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A control chart based on the change-point model is proposed that is able to monitor linear profiles whose parameters are unknown
but can be estimated from historical data. This chart can detect a shift in either the intercept, slope or standard deviation. Simulation
results show that the proposed approach performs well across a range of possible shifts, and that it can be used during the start-
up stages of a process. Simple diagnostic aids are also given to estimate the location of the change and to determine which of the
parameters has changed.

1. Introduction

Statistical Process Control (SPC) is widely used to moni-
tor industrial processes. Most of the academic research on
SPC is focused on charting techniques. In most SPC ap-
plications, it is assumed that the quality of a process can
be adequately represented by the distribution of a quality
characteristic. However, in some situations, the quality of
a process is better characterized and summarized by a re-
lationship between the response variable and one or more
explanatory variables. Studies focusing on simple linear-
regression profiles have received particular attention. In re-
cent years, various methods to monitor linear profiles have
been proposed in the literature. Kang and Albin (2000) pro-
posed two control charts for the phase II monitoring of
linear profiles. One of them is a multivariate T2 chart and
the other is a combination of an Exponentially Weighted
Moving Average (EWMA) chart and a range (R) chart. In
Kim et al. (2003), a method based on the combination of
three EWMA charts was proposed to detect shifts in either
the intercept, the slope, or standard deviation.

Simulation studies showed that the three EWMA charts
performed better in detecting sustained shifts in the pa-
rameters than the methods in Kang and Albin (2000) in
terms of the Average Run Length (ARL). Moreover, they
appear to be much simpler to interpret. Mahmoud and
Woodall (2004) studied a phase I method for monitoring
linear profiles. Mahmoud et al. (2005) proposed a change-
point method, based on the likelihood ratio statistics, to
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detect sustained changes in a linear profile data set in phase
I. They concluded that to detect both kinds of changes,
sustained and randomly occurring unsustained shifts, one
could use the change-point method in conjunction with the
methods proposed by Mahmoud and Woodall (2004). A
discussion of the problems associated with the monitoring
of linear profiles is given in Woodall et al. (2004).

In a phase II analysis, the process parameters are usually
assumed to be known. This is true for all the control charts
that monitor linear profiles as mentioned above. However,
the process parameters, the intercept, the slope and the stan-
dard deviation are usually unknown in the early stages of
process improvement, and they are usually estimated using
m In-Control (IC) historical samples of size n (or by the
phase I study). Some authors have recommended using 20
to 30 samples of size four or five to estimate the process
parameters for traditional control charts (see Montgomery
(2004) or Ryan (1989)). Quesenberry (1993) and Jones et al.
(2001, 2004), among others, have investigated the effect
of the estimated parameters on the performance of tradi-
tional control charts. A recent literature review paper by
Jensen et al. (2005) provides a thorough discussion on the
effects that parameter estimation has on control chart per-
formance. They concluded that when the number of refer-
ence samples is small, control charts with estimated param-
eters produce a large bias in the IC ARL, and reduce the
sensitivity of the chart in detecting the process changes as
measured by the Out-of-Control (OC) ARL. Moreover, af-
ter short runs, the false alarm probabilities from the charts
increase dramatically. In fact, to attain a performance sim-
ilar to a chart with known parameters, 20 or 30 samples are
insufficient. For example, for the traditional EWMA chart
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with λ = 0.2, 300 samples of five observations are needed
to achieve the desired level of IC performance (Jones et al.,
2001). However, in most cases, it may not be feasible to
wait for the accumulation of enough subgroups, because the
users usually want to monitor and adjust the process in the
start-up stages. Hence, many authors have studied design
procedures for traditional control charts with estimated pa-
rameters (e.g., Hillier (1967, 1969), Yang and Hillier (1970),
Nedumaran and Pignatiello (2001) and Jones (2002)). In re-
sponse, self-starting methods have been developed that up-
date the parameter estimates with new observations and si-
multaneously check for the OC conditions (Hawkins, 1987;
Quesenberry, 1991, 1995; Hawkins and Olwell, 1998;
Sullivan and Jones, 2002). These methods have in fact been
developed for situations where the number of available sam-
ples is too small to obtain a control chart performance com-
parable to that obtained with the true parameters.

As we know, the problem of detecting a step shift in a
parameter of the process is similar to sequential change-
point detection. A commonly used change-point model is:

Xi =
{

N
(
µ0, σ

2
0

)
for i = 1, 2, . . . , τ,

N
(
µ1, σ

2
1

)
for i = τ + 1, . . . ,

(1)

where τ is known as the change point. Sequential change-
point detection is addressed in Pollak and Siegmund (1991),
Siegmund and Venkatraman (1995), Gombay (2000) and in
an excellent review paper by Lai (2001), which presents a
summary of these methods as well as a class of sequential
detection rules. Pignatiello and Simpson (2002) proposed
a control chart based on the likelihood ratio approach for
on-line detection and show that it has a robust performance
when the magnitude of the shifts varies.

Recently, based on the change-point model, Hawkins
et al. (2003) and Hawkins and Zamba (2005a) have pro-
posed two control charts to detect shifts in the mean and
variance, respectively, when the true parameters of the pro-
cess are unknown. Hawkins and Zamba (2005b) proposed
an attractive alternative to the traditional charting method.
They suggest a single chart to detect a change in the mean
and/or variance based on the likelihood ratio test for un-
known parameters. They showed that this change-point for-
mulation not only had the desired run length behavior but
was also comparable to the best of the traditional formula-
tions for detecting step changes in parameters. The success
of their method inspires us to employ a change-point de-
tection approach in control charts. Since their method can
monitor multiple process parameters at the same time, we
expect it also to be effective for monitoring linear profiles
with three parameters that need to be controlled simulta-
neously.

Since linear profiles are often modeled by a regression
model, the change-point problem associated with regres-
sion models is also relevant and has been studied before
(see Quandt (1958), Holbert (1982), Hawkins (1989), Kim
and Siegmund (1989), Kim (1994) and Chen (1998)). It

should be noted that the sample sizes are fixed in these
papers which may not be appropriate for a phase II analy-
sis. The change-point model of Mahmoud et al. (2005) was
designed to monitor linear profiles but primarily focused
on the phase I analysis, although the authors claimed that
their method might be generalized to phase II settings.

