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A self-starting control chart based on recursive residuals is proposed for monitoring linear profiles when

the nominal values of the process parameters are unknown. This chart can detect a shift in the intercept,

the slope, or the standard deviation. Because of the good properties of the plot statistics, the proposed

chart can be easily designed to match any desired in-control average run length. Simulated results show that

our approach has good charting performance across a range of possible shifts when the process parameters

are unknown and that it is particularly useful during the start-up stage of a process.
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S
TATISTICAL PROCESS CONTROL (SPC) has been
widely used to monitor various industrial pro-

cesses. Most research on SPC focused on the chart-
ing techniques and it was assumed that the quality
of a process can be represented by the distribution
of a quality characteristic. However, in some situa-
tions, the quality of a process is better characterized
and summarized by a relationship between a response
variable and one or more explanatory variables. In
particular, most studies focused on the simple linear
regression profiles (Woodall et al. (2004)).

In the literature, Phase I and Phase II control
charts need to be distinguished. In Phase II monitor-
ing, the process distribution is assumed to be com-
pletely known. However, the process distribution or
the process parameters are often unknown in prac-

Mr. Zou is a Doctoral Student in the LPMC and School of

Mathematical Sciences. His email is chlzou@yahoo.com.cn.

Mr. Zhou is a Doctoral Student in the LPMC and School of

Mathematical Sciences. His email is chgzhou@yahoo.com.cn.

Dr. Wang is a Professor in the LPMC and School of Math-

ematical Sciences. His email is zjwang@nankai.edu.cn.

Dr. Tsung is an Associate Professor in the Department

of Industrial Engineering and Logistics Management. He is a

Senior Member of ASQ. His email is season@ust.hk.

tice. Before Phase II monitoring, it is necessary to
conduct Phase I analysis to ensure that the process
is statistically in control and to estimate the param-
eters of the process. Mahmoud and Woodall (2004)
studied a Phase I method for monitoring linear pro-
files. Mahmoud et al. (2007) proposed a change-point
method, based on likelihood ratio statistics, to detect
sustained changes in a linear profile data set in Phase
I. They concluded that, to detect both sustained and
randomly occurring unsustained shifts, one could em-
ploy the change-point method in conjunction with
the methods proposed by Mahmoud and Woodall
(2004). On the other hand, Kang and Albin (2000)
proposed two control charts for Phase II monitor-
ing of linear profiles. One is a multivariate T 2 chart
and the other is the combination of the exponen-
tially weighted moving average (EWMA) chart and
the range (R) chart. In Kim et al. (2003), the method
based on a combination of three EWMA charts was
proposed for detecting a shift in the intercept, slope,
and standard deviation simultaneously. Simulations
showed that, in detecting the sustained shifts in the
parameters, the three EWMA charts outperformed
the methods in Kang and Albin (2000) in terms of
average run length (ARL) and their methods also
seemed more interpretable. An extensive discussion
of research problems in monitoring linear profiles can
be found in Woodall et al. (2004).
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All the Phase II methods mentioned above as-
sume that the parameters of the process are known.
However, the process parameters, including the in-
tercept, slope, and standard deviation of the linear
profiles, are usually not exactly known, but estimated
by m in-control (IC) historical samples of subgroup
size n. Some authors have recommended using 20–30
samples with four to five observations each to esti-
mate the process parameters for traditional control
charts (see Montgomery (2005), Ryan (2000)). Que-
senberry (1993) and Jones et al. (2001, 2004), among
others, have investigated the effect of the estimated
parameters on the performance of traditional con-
trol charts. A recent literature review by Jensen et
al. (2006) provided a thorough discussion of the ef-
fects of parameter estimation on control-chart per-
formance. They concluded that, when the number
of reference samples is small, control charts with es-
timated parameters produce a large bias in the IC
ARL and reduce the sensitivity of the chart in de-
tecting process changes as measured by the out-of-
control (OC) ARL. In fact, to attain performance
similar to a chart with known parameters, 20 or 30
samples may be far from enough. For example, for
the traditional EWMA chart with λ = 0.2, 300 sam-
ples of five observations are needed to achieve the
desired level of IC performance (Jones et al. (2001)).
In most cases, however, it may not be feasible to wait
for the accumulation of sufficiently large subgroups
because the users usually want to monitor the process
at the start-up stages. Hence, many authors studied
the design procedures of traditional control charts
with estimated parameters, such as Hillier (1967,
1969), Yang and Hillier (1970), Nedumaran and Pig-
natiello (2001), and Jones (2002). Such a problem
due to estimated parameters would be even more se-
vere for profile monitoring, as the set-up of profile
charting schemes requires many more parameter es-
timates (e.g, the intercept, slope, and standard devi-
ation of a linear profile) than do traditional control
charts.

To overcome the situation when sufficiently large
samples for parameter estimation are unavailable,
self-starting methods have been developed accord-
ingly that update the parameter estimates along with
new observations and simultaneous checks of the OC
conditions (see Hawkins (1987), Hawkins and Olwell
(1998), Quesenberry (1991,1995), and Sullivan and
Jones (2002)). In particular, Hawkins et al. (2003)
and Hawkins and Zamba (2005a, 2005b) proposed a
change-point model based on the likelihood ratio for
on-line monitoring that can also be seen as a self-

starting method. However, no self-starting research
has so far extended to the application of profile mon-
itoring.

