is triggered as soon as EWMAIS(j) <

LCLIS or EWMAIS(j) > UCLIS or/and EWMAσ(j) > UCLσ, where UCLIS,

LCLIS and UCLσ are chosen such that to obtain the given specified IC ARL.

From the definition, we know the EWMAIS chart is used to monitor the change

in slope or intercept while EWMAσ is effective in monitoring the shift in standard

deviation of the process. When the process is IC, {wij, i = 1, 2, · · · , n j =

m + 1, · · · } can be regarded as i.i.d samples from N(0, 1) whatever the number of

historical samples m(m ≥ 1) is. So, the properties of IC run-length of the EWMAIS

and EWMAσ charts are same as that of the classical EWMA chart studied by many

authors, such as Lucas and Saccucci (1990).

Note that the EWMAσ chart in equation (5) is a one-sided scheme, which is

used to detect the increase in process variance only. If one want to detect decrease

in variance, then some other appropriate methods can be used, such as the method

discussed by Acosta-Mejia et al. (1999). In this paper, we consider the detection of

the increase in the variance only.

The smoothing constants λ in Equation (4) and (5) are set equal to 0.2 as in the

EWMA chart used by Kang and ALbin (2000) and Kim et al. (2003). Certainly, we

may use different smoothing constants for each chart. In general, smaller smoothing

constants lead to quicker detection of smaller shifts as shown by Lucas and Saccucci

(1990). As we known, the self-starting charts have the “masking” effect in the OC

situation, that is to say, relatively magnitude of the shift will get smaller as the more

OC samples are observed for the reason that these observations data “contaminated”
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the estimates (see Hawkins and Olwell (1997) for more detail). So, some adaptive

charts such as the AEWMA chart proposed by Capizzi and Masarotto (2003) which

offer a more balanced protection against shifts of different sizes can be used to

substitute for our EWMA charts but we don’t investigate them here.

It seems that our proposed charts require a lot of computations such as the

inverse matrix in Equation (2). Actually, the calculations of the eij’s are considerably

simplified by the following recursive formulas

(X′
tXt)

−1 = (X′
t−1Xt−1)

−1 − (X′
t−1Xt−1)

−1ziz
′
i(X

′
t−1Xt−1)

−1

1 + z′i(X
′
t−1Xt−1)−1zi

, (6)

βt = βt−1 + (X′
tXt)

−1zi(yt − z′iβt−1), (7)

(t− 2)St = (t− 3)St−1 + (eij)
2St−1, (8)

where t = (j − 1)n + i.

Under IC condition, because wij ∼ N(0, 1), the statistics
√

nw̄j and
√

n−1
2

(Swj
−

1) are independently distributed as a standard normal and a scaled χ2 distributions,

respectively. Hence, for each chart, the IC ARL properties can be easily obtained

through a classical Markov chain procedure (Brook and Evans (1972)). However, as

we well known, these two charts are not independent, i.e. a shift in one parameter

may be signaled by both of the charts. A Markov chain method is used to evaluate

the IC ARL of our proposed chart (see Appendix of this paper). Given a desired

overall IC ARL, a Fortran program is available from the authors which can find the

control limits for each chart.

Because EWMAIS chart is used to monitor the shift in both of intercept and

slope, EWMAσ chart is used for monitoring the standard deviation, the ratio of

EWMAIS chart’s IC ARL to that of EWMAσ is designed to be 2. For some given

IC ARL and sample size n = 4 and 5, the control limits for each chart are tabulated

in Table 1 (Note that LCLIS = −UCLIS).

Table 1 The control limits of the self-starting chart
n = 4 n = 5

IC ARL 200 300 370 400 500 200 300 370 400 500
UCLIS 0.9276 0.9746 0.9978 1.0062 1.0302 0.9271 0.9748 0.9985 1.0071 1.0313
UCLσ 1.2959 1.3794 1.4214 1.4369 1.4812 1.2530 1.3318 1.3717 1.3864 1.4280
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In the practical applications of quality control, there are two issues need to

detect. One is to detect if the process is in control, other is to point out the position

of the shift if the process had shifted. Knowing the process change point would help

engineer to identify the special cause quicker. A method based on the maximum

likelihood estimator of the change point is proposed to assist our self-starting chart.