In this paper, a control chart based on a likelihood ratio
statistic is proposed for monitoring linear profiles when the
true process parameters are unknown. The benefit of such
a control chart is that it may eliminate the need to collect a
large number of reference samples to estimate the process
parameters before the control scheme begins (although it
is still advisable to collect a few preliminary or historical
samples). We demonstrate the effectiveness of our proposed
approach through Monte Carlo simulations.

2. Control chart for linear profiles

In this section, we first present the model for linear profiles
under consideration and a brief description of the change-
point model. We then discuss our proposed control chart,
its design, and some diagnostic aids.

2.1. The change-point model for linear profiles

Denote by {(xi, yij), i = 1, 2, . . . , n} the jth random sample
collected over time. For an IC process, the relationship be-
tween the response and explanatory variables is assumed to
be:

yij = A0 + A1xi + εij i = 1, 2, . . . , n, (2)

where the εij/σ are independent, identically distributed
(i.i.d) standard Normal random variables, and the explana-
tory variable X takes on n values that are fixed. This is
usually the case in practical applications and is consistent
with the assumptions in Kang and Albin (2000), Kim et al.
(2003) and Mahmoud and Woodall (2004).

When the parameters A0, A1 and σ 2 are unknown, a
widely used method is to estimate them using historical
data. Suppose there is a total of m (m ≥ 1) IC historical
samples {(xi, yij), i = 1, 2, . . . , n, j = 1, 2, . . . , m}. The un-
biased estimators for A0, A1 and σ 2 are, respectively, the
average of the m least-square estimators a0j, a1j and MSEj
given by:

a0j = ȳj − a1j x̄, a1j = Sxy(j)

Sxx
,

MSEj = 1
n − 2

n∑
i=1

(yij − a1jxi − a0j)2,

where ȳj = (1/n)
∑n

i=1 yij, x̄ = (1/n)
∑n

i=1 xi, Sxx = ∑n
i=1

(xi − x̄)2 and Sxy(j) = ∑n
i=1(xi − x̄)yij.

After we get these estimates, the parameters are treated
as if they are known, and the monitoring task can then be
started. As more IC samples are obtained, one may wish
to update the estimates and restart monitoring. However,
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the statistical properties of this procedure, such as the IC
ARL, cannot be obtained easily, so this procedure seems
difficult to design. To deal with the unknown parameters,
our method uses the sequential change-point formulation
to construct the control chart. With this approach we can
update the parameter estimates with new observations and
also check for the OC conditions simultaneously.

Consider the following model:

yij = A0j + A1jxi + εij

i = 1, 2, . . . , n, j = 1, 2, . . . , m, m + 1, . . . . (3)

After observing t future subgroups, the null hypothesis of
interest is that the entire process is IC, namely, A0j = A0,
A1j = A1 and σj = σ for all j. The alternative hypothesis is
that the process is initially IC, but after the change point
τ (τ ≥ m), a step shift in the intercept and/or slope and/or
standard deviation occurs. The sample intercept A0j, slope
A1j and standard deviation σj are equal to A0, A1 and σ , re-
spectively, for j = 1, . . . , m, m + 1, . . . , τ . The parameters
A0j, A1j and σj are equal to A′

0, A′
1 and σ ′, respectively, for

the last m + t − τ samples, starting with j = τ + 1.
Assume that t future samples have been collected, and

let k = m + t , ȳkn = (1/kn)
∑k

j=1

∑n
i=1 yij and Sxy(kn) =∑k

j=1

∑n
i=1(xi − x̄)yij. Then, the logarithm of the likelihood

function for the t samples is given by:

−1
2

k∑
j=1

n∑
i=1

[
ln

(
2πσ 2

j

) + (yij − A0j − A1jxi)2

σ 2
j

]
.

If the data were collected under IC conditions, the maxi-
mum value of the logarithm likelihood function would be:

l0 = −kn
2

ln(2π ) − kn
2

ln
(
σ̂ 2

kn

) − kn
2

,

where σ̂ 2
kn = (1/kn)

∑k
j=1

∑n
i=1(yij − Â0(kn) − Â1(kn)xi)2,

Â1(kn) = Sxy(kn)/kSxx, Â0(kn) = ȳkn − Â1(kn)x̄.
Define

ȳk1n = 1
k1n

k1∑
j=1

n∑
i=1

yij,

Sxy(k1n) =
k1∑

j=1

n∑
i=1

(xi − x̄)yij,

ȳk2n = 1
k2n

k∑
j=k1+1

n∑
i=1

yij,

Sxy(k2n) =
k∑

j=k1+1

n∑
i=1

(xi − x̄)yij,

where k2 = k − k1, m ≤ k1 < k. When there is a step shift
after the k1th sample, the corresponding maximum value
of the log-likelihood is:

l1 = −kn
2

ln(2π ) − k1n
2

ln
(
σ̂ 2

k1n

) − k2n
2

ln
(
σ̂ 2

k2n

) − kn
2

,

where

σ̂ 2
k1n = 1

k1n

k1∑
j=1

n∑
i=1

(
yij − Â0(k1n) − Â1(k1n)xi

)2
,

σ̂ 2
k2n = 1

k2n

k∑
j=k1+1

n∑
i=1

(
yij − Â0(k2n) − Â1(k2n)xi

)2
,

Â1(k1n) = Sxy(k1n)

k1Sxx
, Â1(k2n) = Sxy(k2n)

k2Sxx
,

Â0(k1n) = ȳk1n − Â1(k1n)x̄,

Â0(k2n) = ȳk2n − Â1(k2n)x̄.

Combining l0 and l1, a classical Likelihood Ratio Test
(LRT) statistic is defined by:

lr (k1n, kn) = −2(l0 − l1)

= kn ln
[
σ̂ 2

kn

(
σ̂ 2

k1n

)−k1/k(
σ̂ 2

k2n

)−k2/k]
. (4)

The lr (k1n, kn) is the same as the LRT statistic in
Mahmoud et al. (2005). In fact, this LRT statistic was first
given in Quandt (1958).

