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ABSTRACT
A supersaturated design (SSD) is a design whose run size is not enough
for estimating all main effects. Such a design is commonly used in
screening experiments to screen active effects based on the effect spar-
sity principle. Traditional approaches, such as the ordinary stepwise
regression and the best subset variable selection, may not be appropri-
ate in this situation. In this article, a new variable selection method is
proposed based on the idea of staged dimensionality reduction. Simu-
lations and several real data studies indicate that the newly proposed
method is more effective than the existing data analysis methods.

1. Introduction

Manypreliminary industrial screening experiments typically contain a large number of poten-
tially relevant factors. Based on the effects sparsity assumption, only a few of them are believed
to be active. A supersaturated design (SSD) is a design whose run size is not enough for esti-
mating all the main effects. The construction of SSDs can date back to Satterthwaite (1959),
who suggested the use of randombalanced designs, and Booth andCox (1962), who proposed
an algorithm to construct systematic SSD. Since the appearance of Lin (1993) andWu (1993),
lots of criteria and methods have been proposed for the construction of SSDs. A comprehen-
sive list of early works can be found in Liu et al. (2006), Liu and Liu (2011), and Sun, Lin, and
Liu (2011). Compared with the construction of SSDs, the inferential aspect of such designs
needs more investigation. Unfortunately, the data analysis is challenging because even a main
effect model is not identifiable for SSDs.

Finding the sparse active effects is a common and fundamental application of SSDs. Some
new analysis methods were developed in recent years. At first, Lin (1993) used the step-
wise selection method to screen active factors; Chipman et al. (1997) proposed a Bayesian
variable selection approach for analyzing experiments with complex aliasing; Westfall et al.
(1998) developed an error control skill in forward selection; Beattie et al. (2002) gave a two-
stage Bayesian model selection strategy (SSVS/IBF) by combining the SSVS with the intrinsic
Bayes factor (IBF); Li and Lin (2003) employed the penalized least squares with the smoothly
clipped absolute deviation (SCAD) penalty; Holcomb et al. (2003) gave contrast-based meth-
ods; Lu andWu (2004) proposed a strategy based on the idea of staged dimensionality; Zhang
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et al. (2007) employed a partial least-square regression; Georgiou (2008) gave a singular value
decomposition (SVD) regression method for SSDs; Phoa et al. (2009) studied the Dantzig
selector approach to screen active effects; Li et al. (2010) gave the contrast-orthogonality clus-
ter analysis (COCA) method; Yin et al. (2013) proposed a multivariate partial least-square-
stepwise regression method to select active effects in SSDs with multiple responses; Phoa
(2014) proposed the stepwise response refinement screener (SRRS) and Chen et al. (2013)
proposed a componentwise Gibbs sampler (CGS) method. Simulation studies show that the
SRRS and CGS outperform the other approaches. In this article, we introduce a three-stage
variable selection (TSVS)method, which not only ismuchmore effective than SRRS andCGS,
but also is much easier to be understood.

We denote the total set of factors by A. The TSVS method chooses the active effects by
three stages. The first stage contains narrowing the active factors to B by a stepwise selection
procedure. The second stage screens out the factors with small absolute coefficient one by
one by regressing the response on B, and then we get the candidate active factors set C. The
third stage performs the best subset search from candidate set C. Simulation studies show that
the method is effective for analyzing data collected from SSDs, and in most cases the method
outperforms the methods SRRS and CGS.

The article is organized as follows. Section 2 introduces the screening procedure of the
TSVSmethod anddiscusses themain idea of themethod. Section 3 compares the performance
of TSVS with other existing methods. The last section contains some concluding remarks.

2. The screening procedure

Consider a linear regression model y = Xβ + ε, where y is an n × 1 vector of responses,
X = (x1, . . . , xk) is an n × k model matrix, β = (β1, . . . , βk)

′ is a k × 1 vector of unknown
coefficients, and ε is an n × 1 vector of noise that follows a multivariate normal distribution
with mean zero and covariance matrix σ 2In.

The TSVS method is divided into three procedures: stepwise selection, screening out fac-
tors with small absolute coefficient, and all subset search. We denote the total set of factors by
A, the set of factors after first procedure by B, the set of factors after the second procedure by
C, and the set of final active factors byD.