We assume that the chart signals at subgroup k, i.e. there are m historical IC

samples and k − m future samples, and a shift in parameters had been occurred

after the τth samples (m < τ < k). The classical likelihood ratio statistic is given

by

lr(k1n, kn) = kn log[σ̂2
kn(σ̂2

k1n)−
k1
k (σ̂2

k2n)−
k2
k ]. (9)

The meaning of σ̂2
kn, σ̂2

k1n σ̂2
k2n and the involved deductions are given in Appendix

of this paper. Our proposed estimator of the change point τ of a step shift in

parameter(s) of linear profile is given by

τ̂ = arg
m<k1<k

max{lr(k1n, kn)}. (10)

Note that this is consistent with that in Pignatiello and Samuel (2001).

As Kim et al. (2003) pointed out, it is very necessary to justify which parameter

or parameters have been shifted after a signal occurs. Therefore, using the coded

explanatory values, they obtained the following alternative form of the underlying

model

yij = B0 + B1x
∗
i + εij, i = 1, 2, · · · , n, (11)

where B0 = A0 + A1x̄, B1 = A1 and x∗i = (xi − x̄). For model (11), the least

square estimators of B0, B1 and σ2 are independent, so, they proposed to use three

independent EWMA charts to detect if the intercept, slope, and standard deviation

has changed, respectively.

Similar to Sullivan and Woodall (1996), a useful convenient method is introduced

to enhance the ability of our proposed self-starting chart in detecting where the shift

comes from. We decompose the test statistic lr(τ̂n, kn) in Equation (9) into three

parts: Ilr(τ̂), Slr(τ̂) and σlr(τ̂) (see Appendix) which are, respectively, used as the

index of the relative contribution from Y -intercept, slope and standard deviation.

The simulated results show that this method is more effective than the combination
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of three charts used by Kim et al.(2003), when there is a shift in two or three

parameters simultaneously. But a case must be pointed out is that the proposed

method is effective for the model (11) but not appropriate for the model (1) because

the change of A1 will result in the augment of values of both Ilr and Slr and we

think Kim at al. (2003) has the same question.

3 Illustrative Example

In this section, an illustrative example is given to introduce the implementation of

our proposed self-starting control chart. In this example, the underlying in-control

linear profile model is yij = 3 + 2xi + εij, which is used by Kang and Albin(2000),

where the εij’s are i.i.d normal random variable with zero and variance one. The

explanatory variable takes 2(2)8. Obviously, x̄ = 5, Sxx = 20, B0 = 13 and B1 = 2.

There are m = 5 of size n = 4 IC historical observations, which are the first 5

rows in Table 2. We want to detect the shift in B0 and σ simultaneously in model

(11). Suppose the Y -intercept B0 and standard deviation σ have shifted from 13

to 13.8 and 1.0 to 1.5, respectively, after the 15th future sample. For given overall

IC ARL=200, the control limits of EWMAIS and EWMAσ charts are, respectively,

0.9276 and 1.2959. The statistics w̄j, Swj
, EWMAIS (EWIS) and EWMAσ (EWσ)

for j = 6, 7, · · · , 28 are also tabulated in Table 2.

It is clear that the EWMAσ chart has been signaled after only four OC samples

are monitored. But in order to illustrate our chart, more OC samples were got. At

j = 28, the EWMAIS chart also gives a alarm. The maximum of lr(k1n, 28n) for

k1 = 6, 7, · · · , 28 is the lr(20n, 28n) = 31.55 which indicates accurately the location

τ of the shift. The values of Ilr(20), Slr(20) and σlr(20) are 10.24, 2.31 and 19.0

respectively. Thus, we would diagnose the shifts in the Y -intercept and variance

after observation 20.

