
Front. Math. China 2013, 8(3): 717–730
DOI 10.1007/s11464-012-0255-9

A two-stage variable selection strategy
for supersaturated designs
with multiple responses

Yuhui YIN, Qiaozhen ZHANG, Min-Qian LIU

Department of Statistics, School of Mathematical Sciences and LPMC, Nankai University,
Tianjin 300071, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract A supersaturated design (SSD), whose run size is not enough for
estimating all the main effects, is commonly used in screening experiments. It
offers a potential useful tool to investigate a large number of factors with only a
few experimental runs. The associated analysis methods have been proposed by
many authors to identify active effects in situations where only one response is
considered. However, there are often situations where two or more responses are
observed simultaneously in one screening experiment, and the analysis of SSDs
with multiple responses is thus needed. In this paper, we propose a two-stage
variable selection strategy, called the multivariate partial least squares-stepwise
regression (MPLS-SR) method, which uses the multivariate partial least squares
regression in conjunction with the stepwise regression procedure to select true
active effects in SSDs with multiple responses. Simulation studies show that
the MPLS-SR method performs pretty good and is easy to understand and
implement.

Keywords Multivariate partial least squares (MPLS), supersaturated design
(SSD), stepwise regression, variable selection, variable importance in projection
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1 Introduction

In preliminary industrial screening experiments, it is typical to study a large
number of potentially relevant factors simultaneously, but only a few are
believed to be active among these interested factors (a phenomenon commonly
recognized as effect sparsity). Generally, cost consideration and time constraint
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make it impractical to do a traditional fractional factorial design. Faced with
this reality, the supersaturated design (SSD), which investigates d factors of
levels s1, . . . , sd, respectively, by n experimental runs (

∑d
i=1(si − 1) > n − 1),

has attracted many authors’ attention for its strong and powerful competition
in run-size economy. The construction of SSDs dates back to Booth and Cox
[3]. But in the following thirty years, SSDs have received little attention until
Lin [16]. Since then the construction of SSDs has been widely explored. A
comprehensive list of early works can be found in [17,18,22], where Sun et
al. [22] also provided an extensive review of the existing methods for mixed-
level SSDs. However, relative to the rapid development of the construction, the
analysis of SSDs needs more investigation.

The analysis of SSDs aims at screening active effects from a large number of
potential important ones correctly and economically. The complex correlation
structure inherent in SSDs results in many traditional methods inapplicable.
In recent years, some new analysis methods have been developed, Chipman
et al. [6] provided a Bayesian variable selection approach for analyzing designed
experiments with complex aliasing; Westfall et al. [24] proposed an error control
skill in forward selection; Beattie et al. [2] put forward a two-stage Bayesian
model selection strategy (SSVS/IBF); Li and Lin [14,15] employed penalized
least squares with the smoothly clipped absolute deviation (SCAD) penalty to
identify the sparse active effects; Holcomb et al. [11] introduced contrast-based
methods; Lu and Wu [19] proposed a modified stepwise selection based on the
idea of staged dimensionality reduction; Zhang et al. [26] proposed a method
based on partial least squares (PLSVS); Phoa et al. [21] studied a variable
selection method via the Dantzig selector (DS); Li et al. [13] introduced a
contrast-orthogonality cluster analysis (COCA) method. All these methods
concentrate on the situations where only one response is considered. However
in practice, SSDs with multiple responses are often encountered. For example,
we need to consider more than one response for a type of laundry detergent
to study the decontamination ability for different types of stains. Meanwhile,
because of the limit of time and money, an SSD becomes a suitable choice.

For SSDs with multiple responses, the forgoing methods for SSDs with a
single response can be used directly to select active effects for one response at
one time. However, the main disadvantage is that the information lying in the
matrix of observations for responses will be neglected. In this paper, we propose
an approach of the multivariate partial least squares (MPLS) in conjunction
with the stepwise regression to reveal the importance of effects with regard to
individual responses when the responses have varied correlations. Simulation
studies and comparisons show that this procedure is effective.

