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Abstract

A supersaturated design (SSD) is a design whose run size is not enough for estimating all the main effects. The goal in conducting
such a design is to identify, presumably only a few, relatively dominant active effects with a cost as low as possible. However, data
analysis of such designs remains primitive: traditional approaches are not appropriate in such a situation and several methods which
were proposed in the literature in recent years are effective when used to analyze two-level SSDs. In this paper, we introduce a
variable selection procedure, called the PLSVS method, to screen active effects in mixed-level SSDs based on the variable importance
in projection which is an important concept in the partial least-squares regression. Simulation studies show that this procedure is
effective.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many preliminary industrial screening experiments typically contain a large number of potentially relevant factors.
Among them, only a few are believed to be active. The supersaturated design (SSD), first constructed systematically
by Booth and Cox (1962), has received a great deal of attention since the appearance of Lin (1993). Most studies
have focused on two-level and multi-level SSDs. Extensions to mixed-level SSDs include Yamada and Lin (2002),
Yamada and Matsui (2002), Fang et al. (2003), Fang et al. (2004), Li et al. (2004), Yamada et al. (2006) and Liu et al.
(2006). With the construction of SSDs having been widely explored, the inferential aspect of such designs needs more
investigation. Of course, the analysis is very challenging since even a main-effect model is not identifiable.

To find the sparse active effects, variable selection becomes fundamental in the analysis stage of such screening
experiments. Some new analysis methods were developed in recent years, of course, all these studies restricted their
discussion at two-level SSDs. Chipman et al. (1997) proposed a Bayesian variable selection approach for analyzing
experiments with complex aliasing; Westfall et al. (1998) developed an error control skill in forward selection; Beattie
et al. (2002) gave a two-stage Bayesian model selection strategy (SSVS/IBF); Li and Lin (2002, 2003) employed
penalized least squares with the smoothly clipped absolute deviation (SCAD) penalty to identify the sparse active
effects; Holcomb et al. (2003) proposed contrast-based methods; Lu and Wu (2004) proposed a modified stepwise
selection based on the idea of staged dimensionality reduction. Yamada (2004) examined type II error (declaring an
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active effect to be inactive) in stepwise selection and discussed some guidelines for data analysis. Simulation studies
demonstrated that the SCAD method of Li and Lin (2002, 2003) outperforms the other approaches. However, the SCAD
method requires a good initial value which is close to the true value, if the initial value given by the stepwise selection
is not very close to the true one (that we do not know in fact), perhaps the procedure will not give a satisfactory result.
With the construction of multi-level and mixed-level SSDs being discussed so often, the aspect of data analysis needs
investigation. However, until now, this problem has not been studied in adequate detail. In this paper, we introduce an
approach via partial least-squares (PLS) regression which can be used to screen active effects in mixed-level SSDs.

PLS regression is a technique that generalizes and combines features from principal component analysis, canonical
correlation analysis and multiple regression analysis. It is particularly useful when we need to predict a set of response
variables from a (very) large set of explanatory variables. By taking advantage from the statistical tests associated with
linear regression, it is feasible to select the significant explanatory variables to include in PLS regression and to choose
the number of PLS components to retain. Recent work focusing on this topic includes, e.g. Helland (1990), Garthwaite
(1994), Butler and Denham (2000), Höskuldsson (2001) and Bastien et al. (2005). This paper proposes a method, called
the PLS variable selection (PLSVS) method, for searching active effects in SSDs based on the variable importance in
projection (VIP). Simulation studies demonstrate that the method is effective when used to analyze data collected from
SSDs with mixed-level, multi-level or two-level factors; in addition, the simulation shows that the PLSVS procedure
outperforms the SSVS/IBF approach and can be comparable with the SCAD method when used to screen active effects
in two-level SSDs.

The paper is organized as follows. In Section 2, the PLS regression technique is introduced. Section 3 presents
the PLSVS procedure for screening active effects. The simulation studies are reported in Section 4. The last section
contains some concluding remarks.

2. Background of PLS regression

Let y0, x01, . . . , x0k be the raw variables and their column centered and normalized patterns are denoted by
y, x1, . . . , xk .