Define

lrmax,m,k = max
m≤k1<k

lr (k1n, kn)

Using the methodology presented in Hawkins and Zamba
(2005b), it is natural to construct the control chart for lin-
ear profiles based on the statistic lrmax,m,k when there are
m IC historical samples. Note that our statistic lrmax,m,k
is a little different from its counterpart used in Hawkins
and Zamba (2005b). Here, lrmax,m,k is not the maximum of
lr (k1n, kn) across all values of k1 but only on a constrained
interval of m ≤ k1 < k. From the view of change points,
since the first m samples are IC, the shift should not occur
in these samples, that is to say, the maximum of lr (k1n, kn)
is expected to be one of the values in {lr (k1n, kn), k1 =
m, m + 1, . . . , k − 1}. This minor modification simplifies
the design of the control chart because the design is al-
most the same for all values of m. This will be illustrated
later in the paper.

Given n, unlike the two-sample statistic Tjn used in
Hawkins et al. (2003), the expectation of lr (k1n, kn) de-
pends on the value of k1. Sullivan and Woodall (1996)
stated that the control chart would be less efficient if the ex-
pectations of the likelihood ratio statistics were not equal.
In order to offset the side effect of unequal expectations,
Hawkins and Zamba (2005b) used the Bartlett-corrected
test statistic in place of the standard Generalized Likeli-
hood Ratio (GLR) statistic, and Mahmoud et al. (2005)
used the standard expansion of the expectation (see Kendall
and Stuart (1977) for more details) to obtain a normalizing
factor C and used the statistic LRT/C in their paper. In
fact, the variance of lr (k1n, kn) also varies with the value
of k1. In this paper, in order to compensate for the vary-
ing expectation and variance of lr (k1n, kn)), we naturally
consider using the standardized lr (k1n, kn) which is defined
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as:

slr (k1n, kn) = lr (k1n, kn) − E[lr (k1n, kn)]√
Var[lr (k1n, kn)]

. (5)

Our simulations show that the change-point approach
based on the statistic slr (k1n, kn) performs almost uni-
formly better than the method using the Bartlett-corrected
statistic for either the phase I or phase II setting, although
the difference between them is not very significant.

Although lr (k1n, kn) L→χ2(3) as k1, k, k − k1 → ∞ (see
Serfling (1980)), this is not true for fixed k1. The limit-
ing distribution of lr (k1n, kn) under the null hypothesis,
for fixed k1 and fixed n, is given in the Appendix. The ex-
pectation and the variance of this limiting distribution are
given as:

E [lr (k1n, ∞)] = k1n
[

ln
(

k1n
2

)
− ψ0

(
k1n − 2

2

)]
, (6)

Var [lr (k1n, ∞)] = (k1n)2ψ1

(
k1n − 2

2

)
− 2k1n, (7)

where ψ0(·) and ψ1(·) are, respectively, the digamma and
trigamma function. The recursive formulas for calculating
ψ0 and ψ1 are also given in the Appendix. Note that for
fixed k1, if the process is IC, the distribution of lr (k1n, kn)
is symmetric about k1n, that is to say, lr (k1n, kn) and lr ((k −
k1)n, kn) are identically distributed.

Our simulations results (not reported here) show that
there is very little difference between the simulated values
and asymptotic values based on Equations (6) and (7). For
simplicity, the asymptotic expectation and variance are used
to redefine the standardized likelihood ratio as:

slr (k1n, kn) = lr (k1n, kn) − E[lr (k1n, ∞)]√
Var [lr (k1n, ∞)]

. (8)

2.2. Our proposed control chart and its design

The maximal standardized likelihood ratio statistic for the
k = m + t observations is defined by:

slrmax,m,k = max
m≤k1<k

slr (k1n, kn). (9)

If slrmax,m,m+t > hm,t , an OC signal is given. However, if
slrmax,m,m+t ≤ hm,t , the monitoring continues and the (t +
1)st future sample is obtained and the procedure is repeated.
In this paper, we call this chart the LRT chart.

As one may have noted, due to the appearance of a change
point, the expectation of the GLR statistic is large, not only
at the change point, but also at points on both sides. Consid-
ering only the maximum value of slr given by Equation (9)
may be an inefficient utilization of the information available
regarding the change point. When there is a small shift in
the process, it seems intuitive that for small k, all the values
of slr (k1n, kn) will be small, and hence, slrmax,m,k will also
be small. Consequently, the chart will not signal a shift.
Thus, new samples will continue to be monitored until the

value of slrmax,m,k is so large that the control chart signals.
In order to sensitize the response of our control chart to
small shifts, we can use the EWMA or CUSUM method
to accumulate the small increments and make the control
chart respond faster. Using the above idea, based on the
standardized likelihood ratio statistic slr (k1n, kn) given by
Equation (8), the statistic of our proposed EWMA chart is
given by:

Yj(m, t) = max(0, λ × slr (jn, (m + t)n)
+ (1 − λ)Yj−1(m, t)), (10)

where j = m, m + 1, . . . , m + t − 1, Ym−1(m, t) = 0 and
λ (0 < λ ≤ 1) is a smoothing constant. We define
Ymax(m, t) = maxm≤j<m+t Yj(m, t). Our charting procedure
is given as follows

1. After the tth future sample is monitored, compute
Ymax(m, t).

2. If Ymax(m, t) ≤ hm,t , where hm,t is chosen such that the
chart attains the specified IC ARL, then conclude that
there is no evidence of a shift, and monitor the (t + 1)st
future sample.

3. If Ymax(m, t) > hm,t , then an alarm is triggered to indi-
cate that the process may be out of control.

The difference between the LRT chart based on Equa-
tion (9) and this EWMA chart is that after the (m + t)th
sample is monitored, the former chart calculates the max-
imum value of slr (k1n, (m + t)n), m ≤ k1 < k, whereas the
latter chart calculates the maximum of the exponentially
weighted average of slr (k1n, (m + t)n).

In this paper, the smoothing constant λ in Equation
(10) is taken to be 0.2. In general, smaller-smoothing con-
stants lead to quicker detection of smaller shifts (Lucas and
Saccucci, 1990). In fact, when λ is equal to one, the perfor-
mance of the EWMA chart is the same as that of the LRT
chart defined by Equation (9). The adaptive EWMA chart
proposed by Capizzi and Masarotto (2003) can also be used
here in place of our EWMA chart. Although we do not in-
vestigate the adaptive EWMA chart here, we expect that
it will have better detection performance over a range of
shifts.