(i) Stepwise screening
Step 1 Standardize the data y and X so that y has mean 0 and each column of X has

length one.
Step 2 Perform the stepwise selection procedure on the factors in A by choosing the

αin = 0.05, αout = 0.1, and output the factors set B.

(ii) Screening out factors with small absolute coefficients
Step 3 For all the factors in B,

(a) Regress y on B to obtain the estimate βB;
(b) Set a threshold of noise level γ > 0, do β1

B = |βB| − γ ;
(c) Rank the elements in β1

B, and drop the smallest one to obtain new B;
(d) Repeat (a) to (c) until the absolute of any element in βB is greater than γ , then

output B as C.
(iii) All subset search
Step 4 Perform all subset search for the factors in C. For all possible models, compute

the modified AIC (mAIC) value defined by

mAIC = n/q log(RSS/n) + q2/
√
n,
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where n is the number of observations, q is the number of factors in the model,
and RSS = ∑n

i=1(yi − ŷi)2 is the residual sum of squares.
Step 5 The final model is chosen as the one with the smallest mAIC value among all

models. Then output the final factors set asD.
Step 1 is a standard normalization on the response y and the columns of X , so that the

columns ofX have equal length. Step 2 is a usual stepwise selection procedure. Through it, we
can get the factors set B, which are significant under statistic F at αin = 0.05 and αout = 0.1.
This step can ensure that the wholemodel could reach some significant level, however, it tends
to select too many inactive factors in most cases, so comes Step 3. Step 3 can select out the
factors with large absolute coefficients. Unless specified, we select γ to be 10% of the largest
|β̂i| in the model, that is, γ = 0.1max |β̂i|. The factors with the absolute coefficient lower
than the 10% of the largest absolute coefficient are considered inactive. Here, we choose 10%
just as Phoa (2014) recommended. If γ is too large, the factors set C may lose some active
factors; if γ is too small, the factors set C may contain too many inactive factors. Therefore,
it is important to choose an appropriate value of γ . Simulations show that for most cases
γ = 0.1max |β̂i| can produce satisfactory results, and the value can be adjusted according to
our previous experience. Steps 4 and 5 are the adjustment of the above steps. The final model
with the factors in C is chosen to minimize the mAIC value, where the mAIC criterion is
chosen to increase the penalty of model size than that of the traditional AIC criterion.

3. Performance of the TSVSmethod

In order to show the performance of the TSVSmethod, we revisit six examples that have been
analyzed in existing literature.

Example 3.1. We apply our method to the SSD first considered by Lin (1993). There are 24
factors and 14 responses but the factors 13 and 16 are identical. Therefore, we delete the factor
13 and rename factors 14 to 24 as 13 to 23. The design matrix and the response are shown in
Table 1 .

By applying the procedure of TSVS, the output of Step 2 is B = {14}. Then regress y on B
to obtain the estimate |β̂14| = 53.21. So TSVS selects the factor 14 as the active factor.

This example was analyzed by several other researchers. Westfall et al. (1998), Beattie et al.
(2002), Phoa (2014), and Chen et al. (2013) suggested that only factor 14 is active. Li and
Lin (2003) and Zhang et al. (2007) chose 14, 12, 19, 4 as active factors. Table 2 lists different
methods and the corresponding active factors selected for the data in Table 1. This table shows
that the method TSVS is comparable with the existing methods.

Example 3.2. The second example is the cast fatigue experiment with 7 factors and 12 obser-
vations (Wu and Hamada, 2009). The design and observations are listed in Table 3 . To use
TSVS, we set γ = 0.045, which is 0.1 times the largest |β̂F |. The final output shows that the
factor F is active, which is the same as the results ofWu andHamada (2009), Phoa et al. (2009),
and Chen et al. (2013).

If all two-factor interactions are also considered in the model, we set γ = 0.0458, which
is 0.1 times the largest |β̂FG|. The final output shows that the main effect F and two-factor
interaction FG are active, which is the same as the results ofWu and Hamada (2009), Westfall
et al. (1998), Hamada and Hamada (2010), and Chen et al. (2013).



2604 A.-J. QI ET AL.

Ta
bl
e
.
Th
e
tw
o-
le
ve
lS
SD

in
Li
n
(

)
.