PLS univariate regression is a model linking a response variable y to a set X = (x1, . . . , xk) of (numerical or
categorical) explanatory variables. It can be obtained as a series of simple and multiple regressions.

The PLS regression model with m components is written as

y =
m∑

h=1

ch

⎛
⎝ k∑

j=1

whj xj

⎞
⎠+ residual, (1)

with the constraint that the m PLS components th’s are orthogonal where

th =
k∑

j=1

whj xj = Xwh, for h= 1, . . . , m,

and wh= (wh1, . . . , whk)
′. PLS regression is an algorithm for estimating the parameters of model (1). For the detailed

introduction, please refer to Bastien et al. (2005) and the references therein. Now let us introduce this algorithm briefly.
Computation of the first PLS component t1. The component t1 should bear the information of explanatory variables

X as much as possible and the correlation coefficient corr(y, t1) is maximal. This means the first goal is to maximize

cov(y, t1)= s(t1) ∗ corr(y, t1),

with the constraints of t1 = Xw1 and w′1w1 = 1.
The optimal solution w1 is the standard eigenvector of X′yy′X corresponding to the largest eigenvalue, and then:

t1 = 1√∑k
j=1 cov(y, xj )

2

k∑
j=1

cov(y, xj )xj .

The weight for xj can be written as corr(y, xj ) since y and xj are respectively standardized. So in order for a variable
xj to be important in building up t1, it needs to be strongly correlated with y.
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Computation of the second PLS component t2. Firstly, the k + 1 simple regressions of, respectively, y and each xj

on t1 are run:

y = c1t1 + y1,

xj = p1j t1 + x1j , j = 1, . . . , k.

Then the second PLS component t2 is defined as

t2 = 1√∑k
j=1 cov(y1, x1j )

2

k∑
j=1

cov(y1, x1j )x1j .

For interpretation purpose, the component t2 is better expressed as a function of variables xj ’s. This is possible because
the residuals x1j = xj − p1j t1 for j = 1, . . . , k are functions of xj ’s. When expressed in terms of xj ’s, the component
t2 is written as t2 = Xw2.

Computation of the next PLS components and stopping rule. We follow the same procedure for computing the next
components th=Xwh for h�3. The search for new components is stopped either in accordance with a cross-validation
procedure or when all partial covariances are not significant. The PLS algorithm converges very quickly, in practice,
it will give a satisfactory result when m= 1, 2 or 3.

PLS regression formula. In model (1), the coefficients ch’s are estimated by multiple regression of y on the PLS
components th’s. The estimated regression equation may be then expressed in terms of the variables xj ’s:

ŷ =
m∑

h=1

ĉh

⎛
⎝ k∑

j=1

whj xj

⎞
⎠= k∑

j=1

(
m∑

h=1

ĉhwhj

)
xj =

k∑
j=1

b̂j xj .

Now if an inverse procedure of standardization is implemented, we will get the regression equation expressed in
terms of the raw variables y0 and x0j ’s:

ŷ0= b̂∗ +
k∑

j=1

b̂∗j x0j .

We can see that if th is strongly correlated with y, and xj is important when building up th, then xj will be important
to y. The idea is reflected in the concept of variable importance in projection (VIP), for the jth variable xj , it is defined
as

VIPj =
√√√√ k

Rd(y; t1, . . . , tm)

m∑
h=1

Rd(y; th)w2
hj , (2)

where Rd(y; t1, . . . , tm) =∑m
h=1Rd(y; th) and Rd(y; th) = [corr(y, th)]2. Since w2

hj will take a large value if xj is
important in building up th, and Rd(y; th) will be large if th is strongly correlated with y, then VIPj will be large in
the situation. In addition, for given y and X, w′hwh(h= 1, . . . , m) are fixed values, thus

k∑
j=1

VIP2
j =

k
∑m

h=1Rd(y; th)w′hwh

Rd(y; t1, . . . , tm)
,

is a constant. So for the response variable y, if the k explanatory variables have the same explanatory ability, then all
the VIPj ’s are equal; otherwise, the explanatory variable with larger VIP value will tend to be more important than
others. For more detailed discussion of the VIP concept, see Wang (1999).