4 Performance Comparisons

In this section, we assess the performance of our proposed self-staring control chart

through the comparisons with other methods in term of the OC ARL. For the
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Table 2 Data for Example with a shift in the slope
and standard deviation after 20th sample.

j yij w̄j Swj
EWIS EWσ lr Ilr Slr σlr

1 7.29 10.46 13.14 20.88 0.90 0.77 0.14 0.00
2 7.65 10.39 15.89 20.19 1.30 0.36 0.24 0.70
3 7.37 11.88 14.54 20.33 2.57 0.22 0.18 2.16
4 7.39 13.34 13.92 18.92 1.69 0.26 0.04 1.40
5 5.64 11.06 15.47 19.33 3.58 0.88 0.03 2.67
6 6.63 11.51 15.66 18.42 -0.18 0.43 -0.07 0.00 6.00 1.42 0.00 4.58
7 8.16 12.12 16.27 19.83 0.79 0.10 0.26 0.00 6.62 0.54 0.02 6.06
8 5.90 11.21 16.45 18.71 -0.26 1.04 0.10 0.01 8.15 0.96 0.00 7.19
9 6.49 12.56 15.78 20.42 0.49 0.69 0.28 0.00 9.45 0.57 0.08 8.80

10 8.69 11.87 17.46 18.92 0.83 1.45 0.56 0.11 7.98 0.09 0.00 7.89
11 6.05 12.61 14.09 18.44 -0.61 1.51 0.20 0.21 7.99 0.50 0.06 7.44
12 7.88 10.02 16.02 18.39 -0.30 1.05 0.04 0.18 9.55 0.89 0.24 8.42
13 9.27 12.31 14.34 17.91 0.08 2.39 0.06 0.49 9.75 0.95 1.83 6.97
14 7.91 10.68 16.15 18.46 -0.07 0.62 0.02 0.30 12.51 1.19 2.64 8.68
15 7.43 11.62 14.82 20.34 0.18 0.40 0.09 0.09 15.03 1.13 2.53 11.37
16 6.53 10.08 15.92 19.04 -0.47 0.62 -0.11 0.00 17.39 2.05 2.15 13.19
17 6.77 11.76 13.86 18.48 -0.61 0.61 -0.34 0.00 20.84 3.75 3.10 13.99
18 5.66 10.98 15.00 20.18 -0.34 1.05 -0.40 0.01 22.73 5.31 1.87 15.55
19 7.39 10.13 15.94 19.00 -0.18 0.59 -0.39 0.00 26.86 6.86 2.11 17.89
20 5.96 11.75 14.81 18.64 -0.49 0.55 -0.51 0.00 31.55 10.24 2.31 19.00
21 4.41 12.28 17.02 20.02 0.15 3.98 -0.35 0.73 27.28 11.37 0.67 15.24
22 8.85 10.99 19.13 21.25 1.63 2.41 0.37 0.93 16.55 5.78 0.30 10.47
23 7.47 10.62 17.28 21.33 0.72 1.22 0.59 0.80 15.97 4.21 0.00 11.75
24 8.46 8.92 13.08 21.56 -0.33 4.07 0.34 1.39 13.20 7.17 0.04 5.99
25 4.24 12.00 16.58 19.53 -0.23 2.27 0.18 1.42 15.74 12.12 1.36 2.27
26 6.54 12.39 17.33 20.32 0.64 0.71 0.40 1.07 18.06 12.15 4.14 1.77
27 10.23 13.70 15.63 18.29 0.86 2.77 0.66 1.29 11.84 10.27 0.02 1.54
28 10.33 13.67 14.58 23.51 1.60 2.65 1.17 1.44
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parameters known case, Kim et al. (2003) showed that the combination of three

EWMA charts (EWMA3) performances better than the methods in Kang and Albin

(2000) in terms of detecting the sustained shifts in the parameters. So, we only

compare our proposed self-starting method with EWMA3.