Fa
ct
or
s

Re
sp
on

se

Ru
n



































Y







−


−


−









−


−


−





−


−



−


−


−









−


−


−


−


−






−


−


−






−



−


−





−


−








−





−


−


−


−



−









−


−


−


−





−








−



−



−


−


−





−


−





−






−


−


−


−





−


−








−





−


−


−


−






−


−



−









−


−









−






−





−











−


−





−


−


−


−



−


−



−



−





−











−


−






−





−


−



−



−



−


−


−


−


−


−


−



−






−






−


−


−


−


−





−


−


−





−



−





−


−


−


−














−






−


−


−






−



−



−



−


−






−



−





−


−





−



−



−


−


−





−


−


−











−


−


−






−








−


−



−


−



−




















−



−



−


−



−


−


−


−



−





−



−






−


−



−


−


−


−


−


−


−






−


−


−


−


−



−



−


−







COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 2605

Table . Summary of the selection results for Example ..

Selection method Active factors

Beattie et al. () 
Phoa et al. () 
Li and Lin () , , , 
Zhang et al. () , , , 
Westfall et al. () 
Phoa () 
Chen et al. () 
TSVS 

Example 3.3. This example considers the SSD with 31 factors and 18 observations from Rais
et al. (2009). The design matrix and observations are shown in Table 4 In the screening pro-
cedure, we set γ = 0.781, which is 0.1 times the largest |β̂24|. The final output shows that the
factors 4, 24, 27, 28 are active. Rais et al. (2009) suggested that 13, 18, 19, 20, 24, 27, 28, 29,
30 are nine significant factors. By using the SRRS method, Phoa (2014) suggested that 24 and
27 are two significant factors. By using the CGS method, Chen et al. (2013) suggested that
19, 24, 27, and 28 are four significant factors. However, all the methods select 24 and 27 to
be significant. This shows that the method TSVS can select correct important factors with a
moderate model size. .

In the following three examples, we make some comparisons with other methods.

Example 3.4. In order to judge the performance of the TSVS method, we compare the TSVS
with the following eight methods in the literature:

1. SSVS, the Bayesian variable selection procedure in George andMcCulloch (1993) and
Chipman et al. (1997);

2. SSVS/IBF, the two-stage Bayesian procedure in Beattie et al. (2002);
3. SCAD, the penalized least-square approach in Li and Lin (2003);
4. PLSVS, the partial least-square regression method in Zhang et al. (2007);
5. DS, the Dantzig selector in Phoa et al. (2009);
6. COCA, the contrast-orthogonality cluster analysis method in Li et al. (2010);
7. SRRS, the stepwise response refinement screener in Phoa (2014);
8. CGS, the componentwise Gibbs sampler in Chen et al. (2013).
The design used here is from Lin (1993) as listed in Table 1. Consider the following three

models:
Model 1: y = 10x1 + ε,

Table . Design matrix and observations for the cast fatigue experiment.

Run A B C D E F G Response

   −     −  .
  −     −  −  .
 −     −  −  −  .
    −  −  −   .
   −  −  −   −  .
  −  −  −   −   .
 −  −  −   −    .
 −  −   −    −  .
 −   −    −   .
  −    −    .
 −    −     .
 −  −  −  −  −  −  −  .
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Table . A two-level SSD in Rais et al. ().

Factors

Run                

 −   −     −  −  −       −  
  −  −   −     −  −  −      
 −   −  −   −     −  −  −     
   −  −   −  −   −     −  −  −  
  −    −  −   −  −   −     −  − 
  −   −    −  −   −  −   −    
 −   −   −    −  −   −  −   −   
 −  −   −   −    −  −   −  −   −  
 −  −  −   −   −    −  −   −  −   − 
  −  −  −  −   −   −    −  −   −  − 
 −   −  −  −  −   −   −    −  −   − 
    −  −   −  −  −  −   −   −   
      −     −  −   −  −  −  − 
 −       −     −  −   −  −  − 
 −  −       −     −  −   −  − 
    −  −  −       −     − 
  −     −  −  −       −   
 −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  − 

Factors

Run                y

   −  −   −  −  −  −   −   −    .
 −     −  −   −  −  −  −   −   −  .
  −     −  −   −  −  −  −   −   .
     −     −  −   −  −  −  −  .
 −       −     −  −   −  −  .
 −  −  −       −     −  −   .
  −  −  −       −     −  −  .
   −  −  −       −     −  .
    −  −  −       −     .
  −     −  −  −       −   .
 −   −     −  −  −       −  .
 −  −   −  −   −     −  −  −    .
  −   −    −  −   −  −   −    .
 −   −   −    −  −   −  −   −   .
 −  −   −   −    −  −   −  −   −  .
 −   −  −  −  −   −   −    −  −   .
  −  −   −  −  −  −   −   −    −  .
 −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  .