3. Variable selection procedure

Some related notations are as follows: A mixed-level design of n runs, p factors and levels s1, . . . , sp is denoted
by D(n, s1 · · · sp), when some sj ’s are equal, it is denoted by D(n, s

r1
1 · · · s

rq
q ) with

∑q

j=1rj = p. A D(n, s1 · · · sp)
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design is called an orthogonal array of strength t, denoted by OA(n, s1 · · · sp, t) if all possible level-combinations for
any t factors appear equally often. When k =∑p

i=1(si − 1) > n− 1, orthogonality is not obtainable and the design is
supersaturated, denoted by SSD(n, s1 · · · sp). Next we will introduce the new variable selection procedure and show
how the procedure can be used for screening active effects in supersaturated designs.

3.1. The proposed variable selection strategy

For model (1), the regression coefficients can be estimated if we implement the procedure given in Section 2.
However, actual active effects are believed to be sparse, and most of the coefficients should be close to zero. In order
to build a reasonable model, we wish to select the best variable subset from the raw variables. The index VIPj defined
in (2) can be used to describe how important the variable xj is to the response variable y. So the best variable subset
selection is based on the VIP values.

Let I be an empty set and J = {x1, . . . , xk}, the PLSVS procedure can be carried out as follows:
Selection of the first important variable. Firstly, sort the k VIP values for x1, . . . , xk in increasing order:

VIP(1) �VIP(2) � · · · �VIP(k).

Select the two variables with their VIP values equaling VIP(k−1) and VIP(k) respectively, and denote them by x̄1, x̄2.
Then their corresponding raw variables x̄01, x̄02 and y0 are used to compute the Mpress (to be defined in (4) below)
values respectively. The minimum Mpress value will be written as Mpress1. The variable with Mpress1 will be the first
important variable z01. The best variable subset now is I ={z01}. Let z1 be x̄1 or x̄2 depending on whether z01 is equal
to x̄01 or x̄02.

Selection of the second important variable. At first, a simple regression is run:

y = u1z1 + yre, (3)

where the coefficient is u1 = y′z1/‖z1‖2 and yre is the regression residual. Now with yre and J\{z1}, following the
procedure given in Section 2, we can compute the m PLS components and (k − 1) VIP values of the rest (k − 1)

variables. Then just as what we have done for selecting the first important variable, select the two variables x̄3, x̄4 with
their VIP values being the largest two, their corresponding raw variables are denoted by x̄03, x̄04 respectively. Let
I1 = {z01, x̄03} and I2 = {z01, x̄04}, with the raw response variable y0, compute their Mpress values. Let Mpress2 be
the minimum of the two Mpress values. Then the best variable subset I will equal I1 or I2 depending on whose Mpress
is Mpress2.

Selection of the next important variables and stopping rule. We follow the same procedure for selecting the next
important variables. For selecting the rth important variable, we let Mpressr be the minimum of the two Mpress values.
Now we propose the variable selection stopping criterion.

Assume there are l (0� l�k) explanatory variables and their ith observation is (x0i1, . . . , x0il)
′, y0i is the corre-

sponding observation of the response, where i = 1, . . . , n. Let x̃0i = (1, x0i1, . . . , x0il)
′, then the regression design

matrix is X̃0n×(l+1)=(x̃01, . . . , x̃0n)
′. If the ith observation is deleted, we can build up a least-squares (OLS) regression

model with the rest n − 1 observations, let ŷ0l(−i) be the predicted value of the ith response under the OLS model.
Denote the predicted error of the ith response by,

êl(−i) = y0i − ŷ0l(−i), i = 1, . . . , n,

then we can use

Press(l)=
n∑

i=1

(êl(−i))
2,

to describe the predictable ability of a model. However, Press(l) will decrease with the value of l increasing, so it cannot
be used as a variable selection criterion. We propose a modified version of Press(l) by adding a penalty function of l,
i.e. the number of explanatory variables in the present model, that is,

Mpress(l)= Press(l)