MPLS regression, extensively used in applied sciences, is a method for
building predictive models when there are many factors that are highly collinear.
It bears some relations to the principal component analysis, canonical
correlation analysis and multiple regression analysis, and is a particularly
useful tool when the number of factors is large compared to the number of
observations. Recent work focusing on partial least squares regression includes,
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e.g., [1,5,8,10,12]. In this paper, we consider screening active effects in SSDs
with multiple responses via the idea of two-stage dimensionality reduction. In
the first stage, the MPLS method is used to find a set Si including all active
effects with a high probability for the ith response, and in the second stage,
the stepwise regression method is used to find out the active effects from the
selected set Si with low Type I and Type II errors for the ith response. We call
this method the MPLS-stepwise regression (MPLS-SR) method.

This paper is organized as follows. In Section 2, some preliminaries of the
selection technique are introduced. Section 3 presents the use of the MPLS
selection method in conjunction with the stepwise regression procedure
for screening active effects. Section 4 shows the simulation and comparison
results. Concluding remarks are provided in Section 5.

2 Preliminaries

Let SSD(n, sd1
1 · · · sdl

l ) denote an SSD of n runs with d = d1 + · · · + dl

factors, among which there are di factors with si levels, say {0, 1, . . . , si − 1}.
Let X = (x1, . . . , xm) be the matrix of orthonormal main-effect contrasts of an
SSD(n, sd1

1 · · · sdl
l ), where

m =
l∑

i=1

di(si − 1),

and xi = (x1i, . . . , xni)T for i = 1, . . . ,m are called the main-effect contrasts,
or main effects for simplicity.

Suppose that for an SSD(n, sd1
1 · · · sdl

l ), there are q responses each with n
observations, denoted by

yi = (y1i, . . . , yni)T, i = 1, . . . , q.

Let Y = (y1, . . . , yq) be the matrix of observations. For an SSD(n, sd1
1 · · · sdl

l ),
the underlying model between the responses and effects is supposed to be

Y = 1nβT
0 + X(β1, . . . , βq) + ε, (1)

where 1n denotes the n× 1 vector with all elements unity, β0 = (β10, . . . , βq0)T

is the vector of grand means, βi = (βi1, . . . , βim)T is the vector of unknown
coefficients for yi, ε = (εij) = (ε1, . . . , εq) is an n × q matrix of random errors
consisting of n independent samples (εi1, . . . , εiq) ∼ MN(0,Σ) for i = 1, . . . , n,
and Σ is a positive semi-definite matrix with all the diagonal elements being
one, i.e., the variances of all the responses are equal to one, here X is also called
the model matrix.

Given matrices Y and X, we want to screen active effects for each response.
In SSDs, because X is non-full-rank, the matrix (XTX)−1 does not exist.
Therefore, the analysis of SSDs is a challenging task. Generally, the following
assumptions are needed for the analysis of SSDs [9].
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(i) Effect sparsity: only a few factors are really active among the potential
ones.

(ii) The coefficients of the active effects are large enough to be distinguished
from the error.

(iii) The columns in X are not pairwise fully aliased.
Under these assumptions, we propose the MPLS variable selection combined
with the stepwise regression procedure to appropriately screen the active effects
with regard to individual responses.

Given an SSD(n, sd1
1 · · · sdl

l ), let E0 = X be the model matrix and F0 = Y be
the corresponding n× q matrix of observations. For simplicity, we suppose that
E0 = X and F0 = Y are all column centered and normalized. The procedure
of the MPLS is descried as follows [23].
Computing first MPLS component t1 First, we find two linear functions

t1 = E0ω1, u1 = F0c1,

where the Euclidean norms of ω1 and c1 are both equal to one, i.e.,

‖ω1‖ = ‖c1‖ = 1.

Then we solve ω1 and c1 which maximize cov(t1, u1), i.e., the covariance between
t1 and u1. After obtaining ω1 and c1, consider the linear regressions of E0 on
t1 and F0 on t1, respectively, and we get

E0 = t1p
T
1 + E1, F0 = t1q

T
1 + F1,

where E1 and F1 are the vectors of residuals, respectively. The variable t1 is
called the first MPLS component of the regression.
Computing second MPLS component t2 Find a second pair of linear
functions

t2 = E1ω2, u2 = F1c2

such that cov(t2, u2) is maximized, where

‖ω2‖ = ‖c2‖ = 1.