For simplicity, we only consider the case of overall IC ARL=200, the smoothing

constant λ is set to be 0.2, the parameters in the in-control model are A0 = 3,

A1 = 2 and σ2 = 1, xi=2(2)8. The control limits for our two EWMA charts

are 0.9276 and 1.2959 which yield an IC ARL 298.4 and 596.5 for the two charts

respectively whatever the number of IC historical samples. In Kim et al. (2003), the

LI , LS and LE are set to be 3.0156, 3.0109 and 1.3723 for the three EWMA charts

respectively. In the case of known parameters, this design will has an overall IC

ARL of roughly 200 and each chart has an about 584 IC ARL. Though the IC ARL

of our proposed self-starting chart can be evaluated by Markov chain procedure, the

OC ARL is rather difficult to calculate by Markov chain method, the reason is the

intricacy of OC distribution. Therefore, the results in this section is evaluated by

10,000 simulations. Moreover, the types of shifts considered in this paper are same

as the that in Kim et al. (2003), although some other scales, instead of the scale σ,

can be used to measure the size of shifts in all parameters.

First of all, the performance of our self-starting charts with m = 10, 30, 50, 100

and 500 IC historical samples, and the performance of EWMA3 charts with the true

values of parameters are shown in Figure 1 (a-c).

From Figure 1 we observed

• Our proposed self-starting chart performs well in detecting large shifts in

whichever parameters, regardless of how many IC historical samples are avail-

able.

• Our proposed self-starting chart has a disadvantage in detecting the small

shifts compared with EWMA3 charts for the small m, however, the differences

get smaller as the value of m get larger. For the detection of shift in slope,

the self-starting chart with m = 500 have the almost same performance as

the EWMA3 charts with known parameters while for shifts in intercept or

standard deviation, our approach with m = 500 samples perform even nearly
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uniformly better than the EWMA3 charts.

Figure 1 The ARL’s for step shift in intercept (a), slope (b) and standard

deviation (c).

There is shift in parameter B1 only in model (11) in Kang and Albin (2000)

and Kim et al. (2003). Table 3 gives the comparison between our self-starting

chart (EW2) with m = 500 IC historical samples and the EWMA3 charts(EW3)

with known parameters in this case. We observed EWMA3 chart has much better

ARL performance than our self-starting chart for the small δ. The two methods

perform similarly for the moderate-to- large shift sizes. Totally, the EWMA3 are

more effective than our approach in this case.

Table 3 ARL comparisons for B1 to B1 + δσ in model (11)(IC ARL=200)
δ

Chart 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
EW3 13.1 6.6 4.4 3.3 2.7 2.3 2.1 1.9 1.7
EW2 111.5 33.3 10.8 5.6 3.6 2.7 2.0 1.6 1.4
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For a more meaningful and fair comparison, the EWMA3 and self-starting charts

with unknown parameters are compared using the following steps:

[1] To generate m subgroups of size n from the underlying model and to estimate

the unknown parameters.

[2] To construct the EWMA3 charts with the estimated parameters and our self-

starting chart with the control limits given in Table 1.

[3] The shift(s) in parameter(s) occurs after τth sample. To monitor the process

from the (m + 1)th sample, and set the run length to be k, when the τ + kth

future sample falls outside the control limits.

[4] Repeat Steps [S1]-[S3] 10,000 times.

[5] Compute OC ARL, i. e. the average of the 10,000 run lengths.

The simulation results of m = 10, 80, 300 are given in Table 3-5. The values of

τ −m are chosen to be 20, 90 and 240 for a representative illustration. From these

tables, we can see that

• The number of the IC historical samples m strongly affects the ability of

EWMA3 charts to detect the shift. As the m increases, the OC ARL get

smaller quickly.

• Our proposed self-starting chart performs well in detecting moderate and large

shifts in whichever parameters.

• Our proposed self-starting chart has a disadvantage in detecting the small

shifts compared with EWMA3 charts for the small τ−m, however, as the more

IC future samples are collected, the self-starting chart will be more sensitive

to the small shifts which is owe to the updating parameter estimates with new

observation.