2(n− l)
+ 2l

n
, (4)
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to determine when the selection will be stopped. Our simulation results in Section 4 reveal that this modified version
works effectively for screening active effects in SSDs. In addition, we have tried to use other modified versions of
Press(l), however, simulation results show that they are not so good as this one. Note that from (4), for l = 0 we
have

Mpress(0)=
n∑

i=1

(y0i − ȳ0(−i))
2/(2n), (5)

where ȳ0(−i) is the mean of n− 1 responses with y0i being deleted.
For our variable selection method, with the number of variables selected into the best variable subset increasing,

Mpress will decrease firstly; then it will increase with the number of variables increasing. The selection will be stopped
if Mpressr+1 > Mpressr for the first time, where Mpress0 =Mpress(0), which is given in (5). The best variable subset
is then obtained, which has r important variables.

3.2. A step-by-step procedure for the PLSVS method

A step-by-step guideline for the proposed procedure can be summarized as the following steps:

1. Column center and normalize the raw variables y0 and X0= [x01, . . . , x0k], denote their standardized matrices by
y and X = [x1, . . . , xk] respectively.

2. Initialize r ← 0, Mpress0 ← Mpress(0), I ← � (empty set), J ← {x1, . . . , xk} and J ∗ ← {x01, . . . , x0k}, where
I, J and J ∗ are three variable sets.

3. Set r ← r + 1, for the variables in set J, compute the VIP values based on y by the PLS procedure.
4. From set J, select the variables with the largest two VIP values: x̄1, x̄2, suppose their corresponding raw variables

in J ∗ are x̄01, x̄02 respectively. Set I1 ← I ∪ {x̄01}, I2 ← I ∪ {x̄02}.
5. For y0 and the respective variables in I1 and I2, compute the Mpress values, denote them by M1 and M2.
6. Set Mpress1 ← min(M1, M2). If Mpress1 < Mpress0, set Mpress0 ← Mpress1, go to step 7; otherwise, go to step

9.
7. If M1 �M2, set z1 ← x̄1 and z01 ← x̄01; otherwise, z1 ← x̄2 and z01 ← x̄02. Run the simple regression (3).
8. Set I ← I ∪ {z01}, J ← J\{z1}, J ∗ ← J ∗\{z01}, y← yre. Go to step 3.
9. Output the best variable set I.

3.3. Mixed-level SSDs and ANOVA model

Let Gi = {0, . . . , si − 1} and H = G1 × · · · × Gp. For an SSD(n, s1 . . . sp), consider the following main-effect
ANOVA model,

Y = 1n�0 + Xc�+ ε, (6)

where Y is the vector of n observations of the response, �0 is the general mean and � is a vector of k treatment contrasts
(or factorial main effects), Xc = [�u(x)]x∈D,wt(u)=1 is the matrix of contrast coefficients for � and wt(u) = 1 means
for all u ∈ H with one nonzero element, ε is the vector of errors with distribution N(0n, �2In).

In this paper, we only consider contrasts defined by tensor products:

�u(x)=
p∏

i=1

�(si )
ui

(xi) for u= (u1, . . . , up) ∈ H and x = (x1, . . . , xp) ∈ H ,

where {�(si )
ui

(xi), ui ∈ Gi} are orthogonal polynomial contrasts for the ith factor which has si levels, and �(si )
0 (xi)= 1,

for any xi ∈ Gi . In addition, the condition of orthonormal is required, that is for all i,∑
xi∈Gi

�(si )
ui

(xi)�
(si )
vi

(xi)= |Gi |�ui ,vi
.

The computation of �u(x) is illustrated by the following example.
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Example 1. Consider the following SSD(6, 2133) design D:

D =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1
0 1 2 0
0 2 0 2
1 0 2 2
1 1 0 1
1 2 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

which can be constructed from Fang et al.’s (2003) fractions of saturated orthogonal arrays (FSOA) method. In design
D, each column represents a factor and each row represents a run.