We then consider the regressions of E1 on t2 and F1 on t2 to get the new vectors
of residuals E2 and F2, respectively,

E1 = t2p
T
2 + E2, F1 = t2q

T
2 + F2.

t2 is called the second MPLS component.
Computation of next MPLS components and stopping rule
Continue the same procedure for computing the next components

th = Eh−1ωh, h � 3.
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We can figure out all the MPLS components. However, here the point is how
to find the right number of MPLS components which are powerful in improving
the prediction of the MPLS regression model. In this paper, a proper h is
decided following a cross-validation procedure.
Variable importance in projection (VIP) Given the h MPLS
components T = (t1, t2, . . . , th), we can easily obtain that

tk = E0ω
∗
k, (2)

where

ω∗
k = (ω∗

k1, . . . , ω
∗
km)T =

k−1∏
i=1

(I − ωip
T
i )ωk.

Then the regression of F0 on E0 can be shown to be

F̂0 = TB̂,

where
B̂ = (TTT )−1TTF0

is the ordinary least squares estimation.
From (2), the kth MPLS component tk is a function of X. Therefore, if tk

contributes to Y very much, and xj is important when building up tk, then it
is reasonable to believe that xj will be important to Y. The score of VIP can
describe this idea. The VIP score of the jth effect is defined to be

VIPj =
(

m

Rd{Y ; t1, t2, . . . , th}
h∑

k=1

Rd(Y ; tk)(ω∗
kj)

2

)1/2

,

where

Rd(Y ; t1, t2, . . . , th) =
h∑

i=1

Rd(Y ; ti), Rd(Y ; ti) =
q∑

j=1

Rd(yj ; tk)
q

,

Rd(yj ; tk) = r2(yj ; tk),

and r represents the correlation coefficient between yj and tk. A larger VIP score
generally means the corresponding effect is more important to the responses.
In this paper, we will use VIP scores to select a set of active effects.
Stepwise regression With the availability of statistical packages, the
stepwise regression is now a most commonly used method for building models.
However, during the stepwise regression process, how to choose the p-value for
entering or removing a variable is arbitrary. In fact, the choice of p-values is
important to reveal the true relationship between the responses and the
variables. Phoa et al. [21] suggested a model selection criterion via a
modified version of the Akaike information criterion (AIC), called mAIC,

mAIC = n log
RSS
n

+ 2t2,
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where RSS is the residual sum of squares, n is the number of runs, and t is the
number of parameters in the model. The mAIC imposes heavier penalty on
the model complexity than the AIC. Therefore, the mAIC is more rational in
the analysis of SSDs because of their factor sparsity assumption. In this paper,
we use a procedure which combines the mAIC and the stepwise regression for
model selection in the analysis of SSDs.

3 MPLS-SR variable selection procedure

Given an SSD(n, sd1
1 · · · sdl

l ), consider the linear model (1). Without loss of
generality, Y and X are assumed to be column centered and normalized. Then
model (1) becomes

Y = X(β1, . . . , βq) + ε.

We now propose the following steps to simultaneously screen the active effects
for each response from the m potential important effects x1, . . . , xm.

Proposed variable selection strategy The two-stage analysis strategy,
MPLS-SR, is carried out as follows. Denote the set of all effects by

S = {x1, . . . , xm}.

The first stage aims at eliminating the inactive effects as many as possible,
and getting the sets of candidate active effects, denoted by Si for each yi,
i = 1, . . . , q. Therefore, Si should include all the elements of the true active
effects set for yi (denoted by TAi) with high probability and be substantially
smaller than S. In the second stage, Si is further screened, the stepwise
regression procedure is used to identify the active effects for yi from Si, and the
set consisting of the identified active effects is denoted by IAi.

Selection of Si using MPLS First, obtain the h MPLS components T =
{t1, . . . , th}, build a regression equation Ŷ = TB̂, and then, according to (2),
obtain a regression equation between Y and X, denoted by Ŷ = Xβ̂. For
each yi, choose the effects with the largest �n/2� − 1 estimated coefficients in
β̂i = (β̂i1, . . . , β̂im)T to form a set of the potential active effects, denoted by
SM

i . Second, calculate the VIP values of all the m effects and sort them in
descending order:

VIP(1) � VIP(2) � · · · � VIP(m),

and the effects with the largest �n/2� − 1 VIP values are chosen to form a set
SVIP. Third, define

Si = SM
i ∪ SVIP.