In this paper, a self-starting control chart based on
recursive residuals is proposed for monitoring linear
profiles when the process parameters are not known.
This means that it is not necessary to assemble a
large number of reference samples before the control
scheme begins (although it is generally advisable to
collect a few preliminary samples). The combination
of two EWMA charts is used. These charts moni-
tor the regression coefficients and the standard de-
viation. Given the desired overall IC ARL, the con-
trol limits of each chart can be obtained through the
Markov-chain method. We also demonstrate the ef-
fectiveness of our proposed approach by the Monte
Carlo method. In the remainder of this paper, we de-
scribe our work as follows: in the next section, we give
a description and explain the design of our proposed
control chart. Next, a semiconductor-manufacturing
example is used to illustrate our proposed control
chart. Then we assess the performance of the chart.
Finally, we discuss the results and draw conclusions.
Our derivations are presented in the Appendix.

The Self-Starting Chart for
Linear Profiles

In this section, the linear-profile model and the
recursive residuals are described. Also, the proposed
self-starting control chart, its design, and some diag-
nostic aids are discussed.

The Linear Profile Model and Control Charts

Assume the jth random sample collected over
time is (xi, yij). When the process is IC, the rela-
tionship between the response and the explanatory
variables is assumed to be

yij = A0 +A1xi + εij , i = 1, 2, . . . , n, (1)

where εij/σ is an independent identically distributed
(i.i.d.) standard normal random variable and the
value of the explanatory variable X is assumed to be
fixed at n. This is usually the case in many practical
applications. such as in Kang and Albin (2000), Kim
et al. (2003), and Mahmoud and Woodall (2004).

When the parameters, A0, A1, and σ2, are un-
known, a widely used method is to estimate them by
historical data. Suppose that there are, in total,m−1
(m ≥ 2) IC historical samples of size n {(xi, yij),
i = 1, 2, . . . , n, j = 1, 2, . . . ,m − 1}. The most often
used unbiased estimators for A0, A1, and σ2 are the
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average of them−1 least-square estimators, a0j , a1j ,
and MSEj , which are given by

a0j = ȳj − a1j x̄,

a1j =
Sxy(j)

Sxx
,

MSEj =
1

n− 2

n∑

i=1

(yij − a1jxi − a0j)2,

where ȳj = (1/n)
∑n

i=1 yij , x̄ = (1/n)
∑n

i=1 xi,
Sxx =

∑n
i=1(xi − x̄)2, and Sxy(j) =

∑n
i=1(xi − x̄)yij .

After we determine the estimations, the parame-
ters are assumed to be known and the monitoring
could be started. Kim et al. (2003) used the coded
explanatory values and obtained the following alter-
native form of the underlying model:

yij = B0 +B1x
∗
i + εij , i = 1, 2, . . . , n,

where B0 = A0 + A1x̄, B1 = A1, x∗i = (xi − x̄)
and x̄ = (1/n)

∑n
i=1 xi. For the jth sample, the least

square estimators for B0, B1, and σ2 are

b0j = ȳj ,

b1j =
Sxy(j)

Sxx
,

MSEj =
1

n− 2

n∑

i=1

(yij − b1jx
∗
i − b0j)2.

Note that these three estimators are independent.
Thus, Kim et al. (2003) proposed using three EWMA
charts (EWMAI ,EWMAS ,EWMAE) to detect if the
Y -intercept (B0), the slope (B1), and the standard
deviation (σ) had changed, respectively. They are

EWMAI(j)
= θb0j + (1 − θ)EWMAI(j − 1)

EWMAS(j)
= θb1j + (1 − θ)EWMAS(j − 1)

EWMAE(j)

= max
{
θ ln(MSEj) + (1 − θ)EWMAE(j − 1),

ln(σ2)
}
,

where θ is a smoothing constant, EWMAI(0) = B0,
EWMAS(0) = B1, and EWMAE(0) = ln(σ2). The
three EWMA charts (denoted as the KMW charts
hereafter) are used jointly. They signal an out-of-
control condition as one of the charts triggers.

As more IC samples are obtained, one may wish to
update the estimations and start monitoring again.
However, the statistical properties of this procedure,

such as the IC ARL, cannot be obtained easily, so
that the design of this procedure seems difficult. An
alternative method to deal with the unknown param-
eters is to use a self-starting control chart, which has
flexibility in updating the parameter estimates with
new samples and in simultaneously checking for the
OC conditions.

The Proposed Self-Starting Chart and Its
Design

The proposed self-starting chart is based on recur-
sive residuals that were first applied to a regression
model by Brown et al. (1975). First, we pool all of the
m−1 IC historical and futurem,m+1, . . . samples of
size n into one sample, i.e., {(xi, yij), i = 1, 2, . . . , n,
j = 1, 2, . . . ,m − 1,m,m + 1, . . .}. For convenience,
let y(j−1)n+i = yij , i = 1, 2, . . . , n, j = 1, 2, . . .. We
can then define the standardized recursive residuals
for the future samples as

eij = (y(j−1)n+i − z′iβ(j−1)n+i−1)
÷ [S(j−1)n+i−1

× (1 + z′i(X
′
(j−1)n+i−1X(j−1)n+i−1)−1zi)]1/2,

i = 1, 2, . . . , n, j = m,m+ 1, . . . , (3)

where

z′i = (1, xi),
y′

(j−1)n+i−1 = (y1, y2, . . . , y(j−1)n+i−1),

X′
(j−1)n+i−1 = (

(j−1)×n
︷ ︸︸ ︷
z1, z2, . . . , zn, z1, z2, . . . , zn, . . .,

z1, z2, . . . , zi−1),
βt = (X′

tXt)−1X′
tyt

St =
1
t− 2

(yt − Xtβt)′(yt − Xtβt).