Another noteworthy feature from these tables is that the IC ARL’s of self-starting

and EWMA3 chart. The self-starting chart’s ARL’s differ slightly from the nominal

200 because the chart didn’t start from the zero state in this case. It’s surprising
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Table 3 ARL comparisons for m = 10
τ −m = 20 τ −m = 90 τ −m = 240

δ EW3 EW2 EW3 EW2 EW3 EW2

0.2 119.3 139.3 120.2 88.5 119.3 61.7
0.4 38.5 46.7 38.1 17.4 37.6 14.5
0.6 10.1 11.1 10.3 7.4 10.4 7.0
0.8 5.4 5.5 5.3 4.7 5.5 4.6

A0 + δσ 1.0 3.8 3.8 3.8 3.5 3.8 3.5
1.2 3.0 3.0 3.0 2.9 3.0 2.8
1.4 2.5 2.6 2.6 2.4 2.6 2.4
1.6 2.2 2.2 2.2 2.1 2.2 2.1
1.8 2.0 2.0 2.0 1.9 2.0 1.9
2.0 1.8 1.8 1.8 1.7 1.8 1.7

0.025 157.7 171.7 157.8 145.2 157.6 116.5
0.050 85.0 115.2 84.8 57.5 84.7 39.1
0.075 34.4 56.7 34.3 20.4 34.3 16.3
0.100 15.3 21.6 15.3 10.3 15.3 9.5

A1 + δσ 0.125 8.0 10.1 8.0 6.9 8.0 6.5
0.150 5.5 6.2 5.5 5.2 5.5 5.0
0.175 4.3 4.7 4.3 4.2 4.3 4.1
0.200 3.6 3.8 3.6 3.5 3.6 3.4
0.225 3.1 3.3 3.1 3.0 3.1 3.0
0.250 2.7 2.9 2.7 2.7 2.7 2.7
1.2 40.5 90.0 41.1 46.4 39.6 32.9
1.4 13.3 28.3 13.3 11.1 13.5 9.6
1.6 6.8 8.8 6.8 5.6 6.8 5.2
1.8 4.5 4.5 4.5 3.7 4.5 3.5

δσ 1.0 3.4 3.1 3.4 2.8 3.4 2.7
2.2 2.8 2.5 2.8 2.3 2.8 2.2
2.4 2.4 2.1 2.4 2.0 2.4 1.9
2.6 2.1 1.8 2.1 1.7 2.1 1.7
2.8 1.9 1.7 1.9 1.6 1.9 1.6
3.0 1.8 1.5 1.8 1.5 1.8 1.5

IC 0.0 212.0 196.5 212.2 196.4 212.1 196.3

14



Table 4 ARL comparisons for m = 80
τ −m = 20 τ −m = 90 τ −m = 240

δ EW3 EW2 EW3 EW2 EW3 EW2

0.2 65.3 88.5 65.6 71.8 64.6 58.3
0.4 16.8 17.4 16.9 15.2 17.0 14.2
0.6 7.8 7.4 7.8 7.1 7.9 7.0
0.8 5.0 4.7 5.1 4.7 5.1 4.6

A0 + δσ 1.0 3.7 3.5 3.8 3.5 3.8 3.5
1.2 3.0 2.9 3.0 2.8 3.0 2.8
1.4 2.6 2.4 2.6 2.4 2.6 2.4
1.6 2.2 2.1 2.2 2.1 2.2 2.1
1.8 2.0 1.9 2.0 1.9 2.0 1.9
2.0 1.8 1.7 1.8 1.7 1.8 1.7

0.025 105.7 147.1 105.7 130.3 105.5 112.6
0.050 39.2 59.5 39.1 45.5 39.3 37.1
0.075 17.1 20.7 17.5 17.5 17.3 16.0
0.100 10.0 10.4 10.0 9.6 10.2 9.4

A1 + δσ 0.125 6.9 6.9 6.9 6.6 7.0 6.5
0.150 5.2 5.2 5.3 5.1 5.3 5.0
0.175 4.3 4.2 4.3 4.1 4.3 4.0
0.200 3.6 3.5 3.6 3.5 3.6 3.4
0.225 3.2 3.0 3.2 3.0 3.2 3.0
0.250 2.8 2.7 2.8 2.7 2.8 2.7
0.2 33.4 46.4 32.2 35.8 32.3 30.5
0.4 11.9 11.1 11.7 10.0 11.6 9.2
0.6 6.6 5.6 6.5 5.2 6.5 5.0
0.8 4.5 3.7 4.5 3.5 4.5 3.5