Note that the number of the elements in Si is usually far smaller than n − 2,
though the largest possible one is n − 2. Then we efficiently narrow the scope
of candidate active effects.
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Selection of IAi using stepwise regression A stepwise regression usually
tends to not only select too many inactive factors but also miss some active
ones, as discussed in [19]. However, after we have efficiently narrowed the set
of potentially active effects in the first stage, the stepwise procedure will then
give a much better result. The true active effects identified rate can reach a
high level. In the stepwise procedure, the choice of p-to-remove and p-to-enter
affects the Type I and Type II errors. Here, the stepwise regression method is
combined with the mAIC to choose proper p-values automatically. We choose
p-values (p-to-remove = p-to-enter) from interval [0.01, 0.1] with a step 0.01,
and run a stepwise regression between yi and the effects in Si, then the mAIC
is used to pick out a best suitable model. The effects included in the chosen
model are identified as the elements of IAi.

A step-by-step procedure for MPLS-SR A step-by-step guideline for the
proposed procedure can be summarized as follows.
Step 1 Let

F0 = Y = (y1, . . . , yq), E0 = X = (x1, . . . , xm),

which are supposed to be column centered and normalized.
Step 2 Let r be the rank of X, obtain the first r MPLS components t1, . . . , tr,
and build regressions of Y on t1, . . . , tj for 1 � j � r. From these r models,
find the model with the best prediction performance using the cross-validation
method. Suppose that there are h MPLS components t1, . . . , th in this selected
model. Then transform the equation between Ŷ and t1, . . . , th into a equation
between Ŷ and X, and choose the effects with the largest �n/2� − 1 estimated
coefficients in β̂i to form a set SM

i for yi, i = 1, . . . , q.
Step 3 Use the h MPLS components t1, . . . , th chosen in Step 2 to compute
the VIP scores for the m effects, denoted by VIPj , j = 1, . . . ,m. Sort the VIP
scores in descending order:

VIP(1) � VIP(2) � · · · � VIP(m),

and choose the xj’s with

VIPj � VIP(�n/2�−1)

to form a set SVIP.

Step 4 For i = 1, . . . , q, let

Si = SM
i ∪ SVIP.

Then run stepwise regressions between yi and the effects in Si using ten
p-values (p-to-enter = p-to-remove). Choose the one which has the smallest
mAIC among the above ten regression models as the final suitable model. The
effects included in the chosen model are identified as active effects, which form
a set IAi.

Step 5 Output the set IAi for i = 1, . . . , q.
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4 Simulations and comparisons

In this section, some simulations will be firstly carried out to display the
performance of the MPLS-SR method, and then we will focus on the
comparisons between the proposed MPLS-SR method and the other methods
for SSDs with a single response.

4.1 Simulation studies

For simplicity, we consider SSDs with three responses, y1, y2, and y3. In each
simulation, the covariance, Σ, of (εi1, εi2, εi3) is a randomly generated semi-
definite matrix with all the diagonal elements being one. We simulate 5 types
of models, Type j denotes models in each of which any of the three responses
has the number of the true active effects no more than j. Note that Box and
Meyer [4] defined effect sparsity as 20% or fewer of the effects being active, and
Marley and Woods [20] defined effect sparsity as the number of active effects
being at most a third of the sample size. Here, for an SSD with an n × m
orthonormal main-effect contrast matrix X, the maximum of j is taken to be
the integer part of min{n/3,m/5}. The number of true active effects and the
true active effects for each response are randomly decided under the constraint
of each type, i.e., under Type j, the number of true active effects is randomly
determined from the set {1, . . . , j} for each response and then the true active
effects are randomly arranged on the potential interested effects.

We demonstrate the performance of the proposed method by the two-level
SSD(14, 223) shown in Table 1 (cf. [16]) and the mixed-level SSD(18, 21312) in
Table 2 (cf. [7]), where the rows represent factors and the columns represent
runs.

In each simulation, suppose that there are Ni active effects for yi, set
their model coefficients, i.e., the corresponding Ni components of βi, to be
β

(1)
i , . . . , β

(Ni)
i , respectively, and set the other components of βi to be zero.