Under the IC model (1), it is known that eij has a
Student-t distribution with (j−1)n+ i−3 degrees of
freedom (see Brown et al. (1975) and Hawkins and
Olwell (1998)). Using a lemma from Basu (Lehmann
(1991)), we can show that the eij ’s are statistically
independent. Thus, through a transformation, we ob-
tain the following statistic:

wij = Φ−1
[
T(j−1)n+i−3

(
eij

)]
, (4)

which is called the Q-statistic by Quesenberry (1991)
(see also Hawkins (1987) and Hawkins and Olwell
(1998)), where Φ−1 denotes the inverse of the cu-
mulative distribution function (CDF) of the stan-
dard normal random variable, Tν is the CDF of the
Student-t distribution with ν degrees of freedom.
Therefore, {wij , i = 1, 2, . . . , n, j = m,m + 1, . . .} is
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a sequence of independent standard normal random
variables.

When an assignable cause occurs after some sub-
groups, say τ subgroups, the distribution of Q-
statistics {wij , i = 1, 2, . . . , n, j = τ + 1, k + 2, . . .}
is different from that of {wij , i = 1, 2, . . . , n, j =
1, . . . , τ}. The difference between them will be used
in our method to detect the assignable cause.

For the transformed residuals {wij , i = 1, 2, . . . , n,
j = m,m + 1, . . .}, let w̄j = (1/n)

∑n
i=1 wij and

Swj = [1/(n− 1)]
∑n

i=1 (wij − w̄j)2 denote, respec-
tively, the sample mean and the variance of their jth
subgroup. Define two EWMA statistics, EWMAIS

and EWMAσ, as follows:

EWMAIS(j)
= λ

√
nw̄j + (1 − λ)EWMAIS(j − 1), (5)

EWMAσ(j)

= max
(

0, λ

√
n− 1

2
(Swj

− 1)

+ (1 − λ)EWMAσ(j − 1)
)

, (6)

where j = m,m + 1, . . ., EWMAIS(m − 1) =
EWMAσ(m−1) = 0, and λ (0 < λ ≤ 1) is a smooth-
ing constant. Our proposed self-starting scheme (de-
noted as the SS chart hereafter) is defined to be
the combination of the above two EWMA charts,
i.e., an out-of-control signal is triggered as soon as
EWMAIS(j) < LCLIS or EWMAIS(j) > UCLIS

and/or EWMAσ(j) > UCLσ, where UCLIS, LCLIS,
and UCLσ are chosen to obtain the given specified IC
ARL. Note that Hawkins (1991) also applied recur-
sive residuals by using the cumulative sum in a fixed
sample for assessing the leverage, mean compatibil-
ity, and influence of all excluded cases. There are two
major differences between our proposed scheme and
Hawkins’ scheme (1991): First, our considered type
of data set is a rational subgroup of size n, while the
individual observations are investigated by Hawkins
(1991). Another difference is Hawkins (1991) mainly
focuses on the use of recursive residuals as a diagnos-
tic of the regression, but this is not our concern in
on-line SPC monitoring.

Note that the EWMAσ chart in Equation (6) is
a one-sided scheme that is used to detect the in-
crease in process variance only. If one also wants to
detect a decrease in variance, some other appropriate
methods may be used, such as the method discussed
by Acosta-Mejia et al. (1999). Crowder and Hamil-
ton (1992) considered monitoring the logarithm of

the variance instead of the natural unit of the vari-
ance. However, our simulation study indicates that
the chart directly using the variance performs slightly
better that the logarithm-scale chart.

The smoothing constants, λ, in Equations (5) and
(6) are set equal to 0.2, as in the EWMA chart used
by Kang and Albin (2000) and Kim et al. (2003).
We can certainly use different smoothing constants
for each chart and, in general, smaller smoothing con-
stants lead to quicker detection of smaller shifts, as
shown by Lucas and Saccucci (1990).

From the definition, we know the EWMAIS chart
is used to monitor the change in the slope and in-
tercept, while EWMAσ is effective in monitoring the
shift in the standard deviation of the process. Un-
der the IC condition, because wij ∼ N(0, 1), the
statistics

√
nw̄j and

√
(n− 1)/2(Swj

− 1) are inde-
pendently distributed as a standard normal and a
scaled χ2 distribution, respectively. Hence, for each
chart, the IC ARL properties can be easily obtained
through a classical Markov-chain procedure (Brook
and Evans (1972)). However, as these two charts
are not irrelevant, the two-dimensional Markov-chain
method is used to evaluate the IC ARL of our pro-
posed chart (see the Appendix).

Here, we assume that these three parameters are
equally important. Hence, the ratio of the EWMAσ

chart’s IC ARL to that of the EWMAIS chart is des-
ignated to be 2. For some given IC ARL and sample
size n = 3, 4, . . . , 10 and 15, 20, the control limits
for each chart are tabulated in Table 1 (note that
LCLIS = −UCLIS). Other ratios can also be speci-
fied so that the charts can be more sensitive to cer-
tain parameters under the same overall false-alarm
rate. A Fortran program that easily finds the con-
trol limits for each chart given a desired overall IC
ARL, a smoothing constant, λ, and a proper ratio,
is available from the authors.