δσ 1.0 3.5 2.8 3.5 2.7 3.5 2.7
1.2 2.9 2.3 2.9 2.2 2.9 2.2
1.4 2.5 2.0 2.5 1.9 2.5 1.9
1.6 2.2 1.7 2.2 1.7 2.2 1.7
1.8 2.0 1.6 2.0 1.6 2.0 1.6
2.0 1.8 1.5 1.8 1.5 1.9 1.5

IC 0.0 181.7 196.4 182.3 194.1 182.5.0 195.5
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Table 5 ARL comparisons for m = 300
τ −m = 20 τ −m = 90 τ −m = 240

δ EW3 EW2 EW3 EW2 EW3 EW2

0.2 58.2 58.3 58.0 55.1 58.1 52.3
0.4 16.2 14.2 16.2 13.9 16.2 13.8
0.6 7.8 7.0 7.8 6.9 7.8 6.9
0.8 5.0 4.6 5.0 4.5 5.0 4.5

A0 + δσ 1.0 3.7 3.5 3.7 3.4 3.7 3.4
1.2 3.0 2.8 3.0 2.8 3.0 2.8
1.4 2.5 2.4 2.5 2.4 2.5 2.4
1.6 2.2 2.1 2.2 2.1 2.2 2.1
1.8 2.0 1.9 2.0 1.9 2.0 1.9
2.0 1.8 1.7 1.8 1.7 1.8 1.7

0.025 100.5 112.6 100.3 109.2 100.2 105.0
0.050 36.1 37.1 36.0 35.0 36.0 34.0
0.075 16.8 16.0 16.8 15.7 16.8 15.4
0.100 9.9 9.4 9.9 9.3 9.9 9.1

A1 + δσ 0.125 6.9 6.5 6.9 6.4 6.9 6.4
0.150 5.3 5.0 5.3 4.9 5.3 4.9
0.175 4.3 4.0 4.3 4.0 4.3 4.0
0.200 3.6 3.4 3.6 3.4 3.6 3.4
0.225 3.2 3.0 3.2 3.0 3.2 3.0
0.250 2.8 2.7 2.8 2.7 2.8 2.7
0.2 32.2 30.5 31.8 30.2 32.0 30.1
0.4 11.5 9.2 11.6 9.1 11.7 9.0
0.6 6.5 5.0 6.6 5.0 6.6 5.0
0.8 4.5 3.5 4.6 3.5 4.6 3.5

δσ 1.0 3.5 2.7 3.6 2.7 3.6 2.7
1.2 2.9 2.2 2.9 2.2 2.9 2.2
1.4 2.5 1.9 2.5 1.9 2.5 1.9
1.6 2.2 1.7 2.2 1.7 2.2 1.7
1.8 2.0 1.6 2.0 1.6 2.0 1.5
2.0 1.9 1.5 1.9 1.5 1.9 1.4

IC 0.0 189.0 195.5 188.5 196.1 188.6 198.2
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to us the IC ARL’s of the EWMA3 chart are all close to the 200 for different m. In

fact, based on other simulations, we can show that though the overall IC ARL is not

affected severely, the difference of ARL between the case of estimated parameters

and that of known parameters for each chart are rather large. For example, for

m = 80, the ARL’s for the EWMA chart for monitoring the intercept, slope and

standard deviation are 499.4, 495.4 and 952.0 respectively and it may lead to more

serious results for smaller m. Moreover, the false alarm probabilities of the EWMA3

charts increases drastically after short runs when the parameters are estimated. To

attain the similar performance of the known parameters, much more samples are

required, however, in this paper, we don’t discuss them in detail any more but just

give a suggestion that the use of the EWMA3 chart with estimated parameter should

be careful.

5 Conclusions and Considerations

Basing on the recursive residuals, a self-starting control chart was introduced to

detect shifts in intercept, slope and standard deviation for the linear profile. This

chart can be easily designed and perform well in the case of process parameters are

unknown but some historical samples are available. We also gave a useful tool based

on the maximum likelihood ratio to diagnose the position of shift. For the practical

applications, if one want to get the information about which the parameter(s) have

been changed, a useful convenient method is given to aid the proposed chart.