It is known that for a two-level factor, the orthonormal contrast coefficient vector is (−1, 1)′, while for a three-level
factor, the orthogonal polynomial coefficient vectors are (−1, 0, 1)′ and (1,−2, 1)′. Consequently the orthonormal
contrast coefficients are (�(2)

1 (0), �(2)
1 (1))= (−1, 1) for the first factor, (�(3)

1 (0), �(3)
1 (1), �(3)

1 (2))= (−√6/2, 0,
√

6/2)

and (�(3)
2 (0), �(3)

2 (1), �(3)
2 (2))=(

√
2/2,−√2,

√
2/2) for the last three factors, respectively. Then for any given u ∈ H

and x ∈ H , where H = {0, 1} × {0, 1, 2} × {0, 1, 2} × {0, 1, 2} for design D, the orthonormal contrast �u(x) can be
calculated out. For example, for x = (0, 1, 2, 0), u= (0, 2, 0, 0),

�u(x)= �(2)
0 (0)�(3)

2 (1)�(3)
0 (2)�(3)

0 (0)= �(3)
2 (1)=−√2,

which is the (2, 3)th element of the corresponding contrast coefficient matrix Xc of design D, where

Xc =

⎛
⎜⎜⎜⎜⎜⎝

−1 −√6/2
√

2/2 0 −√2 0 −√2
−1 0 −√2

√
6/2

√
2/2 −√6/2

√
2/2

−1
√

6/2
√

2/2 −√6/2
√

2/2
√

6/2
√

2/2
1 −√6/2

√
2/2

√
6/2

√
2/2

√
6/2

√
2/2

1 0 −√2 −√6/2
√

2/2 0 −√2
1

√
6/2

√
2/2 0 −√2 −√6/2

√
2/2

⎞
⎟⎟⎟⎟⎟⎠ .

Corresponding to Xc, we have �= (�1, . . . , �7)
′, where �1 is the main effect of the first factor, i.e. the two-level factor,

�2i−2 and �2i−1 are the linear and quadratic main effects respectively for the ith factor, i = 2, 3, 4.

For model (6), let us take the k columns of Xc as the k raw explanatory variables: x01, . . . , x0k and take Y as the
raw response variable y0, then the variable selection procedure proposed in last subsection can be used to screen active
effects in mixed SSDs.

4. Simulation study and example

In this section, some simulations and comparisons are carried out. Firstly, the PLSVS procedure will be adopted
to screen active effects in a mixed-level SSD. Then a real data set will be analyzed. Finally, we will compare the
performance of the PLSVS method with the SCAD method and the SSVS/IBF method by simulations. As Li and Lin
(2002, 2003) have done, we assess the performance of these variable selection procedures in terms of their abilities of
identifying the true model and all the active effects, and the size of selected model.

Example 2. Construction of optimal mixed-level SSDs has been discussed in the literature in recent years, however,
there is still not a paper studying the data analysis of such designs. Now we conduct some simulations to show
the performance of the PLSVS method when it is used to analyze mixed-level SSDs, which include multi-level and
two-level SSDs as special cases.

Fang et al.’s (2003) FSOA method for constructing mixed-level SSDs is an extension of Lin’s (1993) half-fractions
of Hadamard matrices method. As an illustration, given a saturated OA(27, 313, 2), taking any factor as the branching
factor, one can obtain three one-third fractions according to the levels of the branching factor, any two-third fraction
is an SSD(18, 21312) and all these designs are optimal according to Fang et al. (2003) E(fNOD) criterion, one of these
designs is shown in Table 1, where the rows represent factors and the columns represent runs. From this design, the



2074 Q.-Z. Zhang et al. / Journal of Statistical Planning and Inference 137 (2006) 2068–2079

Table 1
SSD(18, 21312): two-third of an OA(27, 313, 2)

Factor Run

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
4 1 0 2 2 1 0 0 2 1 2 1 0 0 2 1 1 0 2
5 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 2 0 1
6 0 2 1 1 0 2 2 1 0 0 2 1 1 0 2 2 1 0
7 1 0 2 0 2 1 2 1 0 2 1 0 1 0 2 0 2 1
8 2 0 1 2 0 1 2 0 1 1 2 0 1 2 0 1 2 0
9 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1

10 2 1 0 1 0 2 0 2 1 1 0 2 0 2 1 2 1 0
11 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0
12 2 1 0 2 1 0 2 1 0 1 0 2 1 0 2 1 0 2
13 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0 0 1 2

steps of setting active effects and generating data are as follows:

1. For this SSD(18, 21312), compute the orthonormal main-effect contrast matrix Xc, which has 18 rows and 25
columns.

2. Randomly assign f active effects to Xc. Here the number of active effects, f, is determined from the set {1, . . . , 5},
according to the effect sparsity principle. For example when f = 3, three columns are randomly chosen from Xc.