The Diagnostic Aids and Implementation

In the practice of quality control, it is important
to detect a process change quickly and it is also crit-
ical to diagnose the change and to identify which pa-
rameter or parameters have shifted after a signal oc-
curs. Such a diagnostic aid is particularly important
in profile monitoring, where there are more process
parameters involved. The diagnostic aids to locate
the change point in the process and to isolate the
type of parameter change in a profile will help an en-
gineer to identify and eliminate the root cause of a
problem quickly and easily.
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TABLE 1. The Control Limits of the Self-Starting Chart

IC ARL 200 300 370 400 500

n = 3

UCLIS 0.9250 0.9741 0.9982 1.0066 1.0320
UCLσ 1.3596 1.4577 1.5064 1.5243 1.5769

n = 4

UCLIS 0.9276 0.9746 0.9978 1.0062 1.0302
UCLσ 1.2959 1.3794 1.4214 1.4369 1.4812

n = 5

UCLIS 0.9271 0.9748 0.9985 1.0071 1.0313
UCLσ 1.2530 1.3318 1.3717 1.3864 1.4280

n = 6

UCLIS 0.9268 0.9745 0.9986 1.0066 1.0311
UCLσ 1.2235 1.2983 1.3372 1.3501 1.3895

n = 7

UCLIS 0.9270 0.9746 0.9985 1.0067 1.0310
UCLσ 1.2021 1.2739 1.3107 1.3235 1.3615

n = 8

UCLIS 0.9271 0.9746 0.9983 1.0067 1.0310
UCLσ 1.1856 1.2549 1.2902 1.3029 1.3397

n = 9

UCLIS 0.9271 0.9745 0.9982 1.0070 1.0311
UCLσ 1.1720 1.2396 1.2739 1.2868 1.3233

n = 10

UCLIS 0.9270 0.9745 0.9982 1.0070 1.0311
UCLσ 1.1607 1.2269 1.2605 1.2731 1.3078

n = 11

UCLIS 0.9270 0.9748 0.9982 1.0067 1.0310
UCLσ 1.1236 1.1860 1.2168 1.2284 1.2601

n = 12

UCLIS 0.9268 0.9747 0.9982 1.0072 1.0313
UCLσ 1.1035 1.1621 1.1918 1.2032 1.2340

A method based on the maximum likelihood es-
timator of the change point is proposed to assist in
the diagnosis of our self-starting chart. We assume
that the chart signals at subgroup k, i.e., there are
m − 1 historical IC samples and k − m + 1 future
samples, and a shift in parameters occurred after the
τth sample (m− 1 ≤ τ < k). The classical likelihood
ratio statistic is given by

lr(k1n, kn) = kn log[σ̂2
kn(σ̂2

k1n)−k1/k(σ̂2
k2n)−k2/k].

(7)
The expressions of σ̂2

kn, σ̂2
k1n σ̂

2
k2n and the derivations

are given in the Appendix. Our proposed estimator
of the change point, τ , of a step shift in parameter(s)
of the linear profile is given by

τ̂ = arg max
m−1≤k1<k

{lr(k1n, kn)}. (8)

Note that this is consistent with that in Pignatiello
and Samuel (2001).

In addition, as Kim et al. (2003) pointed out, it is
also necessary to justify which parameter or parame-
ters have shifted after a signal occurs. Because their
proposed chart is the combination of three EWMA
charts and each chart detects the corresponding pa-
rameter, the diagnosis of any process change is easier
than that of omnibus methods of Kang and Albin
(2000). At first glance, our proposed method based
on recursive residuals may seem an omnibus method
and it might seem difficult to diagnose which pa-
rameter has shifted. In Mahmoud et al. (2007), a
method of decomposing the likelihood ratio statistic
into three parts was introduced to enhance the abil-
ity of their change-point approach in detecting where
the shift occurred. As Reynolds and Stoumbos (2005)
pointed out, the control charts used as diagnostic
aids do not necessarily have to be the same control
charts used to determine when to signal. After the SS
chart signals, some other simple diagnostic aids may
be used as auxiliary tools to determine which of the
parameters has changed. For example, Hawkins and
Zamba (2005b) suggested two conventional paramet-
ric tests, a two-sided F -test for detecting the changes
in variance and an approximate t-test for detecting
the changes in mean. Likewise, in this paper, assume
that the SS chart signaled at the kth sample. After
obtaining the change-point estimator, τ̂ , using (8),
we may consider the parameter test method as fol-
lows:
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• The t-test for a Y -intercept change using degrees
of freedom (kn− 4) and test statistic

tB0 =

√
(k−τ̂)τ̂n

k (B̂(1)
0 − B̂(2)

0 )
√

{(τ̂n−2)σ̂2
(1)+[(k−τ̂)n−2]σ̂2

(2)}
(kn−4)

.

• The t-test for a slope change using degrees of free-
dom (kn− 4) and test statistic

tB1 =

√
(k−τ̂)τ̂Sxx

k (B̂(1)
1 − B̂(2)

1 )
√

{(τ̂n−2)σ̂2
(1)+[(k−τ̂)n−2]σ̂2

(2)}
(kn−4)

.