Model 2: y = −15x1 + 8x5 − 2x9 + ε,
Model 3: y = −15x1 + 12x5 − 8x9 + 6x13 − 2x16 + ε,
where ε is the random error from N(0, 1). Four measurements, TMIR, SEIR, MEDIAN, and
MEAN, are used to compare the performances of different methods, where TMIR represents
the rate that the selected model is the same as the true model, SEIR represents the rate that
the selected model includes the true model, MEDIAN represents the median of the number
of selected factors, and MEAN represents the average of the number of selected factors.

For each model, according to our experience, we set γ = 1 and repeat 1,000 times. The
results are shown in Table 5, where the results of SSVS, SCAD, PLSVS, DS, SRRS are from
Phoa (2014); the results of CGS are from Chen et al. (2013); the results of COCA are from Li
et al. (2010).

For Model 1, all methods SCAD, PLSVS, DS, COCA, SRRS, CGS, and TSVS have a 100%
SEIR. From the TMIR and MEAN, the methods SRRS and DS have better results than CGS.
However, ourmethodTSVS has amuch better result than all othermethods in terms of TMIR,
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Table . Comparison results in Example ..

Model Method TMIR SEIR MEDIAN MEAN

SSVS(/,) . .  .
SSVS(/,)/IBF . .  .
SCAD .   .
PLSVS(m= ) .   .

 DS(γ = ) .   .
COCA .   .
SRRS(γ = .) .   .
SRRS(γ = ) .   .
CGS .  NA .
TSVS(γ = ) .   .
SSVS(/,) . .  .
SSVS(/,)/IBF . .  .
SCAD . .  .
PLSVS(m= ) .   .

 DS(γ = ) . .  .
COCA . .  .
SRRS(γ = .) . .  .
SRRS(γ = ) . .  .
CGS . . NA .
TSVS(γ = ) . .  .
SSVS(/,) . .  .
SSVS(/,)/IBF . .  .
SCAD . .  .
PLSVS(m= ) . .  .

 DS(γ = ) . .  .
COCA . .  .
SRRS(γ = .) . .  .
SRRS(γ = ) . .  .
CGS . . NA .
TSVS(γ = ) . .  .

SEIR, and the model size. For Model 2, the method of CGS is better than all the other selec-
tion methods except TSVS. Our method has a 98.7% of TMIR and the model size is about 3.
For Model 3, the CGS and SRRS have better results than other methods, with TMIRs being
96% and 96.6%, MEANs being 5.04 and 5, respectively. Our method, however, has a more
satisfactory result with TMIR being 99% and MEAN being 5.004.

Example 3.5. This example is modified from Example 3.4. We randomly assign the active
factors to the columns of X . Consider the following three cases:

Case 1: One active factor with the coefficient β = (10);
Case 2: Three active factors with the coefficient vector β = (−15, 8, −2);
Case 3: Five active factors with the coefficient vector β = (−15, 12, −8, 6, −2).
For each case, we compare the TSVS with methods CGS, DS in Chen et al. (2013), and

SRRS in terms of the measurements TMIR, SEIR, AEIR, IEIR, and MEAN, where AEIR is
the average rate of active factors identified correctly and IEIR is the average rate of inactive
factors that are included in the selected model. For each case, we repeat 1,000 times, generate
1,000 models and, by setting γ = 1 according to our experience, get the means of the five
measurements. The results are shown in Table 6, where the results of CGS and DS are from
Chen et al. (2013).

From Table 6, we can see that for Case 1, the Dantzig method has the best performance
in all measurements. The CGS selects more inactive factors and has 96.3% in TMIR. The
TSVS and SRRS methods have about 99.5% and 99.4% in TMIR, respectively. Considering
the other four measurements, it is easy to see that TSVS is slightly better than SRRS. For
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Table . Comparison results in Example ..