3. For the f active effects, set their model coefficients, i.e. the corresponding f components of �, to be �(1), . . . , �(f )

respectively, and set the other components of � to be zero. Here we consider three cases of relative magnitude of
coefficients �(1), . . . , �(f ). In each case, the different levels of f active effects ascend in constant intervals from low
to high. For example, the three cases for the coefficients of four active effects are respectively: 1, 2, 3, 4; 2, 4, 6, 8
and 3, 6, 9, 12. Generally, in Case i(i = 1, 2, 3),(�(1), . . . , �(f ))= (i, 2i, . . . , f i).

4. Generate Y, the vector of 18 observations of the response, from the linear model

Y = Xc�+ ε,

where ε has the distribution N(018, I18).

Simulation results for PLSVS based on 1000 replicates are summarized in Tables 2 and 3. Table 2 lists the percent of
1000 simulations succeeding in identification when there are 1, 3 and 5 active effects with m, the number of components
in PLS procedure, ranging from 1 to 4; while Table 3 displays simulation results with f = 1, . . . , 5 and m= 3. In both
tables, “f’’ stands for the number of active effects, “Case’’ refers to the relative magnitude of coefficients, “m’’ denotes
the number of components in the PLS regression, and the entries followed by “[f, f + 2]’’ are the rates of identifying
the model size between f and f + 2.

From Table 2, we can see that if only a single effect is active, the performance is not sensitive to the choice of m
providing m= 1, 2, 3, 4. However, if 3 or 5 effects are active, the rate of identifying the true model increases with m
increasing for Case 2 or 3 of the magnitude of coefficients. Especially when there are 3 active effects with coefficients
being 3, 6 and 9, the rate of identifying the true model is 45% and the median of model size is 4 when m= 1; however,
they are respectively 50% and 3 when m= 2 or 3, and 53% and 3 when m= 4.

Furthermore, for Case 1 of the magnitude of coefficients, i.e. the coefficients are 1, . . . , f , if we choose m= 4, the
performance is not better than that of m= 1, 2, 3. Particularly, the performance of m= 4 is worse than that of m= 3.
So selecting relatively large number of components in PLS procedure will prevent us from identifying small active
effects. Generally m= 3 is a better choice.

When there is a single active effect, the performances of different cases of the magnitude of coefficients vary little.
However, if there are two or more active effects, the magnitude of coefficients have a strong effect on the performance
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Table 2
Summary of simulation results in Example 2 with f = 1, 3, 5 and m= 1, 2, 3, 4

f Case m True model identified rate (%) Active effects identified rate (%) Model size identified

Median [f, f + 2] (%)

1 1 57 96 1 97
2 56 96 1 96
3 60 97 1 98
4 57 96 1 98

1 2 1 59 100 1 97
2 58 100 1 96
3 59 100 1 98
4 63 100 1 97

3 1 59 100 1 96
2 57 100 1 97
3 60 100 1 98
4 61 100 1 96

1 1 41 89 4 90
2 41 91 4 90
3 40 91 4 90
4 38 90 4 88

3 2 1 44 97 4 92
2 44 96 4 91
3 48 97 4 93
4 49 96 4 92

3 1 45 96 4 91
2 50 96 3 94
3 50 97 3 92
4 53 97 3 94

1 1 29 75 6 81
2 30 74 6 83
3 32 75 6 85
4 31 75 6 84

5 2 1 46 82 5 91
2 50 85 5 91
3 53 84 5 91
4 52 82 5 91

3 1 56 83 5 93
2 57 84 5 91
3 58 84 5 92
4 59 84 5 91

and this effect increases with the number of active effects increasing. This point can be seen easily from the rates of
identifying the true model in Table 3, and can also be observed from those data in Table 2.