For a given false alarm probability α, the control limit
of our proposed EWMA chart, hm,t (α) can be obtained by
solving the following equations:

Pr(Ymax(m, t) > hm,t (α)|Ymax(m, i) ≤ hm,i(α), 1 ≤ i < t)
= α for t > 1, Pr(Ymax(m, 1) > hm,1(α)) = α.

Due to the intricacy of this conditional probability,
it seems impossible to solve analytically for hm,t . There-
fore, similar to the methods in Hawkins et al. (2003) and
Hawkins and Zamba (2005a, 2005b), we use 1000 000 se-
quences of length 500 to estimate them. As in Hawkins
et al. (2003), we also suggest starting monitoring after some
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Table 1. The hm,t (α) of the EWMA chart for n = 4

m

10 50

IC ARL IC ARL

t 100 200 370 500 100 200 370 500

1 0.695 0.828 0.938 0.992 0.695 0.828 0.953 0.992
2 0.969 1.125 1.266 1.344 0.969 1.125 1.266 1.344
3 1.219 1.406 1.594 1.660 1.219 1.422 1.594 1.695
4 1.422 1.656 1.875 1.977 1.438 1.688 1.891 1.994
5 1.578 1.844 2.094 2.223 1.609 1.906 2.125 2.258
6 1.719 2.031 2.281 2.398 1.750 2.062 2.344 2.504
7 1.812 2.156 2.438 2.609 1.875 2.219 2.531 2.680
8 1.906 2.250 2.594 2.750 1.969 2.344 2.656 2.820
9 1.969 2.344 2.688 2.855 2.047 2.438 2.812 2.961

10 2.031 2.438 2.781 2.961 2.125 2.562 2.906 3.102
11 2.078 2.500 2.875 3.066 2.188 2.625 3.000 3.172
12 2.125 2.562 2.938 3.137 2.234 2.688 3.094 3.277
13 2.172 2.625 3.000 3.207 2.266 2.750 3.156 3.348
14 2.203 2.656 3.062 3.242 2.297 2.781 3.203 3.383
15 2.250 2.719 3.109 3.312 2.328 2.812 3.250 3.453
16 2.266 2.750 3.156 3.348 2.359 2.844 3.281 3.523
17 2.297 2.781 3.188 3.383 2.391 2.875 3.344 3.559
18 2.312 2.812 3.234 3.418 2.422 2.938 3.375 3.594
19 2.328 2.844 3.281 3.488 2.438 2.969 3.406 3.629
20 2.359 2.875 3.312 3.523 2.469 3.000 3.438 3.664
22 2.375 2.906 3.375 3.594 2.484 3.031 3.500 3.734
24 2.406 2.938 3.406 3.629 2.516 3.062 3.531 3.770
26 2.438 2.969 3.438 3.664 2.531 3.094 3.562 3.805
28 2.453 3.000 3.469 3.699 2.547 3.125 3.594 3.840
30 2.469 3.031 3.500 3.734 2.562 3.156 3.656 3.910
35 2.531 3.094 3.594 3.840 2.594 3.188 3.719 3.980
40 2.562 3.156 3.656 3.910 2.623 3.219 3.750 4.051
50 2.609 3.188 3.719 3.980 2.641 3.250 3.812 4.086
60 2.625 3.219 3.781 4.016 2.656 3.281 3.844 4.121
70 2.641 3.250 3.812 4.051 2.672 3.312 3.875 4.156
80 2.656 3.281 3.844 4.086 2.688 3.328 3.891 4.191
90 2.680 3.312 3.875 4.121 2.703 3.344 3.906 4.221

115 2.703 3.344 3.906 4.191 2.719 3.359 3.938 4.247
140 2.719 3.375 3.938 4.227 2.727 3.375 3.969 4.262
165 2.734 3.391 3.969 4.262 2.734 3.391 4.000 4.279
190 2.750 3.406 3.984 4.297 2.742 3.406 4.016 4.297
240 2.773 3.422 4.000 4.314 2.750 3.422 4.031 4.314
290 3.438 4.031 4.332 3.438 4.039 4.332
390 3.469 4.047 4.350 3.469 4.047 4.350
490 4.062 4.367 4.062 4.367

preliminary or historical samples are obtained. In this pa-
per, we generally consider the number of IC samples in the
range of m ≥ 10. Table 1 shows the control limits of the
EWMA chart for different combinations of parameters:
n = 4; m = 10 or 50; t is in the range 1-490; and α val-
ues are 0.01, 0.005, 0.0027 and 0.002, corresponding to IC
ARLs of 100, 200, 370 and 500, respectively. As shown in
Table 1, hm,t (α) increases more appreciably when t is small
than when t is large. The missing values in Table 1 can

be approximated by the last entries in the same column.
Our numerous simulation experiments highlight that these
control limits perform quite well. We could have come up
with a regression fit approximating the control limits in Ta-
ble 1 and use it as a convenient formula for practitioners,
as Hawkins et al. (2003) and Hawkins and Zamba (2005a,
2005b) did in their papers. However, it turns out that we
could not fit the data in our table well using a simple regres-
sion. That is why we chose not to give the regression formula
here. Using these tabulated values may not be very conve-
nient for engineers, but the data can be easily incorporated
into computer programs, where storing such data is a trivial
task.

There is a vital issue remaining to be considered, which
is the choice of hm,t (α) for different m and n. From Table
1 we observe that the difference between control limits for
m = 10 and m = 50 is very small. The reason for this be-
havior is that the distribution of Yj(m1, t) is approximately
the same as that of Yj(m2, t) when m1, m2 and n are large
enough. It is thus not surprising that the control limits of the
EWMA charts for m1 and m2 are close. We investigated the
run-length distributions of the EWMA charts (30 000 sim-
ulations) for α = 0.005, n = 4 and m = 15, 20, . . . , 45 using
the limits of h10,t (0.005). Since these figures are hardly dis-
tinguishable from one another, we do not report them here.
From the calculations we can, however, infer that the behav-
ior of the run length for these m values is very close to a ge-
ometric distribution. The behavior of the ARLs and of the
Standard Deviations of the Run Length (SDRL) supports
this observation. The empirical run-length distributions of
the EWMA charts (100 000 simulations) for α = 0.005,
n = 4, m = 100, 200, . . . , 500 were also obtained. Even if
the control limits obtained from a process with m = 50 are
used to monitor the process with m = 500, the IC ARL,
the SDRL, and the distribution of the run length of the
control chart are still quite satisfactory. Hence, we suggest
h50,t (α) be used as the control limit for m > 50 as long as
the requirement of IC behavior of run length is not very
strict.