Here, we consider the following four cases of relative magnitude of coefficients
β

(1)
i , . . . , β

(Ni)
i for i = 1, 2, 3.

Case 1 The coefficients of active effects are 4, and the signs are randomly
assigned.
Case 2 The minimal coefficient of active effect is 3, and the coefficients of
other active effects ascend in constant intervals of 1 from low to high. For
example, the coefficients of three active effects are 3, 4, and 5, respectively.
Case 3 The minimal coefficient of active effect is 3, and the coefficients of
other active effects ascend in constant intervals of 3 from low to high. For
example, the coefficients of four active effects are 3, 6, 9, and 12, respectively.
Case 4 The coefficients of active effects are randomly drawn from the uniform
distribution U(2, 10).

Simulation results based on 1000 replicates are summarized in Table 3 for
the SSD(14, 223) and in Table 4 for the SSD(18, 21312). In these tables, ‘Case’
refers to the relative magnitude of coefficients, ‘Type’ denotes the maximum
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Table 1 SSD(14, 223): half-fraction of Williams [25] data∗

factor run

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1 −1 −1 −1 −1 −1 1 −1 1 1 −1

2 1 −1 1 1 −1 −1 −1 1 −1 1 1 −1 1 −1
3 1 −1 −1 −1 1 1 −1 1 −1 1 −1 −1 1 1
4 −1 −1 1 1 1 1 −1 −1 −1 1 1 −1 1 −1
5 −1 −1 1 −1 1 1 1 −1 −1 −1 1 1 1 −1
6 −1 −1 −1 1 1 1 −1 1 1 1 −1 1 −1 −1
7 1 1 −1 −1 −1 1 −1 −1 1 1 −1 1 1 −1
8 1 1 −1 −1 1 −1 1 1 −1 1 1 −1 −1 −1
9 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 1 −1

10 1 −1 1 1 −1 1 1 1 −1 −1 −1 1 −1 −1
11 1 −1 −1 1 −1 1 −1 −1 1 −1 1 1 −1 1
12 −1 −1 1 −1 −1 −1 1 −1 1 1 −1 1 1 1
13 1 1 1 1 1 −1 1 −1 −1 −1 −1 1 −1 −1
14 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
15 −1 1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1
17 1 −1 1 −1 1 1 1 −1 1 1 −1 −1 −1 −1
18 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1
19 −1 −1 −1 1 −1 1 1 1 −1 1 1 1 −1 −1
20 1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 1 1
21 −1 1 −1 −1 −1 1 1 1 −1 1 −1 1 1 −1
22 −1 1 1 −1 1 1 −1 1 −1 −1 −1 1 −1 1
23 −1 −1 1 −1 1 −1 −1 1 1 −1 1 1 1 −1
24 1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1

∗ Note that 16th factor is deleted since it is fully aliased with 13th factor

Table 2 SSD(18, 21312): two-third of an OA(27, 313, 2)

factor run

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
4 1 0 2 2 1 0 0 2 1 2 1 0 0 2 1 1 0 2
5 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 2 0 1
6 0 2 1 1 0 2 2 1 0 0 2 1 1 0 2 2 1 0
7 1 0 2 2 0 1 2 1 0 2 1 0 1 0 2 0 2 1
8 2 0 1 2 0 1 2 0 1 1 2 0 1 2 0 1 2 0
9 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1

10 2 1 0 1 0 2 0 2 1 1 0 2 0 2 1 2 1 0
11 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0
12 2 1 0 2 1 0 2 1 0 1 0 2 1 0 2 1 0 2
13 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0 0 1 2

number of true active effects for the responses, ‘AEIR1i’ stands for the all active
effects identified rate for yi in the first stage, ‘TMIRi’ stands for the true model
identified rate for yi, and ‘AEIR2i’ shows the all active effects identified rate
for yi in the second stage.