• The F -test for a standard deviation change using
degrees of freedom τ̂n − 2 and (k − τ̂)n − 2. The
test statistic is Fσ = σ̂2

(1)/σ̂
2
(2),

where

B̂
(1)
0 =

1
τ̂n

τ̂∑

j=1

n∑

i=1

yij

B̂
(2)
0 =

1
(k − τ̂)n

k∑

j=τ̂+1

n∑

i=1

yij

B̂
(1)
1 =

1
τ̂Sxx

τ̂∑

j=1

n∑

i=1

x∗i yij

B̂
(2)
1 =

1
(k − τ̂)Sxx

k∑

j=τ̂+1

n∑

i=1

x∗i yij

σ̂2
(1) =

1
τ̂n− 2

τ̂∑

j=1

n∑

i=1

(yij − B̂(1)
0 − B̂(1)

1 x∗i )
2

σ̂2
(2) =

1
(k − τ̂)n− 2

×
k∑

j=τ̂+1

n∑

i=1

(yij − B̂(2)
0 − B̂(2)

1 x∗i )
2.

Moreover, it seems that our proposed method re-
quires a lot of computations, such as the inverse ma-
trix in Equation (3). In fact, the calculations of the
eij ’s can be considerably simplified by the following
recursive formulas:

(X′
tXt)−1 = (X′

t−1Xt−1)−1

−
(X′

t−1Xt−1)−1ziz′i(X
′
t−1Xt−1)−1

1 + z′i(X
′
t−1Xt−1)−1zi

,

(9)
βt = βt−1 + (X′

tXt)−1zi(yt − z′iβt−1), (10)
(t− 2)St = (t− 3)St−1 + (eij)2, (11)

where t = (j − 1)n+ i.

An Illustrative Example

In this section, we adopt a semiconductor man-
ufacturing example described by Kang and Albin
(2000). In the example, a semiconductor wafer is
put into a chamber and exposed to gases that etch
away the photoresist and generate a specified pat-
tern for the chips, where the etching quality mainly
depends on the mass flow controller (MFC) perfor-
mance. To monitor MFC, we have y, which is the
measured pressure in the chamber, and x, which is
the set point for MFC flow, where their functional
relationship is known to be linear. For more back-
ground about this example, please refer to Kang and
Albin (2000), Sheriff (1995), and references therein.
Here, we demonstrate how to implement our pro-
posed self-starting control chart to monitor and di-
agnose such a process.

In this example, according to Kang and Albin
(2000), the underlying in-control linear profile model
is yij = 3 + 2xi + εij , where the εijs are i.i.d. normal
random variables with zero mean and unit variance.
The explanatory variable takes the values of 2, 4, 6, 8.
Obviously, x̄ = 5, Sxx = 20. There are five IC his-
torical samples of size n = 4, which are given in the
first five rows in Table 2. Suppose that the intercept,
A0, has shifted from 3.0 to 3.8 after the 15th future
sample. For given overall IC ARL = 200, the con-
trol limits of EWMAIS and EWMAσ charts are, re-
spectively, 0.9276 and 1.2959. The statistics w̄j , Swj ,
EWMAIS, and EWMAσ for j = 6, 7, . . . , 28 are tab-
ulated in Table 2. Figure 1 and Figure 2 give the
charts of EWMAIS and EWMAσ, respectively, along
with the corresponding control limits.

We can see that the EWMAIS chart signals a shift
at the 28th sample (i.e., j = 28). Then, by looking
at the values of lr(jn, 28n) for j = 5, 6, . . . , 27, tabu-
lated in the last column of Table 2, we can find that
its maximum occurs at j = 20 with lr(20n, 28n) =
14.87. This maximum indicates precisely the change-
point location, τ , of the shift. Moreover, by comput-
ing the test statistics, tB0 , tB1 , and Fσ, we obtain
tB0 = −3.42, tB1 = −1.22, and Fσ = 0.64. Consider-
ing a significant level, α = 0.05, it follows that tB0 <
t(0.025; 28n−4) = −1.98, |tB1 | < |t(0.025; 28n−4)| =
1.98, and Fσ < F (0.95; 20n−2; 8n−2) = 1.71, where
t(0.025; 28n− 4) and F (0.95; 20n− 2; 8n− 2) are the
lower percentiles of the Student-t distribution with
(28n−4) degrees of freedom and of the F -distribution
with (20n−2) and (8n−4) degrees of freedom. Hence,
our diagnosis concludes that there is a shift in the in-
tercept after sample 20, which is a correct finding.
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TABLE 2. Data for Example with a Shift in the Intercept after 20th Sample

j yij w̄j Swj
EWMAIS EWMAσ lr(jn, kn)

1 7.29 10.46 13.14 20.88
2 7.65 10.39 15.89 20.19
3 7.37 11.88 14.54 20.33
4 7.39 13.34 13.92 18.92
5 5.64 11.06 15.47 19.33 1.39
6 6.63 11.51 15.66 18.42 −0.18 0.43 −0.07 0.00 2.56
7 8.16 12.12 16.27 19.83 0.79 0.10 0.26 0.00 1.85
8 5.90 11.21 16.45 18.71 −0.26 1.04 0.10 0.01 2.70
9 6.49 12.56 15.78 20.42 0.49 0.69 0.28 0.00 3.03