The control limits for n = 5, 6, . . . , 10 were also obtained
from the same simulations (available from the authors). Be-
cause the EWMA statistics Yj(m, t) with different values of
n have approximately the same distribution, we would ex-
pect their control limits to be very close. Once again, our
simulations verify this conclusion. The ARLs and SDRLs
from 100 000 simulations for different values of n are tab-
ulated in Table 2. Apparently, regardless of the choice of
n, the desired level (α = 0.005) of ARLs and SDRLs can
almost always be achieved. So, for simplicity, engineers can
use the control limits obtained using n = 4 or 5 as the con-
trol limits for any moderate n (5 < n < 20).

In practice, it may be more convenient to use a normal-
ized plot statistic given by Ymax(m, t) divided by the con-
trol limit ht . This makes the control limit, of this normal-
ized chart, to be unity, making it easier to construct the
chart.
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Table 2. The ARL and SDRL of the EWMA chart for n =
4, 5, . . . , 10 with h10,t (0.005)

n

4 5 6 7 8 9 10

ARL 199.8 199.3 197.5 197.8 196.4 196.2 196.5
SDRL 199.0 198.4 195.8 197.2 194.3 195.5 194.9

2.3. Diagnostic aids and implementation

In practical applications of quality control, there are two
issues that need to be considered. One is detecting if the
process is IC, and the other is to point out the position of
the shift after the process has indeed shifted. Confirming the
existence of change points in a process would help engineers
to identify the underlying cause more quickly. In order to
aid in identifying the change-point location, the maximum
likelihood estimator of the change-point statistic is used.
Let us again consider the case where there are m historical
IC samples. Once an OC signal is given at the kth sample,
implying that a shift in parameters must have occurred at the
τ th sample, m ≤ τ < k, we propose to estimate the change
point τ of a step shift by:

τ̂ = arg
m≤k1<k

max{slr (k1n, kn)}. (11)

Note that this is consistent with Pignatiello and Samuel
(2001).

As Kim et al. (2003) pointed out, it is very necessary to
justify which parameter has shifted after a chart signals
a shift. For that purpose, using coded explanatory values,
they obtained the following alternative form of the under-
lying model:

yij = B0 + B1x∗
i + εij i = 1, 2, . . . , n, (12)

where B0 = A0 + A1x̄, B1 = A1 and x∗
i = (xi − x̄). Using

Equation (12), the least squares estimators for B0, B1 and
σ 2 are independent. Thus, they proposed to use three inde-
pendent EWMA charts to detect if the intercept, the slope
or the standard deviation, respectively, had changed.

At first glance, our proposed method may appear to ana-
lyze many different effects simultaneously, and it may not be
easy to diagnose which parameter has shifted. For this type
of control chart, diagnostic aids have been proposed and de-
veloped in the literature. For example, Hawkins and Zamba
(2005b) used two conventional parametric tests: a two-sided
F-test to detect changes in the variance and an approximate
t-test to detect changes in the mean. Mahmoud et al. (2005)
decomposed the likelihood ratio statistic into three parts,
each of which reflects the behavior of an individual param-
eter, so that the decomposed statistics can help pinpoint in
which parameter a shift may have occurred. Similar decom-
position ideas have also been used in Gulliksen and Wilks
(1950) and Fatti and Hawkins (1986). In this paper, simi-
larly to Mahmoud et al. (2005), we also decompose the test

statistic lr (τ̂n, kn) in Equation (4) into three components:
Ilr (τ̂ ), Slr (τ̂ ) and σlr (τ̂ ), which are used, respectively, as the
index of the relative contribution from the Y -intercept (B0),
the slope (B1) and the standard deviation (σ ). The three
components are defined as:

Ilr (τ̂ ) = kn ln
[

1 + k1k2(ȳk1n − ȳk2n)2

k
(
k1σ̂

2
k1n + k2σ̂

2
k2n

)]
,

σlr (τ̂ ) = kn ln
[k1σ̂

2
k1n + k2σ̂

2
k2n

k

(
σ̂ 2

k1n

)−k1/k(
σ̂ 2

k2n

)−k2/k
]
,

Slr (τ̂ ) = kn ln[
1+ k1k2(1/k1Sxy(k1n) − 1/k2Sxy(k2n))2

nSxx
[
k
(
k1σ̂

2
k1n + k2σ̂

2
k2n

) + k1k2(ȳk1n − ȳk2n)2
]].

To simplify the calculations, we define:

Uk = Uk−1 +
n∑

i=1

yik,

Vk = Vk−1 +
n∑

i=1

x∗
i yik,

Wk = Wk−1 +
n∑

i=1

y2
ik,

where U0 = V0 = W0 = 0. Then, the least-squares estima-
tors, σ̂ 2

kn, σ̂ 2
k1n and σ̂ 2

(k−k1)n can be rewritten as:

σ̂ 2
kn = 1

kn

(
Wk − 1

kn
U2

k − 1
kSxx

V2
k

)
,

σ̂ 2
k1n = 1

k1n

(
Wk1 − 1

k1n
U2

k1
− 1

k1Sxx
V2

k1

)
,

σ̂ 2
(k−k1)n = 1

(k − k1)n

[
(Wk − Wk1 ) − 1

(k − k1)n
(Uk − Uk1 )2

− 1
(k − k1)Sxx

(Vk − Vk1 )2
]
.

Using these equations, our proposed EWMA statistic,
based on slr (k1n, kn), can be calculated easily in a recursive
manner.