From Table 3, we have the following observations.
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Table 3 Simulation results of SSD(14,223)

Case Type AEIR11 AEIR12 AEIR13 TMIR1 TMIR2 TMIR3 AEIR21 AEIR22 AEIR23

1 1 1 1 1 0.789 0.781 0.779 1 1 1

2 1 1 1 0.797 0.801 0.79 0.991 0.994 0.99
3 0.996 0.997 0.998 0.732 0.727 0.721 0.95 0.955 0.955
4 0.979 0.981 0.99 0.682 0.673 0.659 0.862 0.867 0.856

2 1 1 1 1 0.745 0.771 0.788 1 1 1
2 0.998 1 0.999 0.813 0.825 0.812 0.997 1 0.996
3 0.976 0.995 0.991 0.796 0.818 0.825 0.965 0.986 0.979
4 0.937 0.95 0.94 0.735 0.728 0.741 0.895 0.909 0.91

3 1 1 1 1 0.776 0.79 0.788 1 1 1
2 0.989 0.985 0.986 0.821 0.801 0.817 0.989 0.983 0.984
3 0.942 0.965 0.959 0.779 0.774 0.793 0.934 0.957 0.947
4 0.917 0.908 0.891 0.718 0.734 0.696 0.885 0.895 0.865

4 1 1 1 1 0.799 0.763 0.781 1 1 1
2 0.982 0.989 0.982 0.811 0.81 0.783 0.982 0.989 0.982
3 0.925 0.937 0.927 0.794 0.784 0.768 0.925 0.937 0.927
4 0.864 0.87 0.87 0.719 0.727 0.743 0.862 0.869 0.867

Table 4 Simulation results of SSD(18,21312)

Case Type AEIR11 AEIR12 AEIR13 TMIR1 TMIR2 TMIR3 AEIR21 AEIR22 AEIR23

1 1 1 1 1 0.529 0.511 0.536 0.92 0.916 0.918

2 1 1 1 0.618 0.603 0.623 0.862 0.852 0.868
3 0.999 0.998 0.999 0.624 0.628 0.614 0.798 0.802 0.792
4 0.992 0.986 0.989 0.604 0.565 0.583 0.746 0.739 0.729
5 0.965 0.969 0.975 0.521 0.514 0.51 0.658 0.669 0.669

2 1 1 1 1 0.537 0.548 0.551 0.912 0.929 0.932
2 1 1 0.999 0.634 0.635 0.634 0.863 0.856 0.862
3 0.997 0.99 0.99 0.646 0.635 0.573 0.829 0.819 0.787
4 0.973 0.969 0.96 0.611 0.589 0.618 0.76 0.736 0.758
5 0.909 0.91 0.918 0.551 0.548 0.543 0.665 0.657 0.684

3 1 1 1 1 0.553 0.557 0.538 0.907 0.908 0.923
2 0.989 0.992 0.989 0.626 0.614 0.626 0.874 0.875 0.887
3 0.969 0.978 0.973 0.644 0.657 0.638 0.805 0.836 0.809
4 0.896 0.914 0.904 0.58 0.586 0.581 0.728 0.735 0.717
5 0.79 0.804 0.808 0.521 0.509 0.495 0.64 0.622 0.611

4 1 1 1 1 0.54 0.545 0.571 0.918 0.908 0.93
2 0.996 0.996 0.995 0.631 0.642 0.662 0.875 0.864 0.879
3 0.985 0.979 0.984 0.635 0.66 0.628 0.808 0.815 0.793
4 0.95 0.938 0.943 0.604 0.584 0.6 0.748 0.73 0.746
5 0.882 0.875 0.882 0.544 0.543 0.563 0.66 0.662 0.671

(i) If only a single effect is active for the responses, i.e., under Type 1, the
performance of the MPLS-SR method is perfect and not sensitive to the choices
of the magnitude of the coefficients, and the all active effects identified rates
(AEIR1s and AEIR2s) are 100%, meanwhile, the true model identified rates
(TMIRs) are all higher than 74.5%.

(ii) When the maximum number of the true active effects is no more than
3, i.e., under Types 1, 2, and 3, the performance of the MPLS-SR is still perfect,
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the AEIR1s and AEIR2s are higher than 92%, and the TMIRs are higher than
72%. When the maximum number of the true active effects is 4, i.e., under
Type 4, the performance becomes a little worse, some AEIR1s and most of the
AEIR2s are lower than 90%, and some TMIRs are lower than 70%.