10 8.69 11.87 17.46 18.92 0.83 1.45 0.56 0.11 1.37
11 6.05 12.61 14.09 18.44 −0.61 1.51 0.20 0.21 1.20
12 7.88 10.02 16.02 18.39 −0.30 1.05 0.04 0.18 1.79
13 9.27 12.31 14.34 17.91 0.08 2.39 0.06 0.49 2.61
14 7.91 10.68 16.15 18.46 −0.07 0.62 0.02 0.30 3.95
15 7.43 11.62 14.82 20.34 0.18 0.40 0.09 0.09 4.34
16 6.53 10.08 15.92 19.04 −0.47 0.62 −0.11 0.00 5.24
17 6.77 11.76 13.86 18.48 −0.61 0.61 −0.34 0.00 7.98
18 5.66 10.98 15.00 20.18 −0.34 1.05 −0.40 0.01 8.59
19 7.39 10.13 15.94 19.00 −0.18 0.59 −0.39 0.00 11.00
20 5.96 11.75 14.81 18.64 −0.49 0.55 −0.51 0.00 14.87
21 4.41 12.28 17.02 20.02 0.29 1.82 −0.29 0.20 14.07
22 8.85 10.99 19.13 21.25 1.32 1.20 0.29 0.21 8.04
23 7.47 10.62 17.28 21.33 0.68 0.64 0.51 0.08 6.95
24 8.46 8.92 13.08 21.56 −0.09 2.26 0.37 0.37 7.84
25 4.24 12.00 16.58 19.53 −0.03 1.31 0.28 0.37 11.45
26 6.54 12.39 17.33 20.32 0.63 0.42 0.48 0.16 12.64
27 10.23 13.70 15.63 18.29 0.80 1.71 0.70 0.30 8.16
28 10.33 13.67 14.58 23.51 1.40 1.69 1.12 0.41

UCLσ = 1.2959
UCLIS = 0.9276

Performance Comparisons

In this section, we assess the performance of our
proposed self-staring control chart through compar-
isons with other methods in terms of ARL. For the
known parameters, Kim et al. (2003) showed that
the KMW charts outperform the methods in Kang
and Albin (2000) in terms of detecting the sustained
shifts in the parameters. Therefore, we compare our
proposed self-starting method with KMW only. How-
ever, there is in fact no standard alternative because
other methods rely on the availability of the values
of the IC parameters. Hence, we assess the OC ARL
performance of the proposed self-starting chart for
different numbers of τ of IC samples (including his-

torical samples and future monitored IC samples) be-
fore a shift occurs.

For simplicity, we only consider the case of over-
all IC ARL = 200. The underlying IC model is the
same as that in Kang and Albin (2000): that the
parameters in the in-control model are A0 = 3,
A1 = 2, and σ2 = 1, xi = 2, 4, 6, 8. In Kim et
al. (2003), the control limits are set to be 3.0156,
3.0109, and 1.3723 for the three EWMA charts,
EWMAI ,EWMAS ,EWMAE , respectively, when the
smoothing constant, λ, is chosen to be 0.2. In the case
of known parameters, this design has an overall IC
ARL of roughly 200 and the IC ARL of each chart
is about 584. Although the IC ARL of our proposed
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FIGURE 1. The Self-Starting EWMAIS Chart for the

MFC Example.

self-starting chart can be evaluated by the Markov-
chain procedure, the OC ARL is rather difficult to
calculate by the Markov chain-method due to the
intricacy of OC distribution. Therefore, the results in
this section are evaluated by 10,000 simulation runs.
Moreover, the types of shifts considered in this paper
are the same as those in Kim et al. (2003), although
some other scales, instead of the scale σ, can be used
to measure the size of shifts in all parameters. The
OC ARLs of the SS chart with τ = 20, 50, 100, 300,
and 500 and the ARLs of KMW charts with the true
values of parameters are tabulated in Table 3.

Table 3 shows that the proposed SS chart performs
almost equally well for all values of τ when detecting
a large shift. Naturally, the OC ARL will be affected
by the number of reference samples gathered before
a shift actually occurs. Yet the benefit is much more
obvious in the case of detecting a small or moderate
shift than in detecting a large shift. Because the SS
chart updates the parameter estimations with new
samples, the more IC future samples one collects,
the more sensitive the EWMA chart is to a small or
moderate shifts.

We also found that, when τ = 500, for the de-
tection of the shift in slope A1, the SS chart has
almost the same performance as the KMW charts
with known parameters, while for shifts in the inter-
cept or standard deviation, our approach performs
nearly uniformly better than the KMW charts.

FIGURE 2. The Self-Starting EWMAσ Chart for the MFC

Example.

Table 4 shows a comparison between an SS chart
with m = 500 IC historical samples and the KMW
charts with known parameters when there is a step
shift in the parameter B1 of model (2). We observed
that the KMW charts have better ARL performance
than the SS chart for a small δ. The two methods per-
form similarly for the moderate-to-large shift sizes.
The KMW charts are, in general, more effective than
our approach in this case.

Conclusions and Considerations

Based on the recursive residuals, we proposed a
self-starting control chart to detect shifts in the in-
tercept, slope, and standard deviation for the linear
profile. This chart can be easily designed, and it per-
forms well in the case when process parameters are
unknown but some historical samples are available.
We also gave a useful tool based on the maximum
likelihood ratio to diagnose the position of shift. In
practical applications, if one wants to get information
about which parameter(s) has (have) been changed,
three parameter tests can then be applied to aid the
proposed chart.