The proposed approach can be easily generalized to the multiple linear regression

profiles. However, it is more difficult to analysis the relative contribution of each

parameter to the shift and we will discuss this setting in the future paper. Based on

the likelihood ratio for self-starting monitoring, another future paper will discuss a

method, which is similar to Hawkins, Qiu and Kang (2003) and Hawkins and Zamba

(2005).
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Appendix

The Markov chain approach for evaluating the IC ARL of our proposed

self-starting chart

Similar to the procedure proposed by Brook and Evans (1972), the formula to

evaluate the IC ARL of the self-starting scheme can be obtained by approximating

the combination of two EWMA charts with a Markov chain.

The transition probability matrix P = (pij→kl ) is partitioned into the following

form

(
R (I−R)1
0 1

)

where the submatrix R is the transition probability matrix for in-control states; I

is the identity matrix, and 1 is a column vector of ones. Let t1 and t2 are given

integers, w1 = 2UCLIS

2t1+1
and w2 = 2UCLσ

2t2−1
. A pair of integers (i, j) is denoted as a state

of the two EWMA charts, where i = −t1, · · · , 0, · · · , t1, j = 0, 1, · · · , t2 − 1, and

(0, 0) denote the initial state of the self-starting chart. The transition probability

that the plot statistics EWMAIS(q) and EWMAσ(q) goes from state (i, j) to state

(k, l) is denoted by Rij→kl, which is calculated by

Rij→k0

= Pr{(EWMAIS(q),EWMAσ(q)) = (k, 0)
∣∣∣(EWMAIS(q− 1),EWMAσ(q− 1)) = (i, j))}

= Pr{(k − i + λi− 0.5)
w1

λ
≤ √

nw̄q < (k − i + λi + 0.5)
w1

λ
,

(n− 1)Swq < (n− 1)[

√
2

n− 1
(−j + λj + 0.5)

w2

λ
+ 1]}

= {Φ[(k − i + λi + 0.5)
w1

λ
]− Φ[(k − i + λi− 0.5)

w1

λ
]} ·

χ2
n−1

(
n− 1)[

√
2

n− 1
(−j + λj + 0.5)

w2

λ
+ 1]

)
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Rij→kl

= Pr{(EWMAIS(q),EWMAσ(q)) = (k, l)
∣∣∣(EWMAIS(q− 1),EWMAσ(q− 1)) = (i, j))}

= Pr{(k − i + λi− 0.5)
w1

λ
≤ √

nw̄q < (k − i + λi + 0.5)
w1

λ
,

(n− 1)[

√
2

n− 1
(l − j + λj − 0.5)

w2

λ
+ 1] ≤ (n− 1)Swq

< (n− 1)[

√
2

n− 1
(l − j + λj + 0.5)

w2

λ
+ 1]}

= {Φ[(k − i + λi + 0.5)
w1

λ
]− Φ[(k − i + λi− 0.5)

w1

λ
]} ·

{χ2
n−1

(
(n− 1)[

√
2

n− 1
(l − j + λj + 0.5)

w2

λ
+ 1]

)
−

χ2
n−1

(
(n− 1)[

√
2

n− 1
(l − j + λj − 0.5)

w2

λ
+ 1]

)
}

where Φ(·) and χ2
n−1(·) are the CDFs of the standard normal distribution and chi-

square distribution with degree of freedom n− 1. Following the procedure of Brook

and Evans (1972), the ARL of the self-starting chart with initial state (0,0) hence

is given by

l0(I−R)−11

where l0 = (0, · · · , 1, · · · , 0) is a row vector with 1 in the (t1 × t2 + 1)th element.

For increasing the accuracy of our method, the following extrapolation is used

ARL(t) = ARL + B/t + C/t2, (12)

where ARL(t) denotes the value of ARL calculated by t1 = t2 = t states and

t = 10, 15, 20 are used for Table 1.