3. An illustrative example

In this section, an example is presented to illustrate the
implementation of the proposed EWMA control chart.
In this example, the underlying IC linear profile model is
yij = 3 + 2xi + εij, where the εij values are i.i.d Normal ran-
dom variables with mean zero and unit variance. The same
model has also been used by Kang and Albin (2000). The
value of the explanatory variable is fixed at 2, 4, 6 or 8. Ob-
viously, x̄ = 5, Sxx = 20, B0 = 13 and B1 = 2. There are
m = 10 IC historical samples, which are the first ten rows
in Table 3. Suppose the slope B1 has shifted from 2.0 to 2.25
after the tenth future sample. Given the overall IC ARL =
200, the control limits of the EWMA chart hm,t (0.005) for
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Table 3. Data for example with a shift in the slope after the 20th sample

j yij t Ymax(m,t) hm,t (0.005) slr lr Ilr Slr σlr

1 7.54 10.03 14.87 18.49 −0.24 4.07 0.39 1.27 2.41
2 7.75 11.78 15.86 17.49 1.14 7.18 0.02 5.77 1.39
3 6.46 9.38 14.87 19.07 0.51 4.86 0.78 3.46 0.62
4 7.20 10.15 13.71 19.08 1.46 7.24 1.82 4.22 1.19
5 8.74 10.08 15.18 19.32 1.72 7.80 0.84 6.42 0.54
6 6.50 11.75 15.66 19.42 1.33 6.67 0.30 5.43 0.93
7 7.22 10.96 14.33 19.23 2.21 8.89 0.37 6.34 2.18
8 6.75 12.15 16.27 18.95 2.17 8.72 0.02 6.66 2.04
9 5.79 12.75 14.77 20.77 0.63 4.73 0.09 4.20 0.45

10 6.14 11.79 15.59 19.15 0.71 4.92 0.16 3.81 0.95
11 7.32 11.94 15.68 19.94 1 0.266 0.828 1.27 6.32 0.92 3.95 1.45
12 7.86 11.55 14.06 19.06 2 0.000 1.125 2.42 9.20 1.09 6.41 1.70
13 7.98 11.31 15.89 19.30 3 0.297 1.406 3.82 12.72 2.33 8.19 2.21
14 4.50 10.39 16.66 19.55 4 0.198 1.656 1.29 6.32 1.66 4.13 0.53
15 7.55 12.30 14.29 18.80 5 0.017 1.844 2.56 9.53 2.18 6.93 0.42
16 7.31 8.83 14.88 18.08 6 0.164 2.031 2.70 9.90 0.77 9.12 0.01
17 6.55 10.49 14.26 18.65 7 0.612 2.156 3.13 11.00 0.20 10.69 0.11
18 7.46 10.31 16.51 19.57 8 0.084 2.250 3.40 11.73 0.67 10.94 0.11
19 5.88 11.35 16.02 19.89 9 0.094 2.344 2.79 10.21 1.10 8.77 0.34
20 6.80 10.96 13.74 18.29 10 0.102 2.438 3.95 13.21 0.34 12.69 0.18
21 5.82 10.58 14.70 19.56 11 0.475 2.500 3.54 12.24 0.07 11.47 0.69
22 6.21 10.03 15.82 21.38 12 0.687 2.562 1.71 7.59 0.34 6.68 0.57
23 6.49 11.11 16.56 18.39 13 0.300 2.625 2.32 9.26 0.53 8.27 0.45
24 5.02 9.30 15.16 19.80 14 1.409 2.656 0.71 5.13 0.00 4.65 0.48
25 7.05 12.65 13.16 19.36 15 0.670 2.719 2.34 9.64 0.00 9.14 0.49
26 4.80 11.96 14.25 21.19 16 1.759 2.750 1.19 6.76 0.01 4.35 2.40
27 5.74 11.52 16.22 19.28 17 1.835 2.781 0.92 6.50 0.15 4.01 2.35
28 6.08 9.43 15.79 19.85 18 2.322 2.812 −0.31 3.77 0.00 2.28 1.49
29 6.34 9.71 15.32 20.71 19 2.901 2.844

t = 1, 2, . . . , 19 and the statistic Ymax(m, t) were computed
and are listed in Table 3.

Our EWMA chart signals a shift at the 29th sample (i.e.,
j = 29). Then, by looking at the values of slr (jn, 29n) for
j = 10, 11, . . . , 28, one can find that its maximum occurs at
j = 20 with slr (20n, 29n) = 3.95. This maximum indicates
precisely the change-point location τ of the shift. More-
over, inspecting the values of Ilr (20), Slr (20) and σlr (20),
which are 0.34, 12.69 and 0.18, respectively, reveals which
parameter underwent a shift. Since Slr (20) = 12.69 is much
larger than the other two decomposed components, it sug-
gests that there is a shift in the slope B1 after sample 20. It
also indicates that our EWMA chart detects the change in
parameters after nine OC samples have been collected.

4. Performance comparisons

In this section, first, the LRT chart defined by Equation (9)
and the EWMA chart defined by Equation (10) are com-
pared. Then, our proposed EWMA chart is compared with
the chart proposed by Kim et al. (2003). Finally, the perfor-
mance of our EWMA chart is evaluated for different values
of τ .

The underlying IC model is again the same as that of
Kang and Albin (2000). Simulation results comparing our
proposed LRT and the EWMA chart are shown in Table 4
(50 000 simulations). Note that any series for which a signal
occurs before time τ is discarded.

Table 4. The ARL comparisons between the EWMA and LRT
charts for m = 10 and α = 0.005

τ

10 50 100

δ EWMA LRT EWMA LRT EWMA LRT

A0 + δσ

0.0 200.0 200.0 200.0 200.0 200.0 200.0
0.2 179.8 183.8 103.2 131.8 69.8 99.2
0.4 125.4 139.6 22.4 31.8 17.7 22.5
0.6 59.7 70.4 9.8 11.5 9.2 10.3
0.8 20.5 22.5 6.2 6.7 6.0 6.4
1.0 8.0 8.0 4.5 4.6 4.4 4.5
1.2 4.8 4.6 3.5 3.5 3.5 3.5
1.4 3.5 3.3 2.9 2.8 2.9 2.8
1.6 2.7 2.6 2.5 2.4 2.5 2.4
1.8 2.3 2.2 2.1 2.1 2.1 2.0
2.0 2.0 1.9 1.9 1.8 1.9 1.8
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Fig. 1. The ARLs for a shift in; (a) the intercept; (b) the slope; and (c) the standard deviation.

From Table 4 we observe that the EWMA chart is a little
inferior to the LRT chart for large shifts in the intercept,
but it performs significantly better than the LRT chart for
small shifts. For example, when δ = 0.2 and τ = 100, the
EWMA chart has an ARL of 69.8 which is 0.7 times smaller
than that of the LRT chart. Other simulations for different
values of m, α, and shifts in other parameters were also
performed by the authors (not reported here but available
upon request), and similar results were observed. Based
on these observations, we recommend using the EWMA
chart. So, in the remainder of this paper, we only consider
the EWMA chart for other performance assessments.