In this paper, we only consider detecting increases
in the error variance to be consistent with Kim et al.
(2003) and Kang and Albin (2000), so that our re-
sults are comparable with theirs under the same cri-
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TABLE 3. Out-of-Control ARLs of SS Chart with Different Values of τ and KMW Chart with True Parameters

SS

δ τ = 20 τ = 50 τ = 100 τ = 300 τ = 500 KMW

A0 + δσ 0.2 161.2 125.4 94.8 59.9 53.8 59.1
0.4 80.2 30.0 18.2 14.6 14.1 16.2
0.6 22.6 8.7 7.7 7.1 7.1 7.9
0.8 7.1 5.1 4.9 4.7 4.6 5.1
1.0 4.3 3.7 3.6 3.5 3.5 3.8
1.2 3.2 3.0 2.9 2.8 2.8 3.1
1.4 2.7 2.5 2.5 2.4 2.4 2.6
1.6 2.3 2.2 2.2 2.1 2.1 2.3
1.8 2.1 2.0 2.0 1.9 1.9 2.1
2.0 1.9 1.8 1.8 1.8 1.8 1.9

A1 + δσ 0.025 181.7 166.9 152.3 117.3 108.3 101.6
0.05 144.9 95.4 62.6 38.7 34.5 36.5
0.075 92.4 37.3 22.0 16.6 15.8 17.0
0.1 46.6 14.5 10.7 9.6 9.4 10.3
0.125 19.7 7.9 7.1 6.7 6.6 7.2
0.15 9.0 5.6 5.3 5.1 5.1 5.5
0.175 5.8 4.5 4.3 4.1 4.1 4.5
0.2 4.3 3.7 3.6 3.5 3.5 3.8
0.225 3.6 3.2 3.1 3.0 3.0 3.3
0.25 3.1 2.8 2.8 2.7 2.7 2.9

δσ 1.2 116.5 73.3 49.0 33.0 31.2 33.5
1.4 49.0 18.5 12.1 10.3 9.9 12.7
1.6 18.1 7.1 6.1 5.6 5.5 7.2
1.8 7.4 4.4 4.0 3.8 3.8 5.1
2.0 4.3 3.3 3.0 2.9 2.9 3.9
2.2 3.1 2.6 2.5 2.4 2.4 3.2
2.4 2.5 2.2 2.1 2.1 2.1 2.8
2.6 2.2 1.9 1.9 1.8 1.8 2.5
2.8 1.9 1.7 1.7 1.7 1.6 2.3
3.0 1.7 1.6 1.6 1.5 1.5 2.1

TABLE 4. ARL Comparisons for B1 to B1 + δσ in model (2) (IC ARL = 200)

δ

Chart 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

KMW chart 13.1 6.6 4.4 3.3 2.7 2.3 2.1 1.9 1.7
SS chart 111.5 33.3 10.8 5.6 3.6 2.7 2.0 1.6 1.4
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teria. Usually a decrease in the variance would cor-
respond to an improvement in the measurement pro-
cess as long as the other parameters do not change.
Thus, in some applications, detecting decreases in
standard deviation is also desired. For such a case,
we may need to combine another one-sided EWMA
chart to detect such a shift.

After the values of statistics w̄j and Swj are
computed, instead of using the combination of two
EWMA charts, we can actually chart these two
statistics in any other convenient way, such as with
Shewhart or CUSUM charts, if one prefers. However,
for charting the statistic w̄j , the CUSUM scheme re-
quires two one-sided charts so that the design and
implementation will be more complicated than when
using the EWMA chart.

Moreover, the proposed approach can be eas-
ily generalized to multiple linear-regression profiles.
However, it could be difficult to analyze the relative
contribution of each parameter to the shift, which
warrants future research.
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Appendix

The Markov Chain Approach for Evaluating
the IC ARL of the SS Chart

Similar to the procedure proposed by Brook and
Evans (1972), the formula to evaluate the IC ARL of
the self-starting scheme can be obtained by approx-
imating the combination of two EWMA charts with
a Markov chain.

The transition probability matrix, P = (pij→kl),
is partitioned into the following form:

(
R (I − R)1
0 1

)

where the submatrix, R, is the transition-probability
matrix for in-control states; I is the identity ma-
trix, and 1 is a column vector of ones. Let t1 and

t2 be given integers, w1 = 2UCLIS/(2t1 + 1) and
w2 = 2UCLσ/(2t2 − 1). A pair of integers (i, j) is
denoted as a state of the two EWMA charts, where
i = −t1, . . . , 0, . . . , t1, j = 0, 1, . . . , t2 − 1, and (0, 0)
denotes the initial state of the self-starting chart.
The transition probability that the plot statistics of
EWMAIS(q) and EWMAσ(q) go from state (i, j) to
state (k, l) is denoted by Rij→kl, which is calculated
by

Rij→k0

= Pr{(EWMAIS(q),EWMAσ(q)) = (k, 0) |
(EWMAIS(q − 1),EWMAσ(q − 1))

= (i, j))}

= Pr
{

(k − i+ λi− 0.5)
w1

λ
≤

√
nw̄q

< (k − i+ λi+ 0.5)
w1

λ
,

(n− 1)Swq
< (n− 1)