(iii) In each case, the TMIRs, AEIR1s, and AEIR2s decrease with the
number of the true active effects increasing. For different cases, the MPLS-SR
performs similarly in AEIR2s and TMIRs, but a little different in AEIR1s, for
example, in Case 1, the AEIR1s are all higher than 97%, while in Case 4, some
AEIR1s are lower than 88%.

Therefore, we conclude that in the analysis of two-level SSDs with multiple
responses, the number of active effects and the magnitude of their coefficients
have impacts on the performance of the MPLS-SR method.

From Table 4, we can have the similar observations on the performance of
the MPLS-SR method when applied to the mixed-level SSD as those obtained
from Table 3. Compared with Table 3, the MPLS-SR method performs stably
in AEIR1s, but a little worse in TMIRs and AEIRs. The reason for this may
be that the inherent structures of the orthonormal main-effect contrast matrix
for mixed-level SSDs are more complicated.

Remark 1 In the simulations, the covariance, Σ, of (ε1, ε2, ε3) is a randomly
generated semi-definite matrix with all the diagonal elements being one. How
do the correlations among the responses y1, y2, and y3 affect the performance
of the MPLS-SR method? In the first stage, i.e., the MPLS stage, we get the
set of candidate active effects Si for yi by combining the sets SM

i and SVIP.
For SM

i , according to the multivariate regression analysis, we know that the
correlations among the responses have no effect on estimating the coefficients,
and thus, have no effect on the generation of SM

i , as for SVIP, we also have the
finding that the correlations among the responses have no effect on the selection
of SVIP by some simulations. Therefore, the MPLS-SR method is stable under
the random generation of Σ here.

4.2 Comparions

In order to compare the MPLS-SR method with the analysis methods for SSDs
with only one response, we now consider the SSD(14, 223) in Table 1. Suppose
that the true model is

⎧⎪⎨
⎪⎩

yi1 = 10xi1 + εi1,

yi2 = −15xi1 + 8xi5 − 2xi9 + εi2,

yi3 = −15xi1 + 12xi5 − 8xi9 + 6xi,13 − 2xi,17 + εi3,

i = 1, . . . , 14, (3)

where
(εi1, εi2, εi3) ∼ MN(0, I)

is the vector of random errors.
We generate

Y = (yij) = (y1, . . . , y3)
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from the above linear model, and run the simulations 1000 times. Note that the
three single models in (3) are commonly used in displaying the performance of
the analysis methods for the SSD(14, 223) with only one response y1, y2, or y3.
Here, the proposed method, MPLS-SR, can simultaneously screen active effects
for all the three models in (3). Table 5 compares the MPLS-SR with other five
methods which are used for SSDs with one response. Here, ‘TMIR’ stands for
the true model identified rate, ‘SEIR’ stands for the smallest effect identified
rate, and ‘median’ and ‘mean’ are the median and mean sizes of the models.

Table 5 Comparison results

Case method TMIR (%) SEIR (%) median mean

I: y1 SSVS(1/10, 500) 40.5 99.0 2 3.1

SSVS(1/10, 500)/IBF 61.0 98.0 1 2.5
SCAD 75.6 100 1 1.7
PLSVS(m = 1) 61.0 100 1 1.5
DS(γ = 1) 99.4 100 1 1.0
MPLS-SR 78.5 100 1 1.2

II: y2 SSVS(1/10, 500) 8.6 30.0 3 4.7
SSVS(1/10, 500)/IBF 8.0 28.0 3 4.2
SCAD 75.6 98.5 3 3.3
PLSVS(m = 1) 76.4 100 3 3.3
DS(γ = 1) 84.4 85.3 3 3.0
MPLS-SR 88.6 99.2 3 3.1

III: y3 SSVS(1/10, 500) 36.4 84.0 6 8.0
SSVS(1/10, 500)/IBF 40.7 75.0 5 5.6
SCAD 69.7 99.4 5 5.4
PLSVS(m = 1) 73.6 95.0 5 5.2
DS(γ = 1) 79.1 91.2 5 5.1
MPLS-SR 82.5 97.6 5 5.1

From Table 5, we can see that the MPLS-SR identifies the true models
with the highest probabilities in Cases II and III. In Case I, the MPLS-SR
method shares 100% perfect identification rate with the SCAD, PLSVS, and DS
methods in identifying the smallest effect. In Cases II and III, the performance
of the MPLS-SR method shows its stability and powerfulness in identifying the
smallest effect. In fact, the MPLS-SR method includes the smallest active effect
with a high probability (> 97.5%) in any of these three cases, that is to say,
type II errors are all controlled within the level 0.025.