As expected, the PLSVS procedure performs better when there are less active effects providing the same magnitude
of coefficients, and it also performs better with a larger magnitude of coefficients when the numbers of active effects
are the same. Particularly from these two tables, we notice that the procedure performs worse in Case 1 than with other
cases in terms of the rate of identifying all the active effects; however, this rate varies little when the magnitude of
coefficients ranges from Cases 2 to 3. For two-level SSDs, Lin (1995) pointed out that “to detect effects with magnitudes
in the range of 2–3� in the presence of many factors, however, is a very difficult task’’, now we can see that the same
problem exists when we want to screen the active effects in the mixed-level SSDs.

In almost all the cases, the PLSVS method is effective in identifying active effects and determining the correct model
size. Hence we conclude that our strategy is efficient and effective.
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Table 3
Summary of simulation results in Example 2 when m= 3

f Case True model identified rate (%) Active effects identified rate (%) Model size identified

Median [f, f + 2] (%)

1 1 60 97 1 98
2 59 100 1 98
3 60 100 1 98

2 1 48 93 2 93
2 50 100 2 94
3 54 100 2 95

3 1 40 91 4 90
2 48 97 4 93
3 50 97 3 92

4 1 33 85 5 87
2 47 92 5 92
3 54 92 4 92

5 1 32 75 6 81
2 49 83 5 91
3 58 84 5 93

Remark 1. We have tried to select variables with the largest three VIP values in the simulation study. The results
demonstrate that the procedure needs more computations while the improvement is not so evident; When a single
variable with the largest VIP value is selected, simulation results show that the rate of identifying all the active effects
will be lower, and hence the type II error will become larger.

Example 3. The rubber data has been analyzed in many studies, e.g. Lin (1993, 1995), Chipman et al. (1997), Westfall
et al. (1998), Abraham et al. (1999), Beattie et al. (2002), Li and Lin (2002, 2003), Lu and Wu (2004). The original
experiment investigated 24 factors in a 28-run Plackett-Burman design, see Williams (1968). Lin (1993) took a half-
fraction of the original data set as if the experiment had only 14 runs. Factor 16 is deleted since it is fully aliased with
factor 13, but the other factors’ original labels are kept unchanged. The data set is listed in Table 4. The last row is the
responses and other rows represent factors and the columns represent runs.

We apply the PLSVS method to this data set. The final model identifies {15, 12, 20, 4} as the active effects when
m= 1, 2 or 3. This is consistent with the conclusion of Li and Lin (2003), that {15, 20, 12, 4} were selected as active
factors, a little difference is their order of importance.

Example 4. To compare the performance of the PLSVS method with that of the SCAD method and the SSVS/IBF
method by simulations, we consider the same models with Li and Lin (2002, 2003).

Consider the design matrix X displayed in Table 4. Generate data from the linear model

Y = X′�+ ε,

where the vector of random errors ε has the distribution N(014, I14). Consider the following three cases for �:
Case I: One active effect, �1 = 10 and all other components of � equal zero;
Case II: Three active effects, �1 =−15, �5 = 8, �9 =−2, and all other components of � equal zero;
Case III: Five active effects, �1 =−15, �5 = 12, �9 =−8, �13 = 6, �17 =−2, and all other components of � equal

zero.
For these three cases, as the coefficients being relatively large, we just set m= 1 for the PLS regression. Simulation

results for PLSVS based on 1000 replicates are summarized in Table 5 and are compared with the other two methods.
In this table, “SCAD’’ stands for the SCAD method, and “SSVS(0.10, 500)/IBF’’ refers to the SSVS/IBF method with
given parameters 0.10 and 500 (see, Beattie et al., 2002).
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Table 4
SSD(14, 223): half-fraction of Williams (1968) data

Factor Run

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1 −1 −1 −1 −1 −1 1 −1 1 1 −1
2 1 −1 1 1 −1 −1 −1 1 −1 1 1 −1 1 −1
3 1 −1 −1 −1 1 1 −1 1 −1 1 −1 −1 1 1
4 −1 −1 1 1 1 1 −1 −1 −1 1 1 −1 1 −1
5 −1 −1 1 −1 1 1 1 −1 −1 −1 1 1 1 −1
6 −1 −1 −1 1 1 1 −1 1 1 1 −1 1 −1 −1
7 1 1 −1 −1 −1 1 −1 −1 1 1 −1 1 1 −1
8 1 1 −1 −1 1 −1 1 1 −1 1 1 −1 −1 −1
9 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 1 −1