For the case of known parameters, Kim et al. (2003)
showed that the combination of three EWMA charts (de-
noted by EWMA3) performed better than the charts in
Kang and Albin (2000) in terms of detecting sustained shifts
in the parameters. Therefore, we only compare our pro-
posed EWMA chart with EWMA3. In Kim et al. (2003),
the control limits LI, LS and LE were respectively set to
be 3.0156, 3.0109 and 1.3723 for the three EWMA charts.
Given this choice of control limits, the overall IC ARL of
EWMA3 is roughly 200 while that for each individual chart
is around 584. Moreover, the types of shifts considered in
this paper are the same as those in Kim et al. (2003).

Table 5. The ARLs of our proposed EWMA chart for detecting decreases in the variance

δσ 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
ARL 2.9 3.2 3.5 3.9 4.3 4.8 5.4 6.2 7.2 8.5 10.3 13.0 17.2 24.3 37.9 69.3

The OC ARLs of our EWMA charts (dashed line) with
m = 500 IC historical samples and that of EWMA3 charts
(solid line) with the true values of parameters for detecting
the shift in A0, A1 and σ are shown in Fig. 1(a–c). Note that
the values on the vertical axis of Fig. 1(a–c) are scaled by
a logarithm transformation. From this figure, we can draw
the following conclusions.

1. Our proposed EWMA chart has a slight disadvantage in
detecting moderate shifts in the intercept A0 as compared
with the EWMA3 chart, but the EWMA chart performs
better for small shifts.

2. The two charts have almost the same performance in
detecting a shift in the slope, for moderate and large
shifts. For small shifts, our proposed EWMA performs
significantly better than the EWMA3 chart.

3. The EWMA chart performs better than the EWMA3
chart, in detecting a shift in the standard deviation, ex-
cept in cases with very small shifts.

Note that the EWMA3 chart can detect an upward shift
in σ , but our approach can also detect decreases in variance.
The simulated ARLs are listed in Table 5.

Kim et al. (2003) showed that their proposed EWMA3
charts performed very well when there is a step shift
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Table 6. ARL comparisons for B1 to B1 + δσ in Equation (12)
(IC ARL = 200)

δ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

EWMA3 48.9 13.1 6.6 4.4 3.3 2.7 2.3 2.1 1.9 1.7
EWMA 37.2 13.1 7.4 5.0 3.8 3.0 2.5 2.1 1.9 1.6

Table 7. The ARL performance of the EWMA chart for m = 10
and α = 0.005

τ

δ 10 30 50 100 300

A0 + δσ

0.2 179.8 133.2 103.2 69.8 48.7
0.4 125.4 35.5 22.4 17.7 15.9
0.6 59.7 11.3 9.8 9.2 8.7
0.8 20.5 6.6 6.2 6.0 5.9
1.0 8.0 4.7 4.4 4.4 4.4
1.2 4.8 3.6 3.5 3.5 3.5
1.4 3.5 2.9 2.9 2.9 2.9
1.6 2.7 2.5 2.5 2.5 2.4
1.8 2.3 2.2 2.1 2.1 2.1
2.0 2.0 1.9 1.9 1.9 1.9

A1 + δσ

0.025 191.4 167.6 150.9 126.5 87.4
0.05 165.6 91.6 60.1 39.2 29.0
0.075 125.0 33.5 21.2 17.3 15.3
0.1 78.7 14.2 11.6 10.6 9.9
0.125 41.1 8.7 8.0 7.5 7.3
0.15 19.4 6.3 6.0 5.8 5.7
0.175 9.7 5.0 4.8 4.7 4.6
0.2 6.1 4.1 4.1 3.9 3.9
0.225 4.6 3.5 3.4 3.4 3.4
0.25 3.7 3.0 3.0 3.0 3.0

δσ

1.2 176.7 106.3 71.3 43.8 30.3
1.4 123.1 20.3 13.7 11.7 10.6
1.6 68.7 7.8 6.9 6.4 6.1
1.8 32.2 4.9 4.6 4.4 4.3
2.0 13.6 3.6 3.5 3.4 3.3
2.2 6.9 2.9 2.8 2.7 2.7
2.4 4.2 2.4 2.4 2.3 2.3
2.6 3.1 2.1 2.1 2.0 2.0
2.8 2.6 1.9 1.9 1.8 1.8
3.0 2.2 1.7 1.7 1.7 1.7

B1 + δσ

0.1 180.6 124.2 93.1 60.8 40.2
0.2 117.7 26.7 18.0 14.9 13.3
0.3 48.5 9.2 8.4 7.8 7.5
0.4 14.6 5.6 5.4 5.2 5.1
0.5 6.0 4.0 3.9 3.8 3.8
0.6 3.9 3.1 3.1 3.0 3.0
0.7 2.9 2.6 2.6 2.5 2.5
0.8 2.3 2.2 2.2 2.2 2.1
0.9 2.0 1.9 1.9 1.9 1.9
1.0 1.7 1.7 1.7 1.7 1.7

in the parameter B1 of Equation (12). Table 6 gives a com-
parison between the EWMA chart with m = 500 IC histor-
ical samples and the EWMA3 charts with known parame-
ters in this case. Overall, the performance of our approach
is comparable to that of the EWMA3 chart in this case.

Finally, the performance of the proposed chart is assessed
for different values of τ ; the corresponding ARLs are given
in Table 7 for m = 10 and α = 0.005. The values of τ are
chosen to be 10, 30, 50, 100, and 300, so that the perfor-
mance assessment can be broadly based. From this table,
one may notice that the proposed chart performs almost
equally well for all values of τ when detecting a large shift.
Naturally, the OC ARL will be affected by the number of
reference samples gathered before a shift actually occurs.
Yet the benefit is much more obvious in the case of detect-
ing a small or moderate shift than detecting a large shift.
Because the EWMA chart updates the parameter estima-
tions with new observations, the more IC future samples
one collects, the more sensitive the EWMA chart is to a
small or moderate shift.