Remark 2 Compared with the five methods, we can see that the MPLS-SR
method not only has the ability of dealing with SSDs with multiple responses,
but also performs as good as the methods which consider only one response at
a time. For the MPLS-SR method, because the information lying in the matrix
of observations is considered in the MPLS procedure, the inactive effects are
eliminated as many as possible and the set of candidate active effects is
effectively narrowed for the stepwise regression procedure, and thus, the
proposed method performs powerful as illustrated in Table 5.
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5 Concluding remarks

SSDs are very useful in screening experiments because of their economy in run
sizes. There are many methods for the analysis of SSDs with only one response.
However, there are often screening experiments in which two or more responses
are observed simultaneously. In this paper, we propose a two-stage strategy,
called the MPLS-SR method, to solve the variable selection problem in SSDs
which have multiple responses with varied correlations.

The new method uses the MPLS and stepwise regression procedures to
screen active effects for each response. In the first stage, the MPLS regression
method is used to eliminate the inactive effects as many as possible, and only
less than n − 2 effects are left to form a set of candidate active effects for
each response for the stepwise regression in the second stage. Obviously, the
performance of the MPLS-SR method in the first stage has a direct impact on
its performance in the second stage. Our simulations show that the MPLS-SR
method performs stably in the first stage in the analysis of the two-level and
mixed-level SSDs. In the second stage, the stepwise regression is combined with
the mAIC to improve the performance of the MPLS-SR method.

For SSDs with multiple responses, the proposed MPLS-SR method can
screen active effects for each response simultaneously. Compared with the
analysis methods for SSDs with one response, the information lying in the
matrix of observations for the responses is considered in the MPLS stage. The
comparison results in Table 5 provide a rationality for the MPLS-SR method.
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12. Höskuldsson A. Variable and subset selection in PLS regression. Chemometrics &
Intelligent Laboratory Systems, 2001, 55: 23–38

13. Li P, Zhao S L, Zhang R C. A cluster analysis selection strategy for supersaturated
designs. Comput Statist Data Anal, 2010, 54: 1605–1612

14. Li R, Lin D K J. Data analysis of supersaturated designs. Statist Probab Lett, 2002,
59(2): 135–144

15. Li R, Lin D K J. Analysis methods for supersaturated design: some comparisons.
J Data Sci, 2003, 1(3): 249–260

16. Lin D K J. A new class of supersaturated designs. Technometrics, 1993, 35(1): 28–31

17. Liu Y, Liu M Q. Construction of optimal supersaturated design with large number of
levels. J Statist Plann Inference, 2011, 141: 2035–2043

18. Liu Y, Liu M Q. Construction of equidistant and weak equidistant supersaturated
designs. Metrika, 2012, 75(1): 33–53

19. Lu X, Wu X. A strategy of searching active factors in supersaturated screening
experiments. J Quality Technol, 2004, 36(4): 392–399

20. Marley C J, Woods D C. A comparison of design and model selection methods for
supersaturated experiments. Comput Statist Data Anal, 2010, 54(12): 3158–3167

21. Phoa F K H, Pan Y H, Xu H. Analysis of supersaturated designs via the Dantzig
selector. J Statist Plann Inference, 2009, 139: 2362–2372

22. Sun F S, Lin D K J, Liu M Q. On construction of optimal mixed-level supersaturated
designs. Ann Statist, 2011, 39(2): 1310–1333

23. Wang H W. Partial Least-squares Regression Method and Applications. Beijing:
National Defence Industry Press, 1999 (in Chinese)

24. Westfall P H, Young S S, Lin D K J. Forward selection error control in the analysis of
supersaturated design. Statist Sinica, 1998, 8(1): 101–117

25. Williams K R. Designed experiments. Rubber Age, 1968, 100: 65–71

26. Zhang Q Z, Zhang R C, Liu M Q. A method for screening active effects in super-
saturated designs. J Statist Plann Inference, 2007, 137(6): 2068–2079