·
[√

2
n− 1

(−j + λj + 0.5)
w2

λ
+ 1

]}

=
{

Φ
[

(k − i+ λi+ 0.5)
w1

λ

]

− Φ
[

(k − i+ λi− 0.5)
w1

λ

]}

· χ2
n−1

(

(n− 1)

·
[√

2
n− 1

(−j + λj + 0.5)
w2

λ
+ 1

])

Rij→kl

= Pr{(EWMAIS(q),EWMAσ(q)) = (k, l) |
(EWMAIS(q − 1),EWMAσ(q − 1))

= (i, j))}

= Pr
{

(k − i+ λi− 0.5)
w1

λ
≤

√
nw̄q

< (k − i+ λi+ 0.5)
w1

λ
,

(n− 1)
[√

2
n− 1

(l − j + λj − 0.5)
w2

λ
+ 1

]

≤ (n− 1)Swq
< (n− 1)

·
[√

2
n− 1

(l − j + λj + 0.5)
w2

λ

+ 1
]}

=
{

Φ
[

(k − i+ λi+ 0.5)
w1

λ

]
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− Φ
[

(k − i+ λi− 0.5)
w1

λ

]}

·
{

χ2
n−1

(

(n− 1)

·
[√

2
n− 1

(l − j + λj + 0.5)
w2

λ

+ 1
])

− χ2
n−1

(

(n− 1)

·
[√

2
n− 1

(l − j + λj − 0.5)
w2

λ

+ 1
])}

,

where Φ(·) and χ2
n−1(·) are the CDFs of the stan-

dard normal distribution and the chi-square distri-
bution with n− 1 degrees of freedom. Following the
procedure of Brook and Evans (1972), the ARL of
the self-starting chart with initial state (0, 0) hence
is given by

l0(I − R)−11,

where l0 = (0, . . . ,1, . . . ,0) is a row vector with 1 in
the (t1 × t2 + 1)th element. To increase the accuracy
of our method, the following extrapolation is used:

ARL(t) = ARL +B/t+ C/t2, (12)

where ARL(t) denotes the value of ARL calculated
by t1 = t2 = t states and t = 10, 15, 20 are used for
Table 1.

The Approximate Calculation of the Control
Limits

Let ARLISσ(UCLIS,UCLσ), ARLIS(UCLIS), and
ARLσ(UCLσ) denote the ARL functions evaluated
by the Markov-chain procedure for the combina-
tion of the two EWMA charts, the EWMAIS, and
EWMAσ charts, respectively. Given an overall IC
ARL0, the values of UCLIS and UCLσ can be found
by solving the following equations:

{
ARLISσ(UCLIS,UCLσ) = ARL0

ARLIS(UCLIS) = 0.5ARLσ(UCLσ).

The dichotomy method is used to search for the val-
ues.

The Derivation of Equation (7)

Let {(xi, yij), i = 1, 2, . . . , n, j = 1, 2, . . . , k} de-
note all the historical and collected future samples,
ȳkn = (1/kn)

∑k
j=1

∑n
i=1 yij , x̄ = (1/n)

∑n
i=1 xi,

Sxx =
∑n

i=1(xi−x̄)2, and Sxy(kn) =
∑k

j=1

∑n
i=1(xi−

x̄)yij . Then, the logarithm of the likelihood function
is given by

−1
2

k∑

j=1

n∑

i=1

[

log(2πσ2
j ) +

(yij −A0j −A1jxi)2

σ2
j

]

.

If the data are collected under in-control condi-
tions, the maximum value of the logarithm of likeli-
hood function is

l0 = −kn
2

log(2π) − kn
2

log(σ̂2
kn) − kn

2
,

where

σ̂2
kn =

1
kn

k∑

j=1

n∑

i=1

(yij − Â0(kn) − Â1(kn)xi)2,

with

Â1(kn) =
Sxy(kn)

kSxx
, Â0(kn) = ȳkn − Â1(kn)x̄.

Similarly, let

ȳk1n =
1
k1n

k1∑

j=1

n∑

i=1

yij ,

Sxy(k1n) =
k1∑

j=1

n∑

i=1

(xi − x̄)yij ,

ȳk2n =
1
k2n

k∑

j=k1+1

n∑

i=1

yij ,

Sxy(k2n) =
k∑

j=k1+1

n∑

i=1

(xi − x̄)yij .

When there is a step shift after the k1th sample, the
corresponding maximum value is

l1 = −kn
2

log(2π) − k1n
2

log(σ̂2
k1n)

− k2n
2

log(σ̂2
k2n) − kn

2
,

where

σ̂2
k1n =

1
k1n

k1∑

j=1

n∑

i=1

(yij − Â0(k1n) − Â1(k1n)xi)2,

Â1(k1n) =
Sxy(k1n)

k1Sxx
,

σ̂2
k2n =

1
k2n

k∑

j=k1+1

n∑

i=1

(yij − Â0(k2n) − Â1(k2n)xi)2,

Â1(k2n) =
Sxy(k2n)

k2Sxx
,

Â0(k1n) = ȳk1n − Â1(k1n)x̄,
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Â0(k2n) = ȳk2n − Â1(k2n)x̄.

Thus, the classical likelihood ratio statistic is defined
by

lr(k1n, kn) = −2(l0 − l1)
= kn log[σ̂2

kn(σ̂2
k1n)−k1/k(σ̂2

k2n)−k2/k].
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