Case Method TMIR(%) SEIR(%) AEIR(%) IEIR(%) MEAN

CGS .   . .
 DS(γ = 1)    . .

SRRS .   . .
TSVS .   . .
CGS . . . . .

 DS(γ = 1) . . . . .
SRRS . . . . .
TSVS . . . . .
CGS . . . . .

 DS(γ = 1) . . . . .
SRRS . . . . .
TSVS . . . . .

Case 2, the values of TMIR, AEIR, SEIR under TSVS are higher than those under other meth-
ods, and themodel size of TSVS is more accurate, which shows that TSVS is the best. For Case
3, considered from all five measurements, the TSVS method is better than the methods SRRS
and DS, and the CGS works a little better than the TSVS.

Example 3.6. The final example is more complicated than Example 3.5, where the coefficients
of the inactive factors are set to be zero. Following Marley andWoods (2010), the coefficients
of the inactive factors are drawn from N(0, 0.2) and the coefficients of the active factors are
drawn from N(β, 0.2Ic) in this example. We repeat the simulations 1,000 times for each of
the 1,000 models, and the performance of TSVS is evaluated by means of TMIR, SEIR, AEIR,
IEIR, MEAN for the 1,000 models. Because the coefficients in this example are not fixed, we
set γ = 0.1max(|β̂i|) and γ = 0.2max(|β̂i|) for Case 1 and γ = 0.1max(|β̂i|) for Cases 2
and 3. The results are shown in Table 7, where the results of CGS are from Chen et al. (2013).

In Case 1, we can see that when γ = 0.1max(|β̂i|), the results are not satisfactory, however,
when γ = 0.2max(|β̂i|), the results are improved greatly, giving a TMIR of 93.3%, sharing
100% for AEIR and SEIR, and 0.32% for IEIR, and a more accurate model size 1.071.

In Case 2, the method TSVS has the best results among the three methods in terms of the
measurements TMIR, SEIR, AEIR, andMEAN. For IEIR, themethod TSVS is still better than
CGS, while a little worse than the method SRRS. The IEIR of SRRS is 0.44%, while the IEIR
of TSVS is 2.198%. This shows that TSVS might overselect inactive factors.

In Case 3, we can see that the TMIR of TSVS is 43.61%, higher than those of CGS and
SRRS. The TSVS is also capable of identifying the smallest factors, whose SEIR is 48.62%. The
AEIR is a little lower than CGS, and higher than SRRS, whichmeans that the power of TSVS is

Table . Comparison results in Example ..

Case Method TMIR(%) SEIR(%) AEIR(%) IEIR(%) MEAN

CGS . . . . .
SRRS(γ = 0.1max(|β̂i|)) . . . . .

 TSVS(γ = 0.1max(|β̂i|)) . . . . .
SRRS(γ = 0.2max(|β̂i|)) . . . . .
TSVS(γ = 0.2max(|β̂i|)) . . . . .
CGS . . . . .

 SRRS . . . . .
TSVS . . . . .
CGS  . . . .

 SRRS . . . . .
TSVS . . . . .
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better than SRRS. The value of IEIR of TSVS is between that of CGS and SRRS, which means
for the type one error, the SRRS is better than TSVS, and both are better than CGS. From the
point of model size, the TSVS gives 4.629, which is the most accurate one.

4. Concluding remarks

Supersaturated designs (SSDs) are very useful for screening experiments and variousmethods
are available for analyzing data from such designs. In this article, we propose a three-stage
variable selection (TSVS) method for screening active factors in SSDs. Real examples and
simulation studies show that the TSVSmethod has a satisfactory performance compared with
other existing methods although it cannot be guaranteed to be the best in any case.

For multi-level SSDs, the proposed TSVS method still works. The only difference is that
each factor column should be first replaced by its contrasts. For example, for a three-level
factor, the orthogonal polynomial contrast coefficient vectors are (−1, 0, 1)′ and (1, −2, 1)′.
The remaining procedures for screening active effects are the same with that of two-level case.

In the procedure of TSVS, the choice of γ is an important issue. In this article, we just
approximately set γ = 1 or γ = 0.1max(|β̂i|). Other methods, such as cross-validation, may
be helpful for the choice of γ , however, the time of computation may be greatly increased.
This is an open problem for further study.
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