10 1 −1 1 1 −1 1 1 1 −1 −1 −1 1 −1 −1
11 1 −1 −1 1 −1 1 −1 −1 1 −1 1 1 −1 1
12 −1 −1 1 −1 −1 −1 1 −1 1 1 −1 1 1 1
13 1 1 1 1 1 −1 1 −1 −1 −1 −1 1 −1 −1
14 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
15 −1 1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1
17 1 −1 1 −1 1 1 1 −1 1 1 −1 −1 −1 −1
18 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1
19 −1 −1 −1 1 −1 1 1 1 −1 1 1 1 −1 −1
20 1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 1 1
21 −1 1 −1 −1 −1 1 1 1 −1 1 −1 1 1 −1
22 −1 1 1 −1 1 1 −1 1 −1 −1 −1 1 −1 1
23 −1 −1 1 −1 1 −1 −1 1 1 −1 1 1 1 −1
24 1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1

133 62 45 52 56 47 88 193 32 53 276 145 130 127

Table 5
Summary of simulation results in Example 4

Method True model identified rate (%) Smallest effect identified rate (%) Average size

Median Mean

Case I: One active effect
SSVS(0.10, 500)/IBF 61 98 1 2.5
SCAD 75.6 100 1 1.7
PLSVS(m= 1) 61 100 1 1.5

Case II: Three active effects
SSVS(0.10, 500)/IBF 8.0 28 3 4.2
SCAD 74.7 98.5 3 3.3
PLSVS(m= 1) 76.4 97.7 3 3.3

Case III: Five active effects
SSVS(0.10, 500)/IBF 40.7 75 5 5.6
SCAD 69.7 99.4 5 5.4
PLSVS(m= 1) 73.6 95 5 5.2

The PLSVS method includes the smallest active effect with a high probability (�95%) in any of these three cases,
that is to say, type II errors are all controlled within the level 0.05. In terms of the model size, the PLSVS method
performs quite well. It is clear that both the SCAD and PLSVS perform better than the SSVS/IBF method. In Cases
II and III, the PLSVS method identifies the true model with the highest probabilities. In Case I, there is only a single
strong effect, the probability of getting the exact model with the PLSVS method is a little lower than that of the SCAD.
However, with the only one active factor being 100% identified, the average model size is smaller than those resulted
from the other two methods, in this sense the method is more efficient than the other two.
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5. Concluding remarks

This paper proposes the PLSVS method for selecting active effects in SSDs. Simulation performance and a real data
set analysis demonstrate that the PLSVS method is efficient. Note that all the existing data analysis methods in the
literature are for two-level SSDs only. The PLSVS approach can be used for screening active effects collected by SSDs
with two-level, multi-level and even mixed-level factors. In addition, it is easy to understand and implement.

In this paper, the best variable subset selection is based on the VIP values where index VIPj reflects how important
the variable xj is to the response variable y. In general, a variable with the largest VIP value will tend to give the greatest
contribution to y, so in principle, it should be selected as the most important variable in the present stage. However as
we can see, for an SSD, correlation exists among the k columns of Xc in model (6), which may cause the inconsistency
between the order of the VIP values and the explanatory ability of the variables. Thus in our proposed procedure, the
variables with the largest two VIP values are selected first, and then their Mpress values determine which one will be
kept in the best variable subset. As discussed in Remark 1, simulation results also show that selecting a single variable
with the largest VIP value or the variables with the largest three VIP values in the procedure performs not so well as
selecting the variables with the largest two VIP values.

As we have mentioned, PLS regression is particularly useful when we need to predict a set of response variables
from a (very) large set of explanatory variables, so the PLSVS method can be used in the situation when there are
several response variables.

The screening of active effects and data analysis in multi-level and mixed-level SSDs still need further investigations.
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