5. Conclusions and considerations

We introduce LRT and EWMA control charts based on
LRTs. These control charts are designed to detect shifts in
the intercept, slope, and standard deviation of linear pro-
files. These charts can be designed easily and perform well
when process parameters are unknown but some historical
samples are available. Through simulations, we have shown
that the proposed EWMA chart, which is the EWMA of
the likelihood ratio statistic, performs well in detecting pro-
cess shifts. We believe this EWMA chart can be used as an
alternative to the usual LRT chart, because the EWMA
chart performs significantly better in detecting small shifts
at the expense of being slightly inferior in the detection of
large shifts. We also provide two useful diagnostic aids to
improve the practicality of the EWMA chart. One provides
valuable information to process engineers concerning the
time of the change. The other decides which parameter has
undergone a change. The proposed approach can be easily
generalized to multiple regression profiles. However, it is
conceivably more difficult in the case of multiple regression
linear profiles to quantify the relative contribution of each
parameter to a shift so as to identify which parameter has
changed. An ongoing effort of the authors is analyzing re-
cursive residuals for a possible self-starting monitoring of
multiple regression linear profiles, an approach similar to
that in Quesenberry (1991, 1995).
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Appendix

1. Limiting distribution of lr(k1n, kn) under the null
hypothesis k → ∞ (for fixed k1 and n)
Note that:

σ̂ 2
kn = k1σ

2
k1n + k2σ

2
k2n

k
+ k1k2

k2
(ȳk1n − ȳk2n)2

+ k1k2((1/k1)Sxy(k1n) − (1/k2)Sxy(k2n))2

k2nSxx
,

and

σ̂ 2
kn

P→σ 2, σ̂ 2
k2n

P→σ 2, ȳk2n
P→A1x̄ + A0,

k2

k
→ 1, as k → ∞.

It follows that:

lr (k1n, kn) = k1n
(

ln σ̂ 2
kn − ln σ̂ 2

k1n

) + k2n
(

ln σ̂ 2
kn − ln σ̂ 2

k2n

)
= −k1n ln

σ̂ 2
k1n

σ̂ 2
kn

+ k2n ln

[
1 + k1

k

(
σ̂ 2

k1n

σ̂ 2
kn

− 1

)
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+ k1k2

k2

(
ȳk1n − ȳk2n

σ̂k2n

)2

+ k1k2
(
(1/k1)Sxy(k1n) − 1/k2Sxy(k2n)

)2

k2nSxxσ̂
2
k2n

]

= −k1n ln
σ̂ 2

k1n

σ̂ 2
kn

+ k2n

[
k1

k

(
σ̂ 2

k1n

σ̂ 2
kn

− 1

)

+ k1k2

k2

(
ȳk1n − ȳk2n

σ̂k2n

)2

+ k1k2
(
(1/k1)Sxy(k1n) − (1/k2)Sxy(k2n)

)2

k2nSxxσ̂
2
k2n

+ op(k−1)

]
P→ − k1n ln

σ̂ 2
k1n

σ 2
+ k1n

σ̂ 2
k1n

σ 2

− k1n + k1n
(

ȳk1n − A1x̄ − A0

σ

)2

+ k1

(
(1/k1)Sxy(k1n) −

∑n
1(xi − x̄)(A1xi + A0)

σ
√

Sxx

)2

(as k, k2 → ∞) D= z1 − k1n ln
z1

k1n
+z2 + z3 − k1n,

where

z1 = k1n
σ̂ 2

k1n

σ 2
∼ χ2(k1n − 2),

z2 = k1n
(

ȳk1n − A1x̄ − A0

σ

)2

∼ χ2(1),

z3 = k1

(
(1/k1)Sxy(k1n) − ∑n

1(xi − x̄)(A1xi + A0)

σ
√

Sxx

)2

∼ χ2(1),

and z1, z2 and z3 are independent.

2. In-control expectation and variance of lr(k1n,∞)

Because the random variables z1, z2 and z3 are independent,
the characteristic function of lr (k1n, ∞) is given by:

φ(t) = (1 − 2it)−1 exp(−ik1nt)
∫ ∞

0
exp(it(x−k1n ln x

k1n ))

× 1
2(k1n−2/2)�(k1n − 2)/2

x(k1n−2)/2−1e−x/2dx

= (1 − 2it)−1 exp(−ik1nt)
∫ ∞

0
exp(it− 1

2 )x x(k1n−2)/2−itk1n−1

× 1
2k1n−2/2�(k1n − 2)/2

(k1n)itk1ndx

= (1 − 2it)−1 exp(−ik1nt) �

(
k1n − 2

2
− itk1n

)

×
(

2
1 − 2it

)((k1n−2)/2)−itk1n (k1n)itk1n

2((k1n−2)/2)�(k1n − 2)/2

= �((k1n − 2)/2) − itk1n)
�k1n − 2/2

(1 − 2it)itk1n−(k1n/2)

×
(

k1n
2e

)itk1n

,

where i is the unit of complex number. Therefore, the r th
moment of lr (k1n, ∞) is obtained by:

E[(lr (k1n, ∞))r ] = (−i)r drφ(t)
dtr

∣∣∣
t=0

,

from which we get

E[lr (k1n, ∞)] = k1n
[

ln
(

k1n
2

)
− ψ0

(
k1n − 2

2

)]
,

Var[lr (k1n, ∞)] = (k1n)2ψ1

(
k1n − 2

2

)
− 2k1n,

where ψ0(·) and ψ1(·) are, respectively, the digamma and
trigamma function.

3. Calculation of ψ0 and ψ1

The recursive formula for evaluating the digamma function
ψ0 and trigamma function ψ1 is given by:

ψ0(1) = −γ, ψ0

(
1
2

)
= −γ − 2 ln 2,

ψ1(1) = π2

6
, ψ1

(
1
2

)
= π2

2
,

ψ0(z + 1) = ψ0(z) + 1
z
, ψ1(z + 1) = ψ1(z) − 1

z2
,

where γ = 0.577 215 664 . . . is the Euler-Mascheroni con-
stant.

Therefore, it is easy to derive the following formula:

ψ0(n) = −γ +
n−1∑
k=1

1
k

, ψ1(n) = π2

6
−

n−1∑
k=1

1
k2

,

ψ0

(
n + 1

2

)
= −γ − 2 ln 2 + 2

n∑
k=1

1
2k − 1

,

ψ1

(
n + 1

2

)
= π2

2
− 4

n∑
k=1

1
(2k − 1)2

,

where n is an integer.
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