The approximate calculation of the control limits

Let ARLISσ(UCLIS, UCLσ), ARLIS(UCLIS) and ARLσ(UCLσ) denote the ARL

functions evaluated by the Markov chain procedure for the combination of the two

EWMA charts, the EWMAIS and EWMAσ charts, respectively. Given a overall IC

ARL0, the values of UCLIS and UCLσ can be found through solving the following

equations {
ARLISσ(UCLIS, UCLσ) = ARL0

ARLIS(UCLIS) = 0.5ARLσ(UCLσ)
.

The dichotomy method is used to search for the values.

The derivation of the Equation (9)
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Let {(xi, yij), i = 1, 2, · · · , n, j = 1, 2, · · · , k} denote all the historical and col-

lected future samples, ȳkn = 1
kn

k∑
j=1

n∑
i=1

yij, x̄ = 1
n

n∑
i=1

xi, Sxx =
n∑

i=1

(xi − x̄)2 and

Sxy(kn) =
k∑

j=1

n∑
i=1

(xi − x̄)yij. Then, the logarithm of likelihood function is given by

−1

2

k∑
j=1

n∑
i=1

[
log(2πσ2

j ) +
(yij − A0j − A1jxi)

2

2σ2
j

]
.

If the data is collected under in-control conditions, the maximum value of the

logarithm of likelihood function is

l0 = −kn

2
log(2π)− kn

2
log(σ̂2

kn)− kn

2
,

where σ̂2
kn = 1

kn

k∑
j=1

n∑
i=1

(yij − Â0(kn) − Â1(kn)xi)
2, Â1(kn) =

Sxy(kn)

kSxx
, Â0(kn) = ȳkn −

Â1(kn)x̄. Similarly, let ȳk1n = 1
k1n

k1∑
j=1

n∑
i=1

yij, Sxy(k1n) =
k1∑

j=1

n∑
i=1

(xi − x̄)yij, ȳk2n =

1
k2n

k∑
j=k1+1

n∑
i=1

yij, Sxy(k2n) =
k∑

j=k1+1

n∑
i=1

(xi − x̄)yij. When there is a step shift after the

k1th sample, the corresponding maximum value is

l1 = −kn

2
log(2π)− k1n

2
log(σ̂2

k1n)− k2n

2
log(σ̂2

k2n)− kn

2
,

where

σ̂2
k1n =

1

k1n

k1∑
j=1

n∑
i=1

(yij − Â0(k1n) − Â1(k1n)xi)
2, Â1(k1n) =

Sxy(k1n)

k1Sxx

,

σ̂2
k2n =

1

k2n

k∑

j=k1+1

n∑
i=1

(yij − Â0(k2n) − Â1(k2n)xi)
2, Â1(k2n) =

Sxy(k2n)

k2Sxx

,

Â0(k1n) = ȳk1n − Â1(k1n)x̄, Â0(k2n) = ȳk2n − Â1(k2n)x̄.

So, the classical likelihood ratio statistic is defined by

lr(k1n, kn) = −2(l0 − l1) = kn log[σ̂2
kn(σ̂2

k1n)−
k1
k (σ̂2

k2n)−
k2
k ].

The Expression of Ilr, Slr and σlr
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Note that σ̂2
kn =

k1σ̂2
k1n+k2σ̂2

k2n

k
+ k1k2

k2 (ȳk1n− ȳk2n)2 +
k1k2( 1

k1
Sxy(k1n)− 1

k2
Sxy(k2n))

2

k2nSxx
, then

Ilr(k1) = kn log

[
1 +

k1k2(ȳk1n − ȳk2n)2

k(k1σ̂2
k1n + k2σ̂2

k2n)

]
,

σlr(k1) = kn log

[
k1σ̂

2
k1n + k2σ̂

2
k2n

k
(σ̂2

k1n)−
k1
k (σ̂2

k2n)−
k2
k

]
,

Slr(k1) = kn log

[
1 +

(
k1k2(

1
k1

Sxy(k1n) − 1
k2

Sxy(k2n))
2

nSxx[k(k1σ̂2
k1n + k2σ̂2

k2n) + k1k2(ȳk1n − ȳk2n)2]

)]
.
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