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Abstract Fractional factorial (FF) designs are commonly used for factorial experiments in many

fields. When some prior knowledge has shown that some factors are more likely to be significant than

others, Li, et al. (2015) proposed a new pattern, called the individual word length pattern (IWLP),

which, defined on a column of the design matrix, measures the aliasing of the effect assigned to this

column and effects involving other factors. In this paper, we first investigate the relationships between

the IWLP and other popular criteria for regular FF designs. As we know, fractional factorial split-plot

(FFSP) designs are important both in theory and practice. So another contribution of this paper is

extending the IWLP criterion from FF designs to FFSP designs. We propose the IWLP of a factor

from the whole-plot (WP), or sub-plot (SP), denoted by the IwWLP and IsWLP respectively, in the

FFSP design. We further propose combined word length patterns CwWLP and CsWLP, in order to

select good designs for different cases. The new criteria CwWLP and CsWLP apply to the situations

that the potential important factors are in WP or SP, respectively. Some examples are presented to

illustrate the selected designs based on the criteria established here.
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1 Introduction

Two-level fractional factorial (FF) designs are very important in factor screening experi-

ments and many scientific investigations. A 2−mth fraction of a 2n factorial design consisting

of 2n−m distinct combinations will be referred to as a 2n−m design, which denotes a fraction

with 2n−m runs and n two-level factors. The design has n − m independent columns and is

determined by m independent defining words. In order to select good 2n−m FF designs, some

criteria have been proposed, such as the maximum resolution[1], minimum aberration (MA)[2],

clear effects[3], and the general minimum lower-order confounding (GMC)[4]. As we know, the

effect hierarchy principle[5] is the most basic one to be followed for selecting good designs in FF

designs. It states that, (i) lower-order effects are more likely to be important than higher-order

effects, and (ii) effects of the same order are equally likely to be important. So a good de-

sign should have as many as possible lower-order effects which are less aliased with each other.

Obviously, all the above criteria are based on the effect hierarchy principle.

Recently, Li, et al.[6] proposed a new criterion called the individual word length pattern

(IWLP) that measures the degree of aliasing between an individual factor and effects involving

other factors. The proposed criterion is more appropriate than other criteria such as the MA,

GMC and maximum resolution criterion when the experimenters have any prior knowledge that

some factors are particularly important. The critical difference between this criterion and most

existing criteria is that it does not treat all factors as being of equal importance. In this paper,

we investigate the relationships between the IWLP and other popular criteria for regular FF

designs.

In the field of design of experiments, it is usually assumed that the experimental runs can

be completely randomized when an experiment is performed. However, this is impractical

in practice when the levels of some factors in the experiment are difficult to be changed or

controlled. In such a case, the fractional factorial split-plot (FFSP) design, which involves

a multi-phase randomization, may represent a practical design option. In general, an FFSP

experiment has two types of factors: the factors with hard-to-change levels are called whole-plot

(WP) factors, and the factors with relatively-easy-to-change levels are sub-plot (SP) factors.

Such an experiment can be arranged by an FFSP design. The factors of an FFSP design have

different statuses and the runs are not carried out completely at random, which distinguishes it

from the classical FF design. Obviously, when an FFSP design is considered as an FF design,

the concepts for an FF design, such as resolution, word length pattern (WLP), MA, clear effects

and GMC, are also applicable to the FFSP design. For example, some studies mainly focus

on the theory and construction of MA two-level FFSP designs. Interested readers may refer

to [7–12]. For the results on FFSP designs under clear effects, one can refer to [13–15]. For

the results on mixed-level FFSP designs and nonregular FFSP designs, we refer the readers

to [15–20]. For comprehensive discussions on FFSP designs, one can refer to [21, 22], among

others.

Although, existing results on FFSP designs focused on constructing optimal designs, there

is little work on how to assign columns to factors after a design is selected. Furthermore,
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existing criteria for FFSP designs, such as these described above, treat all factors as being

of equal importance, which is not suitable for the case that some factors are more important

than others if we have some prior knowledge about the importance of factors in an experiment.

In order to motivate our study, let us consider the following GMC-FFSP design[23] as a toy

example. Wei, et al.[23] considered a 2(5+4)−(1+3) FFSP design with the defining words:

I = ABCDE = ABpq = ACpr = BCps.

They showed that the design is a good design for estimating lower-order effects, but they did

not provide any information on how to assign columns to factors if some priori knowledge

shows that some factors are more important than the others. In practice, the practitioner

prefers to an appropriate policy to assign columns rather than a design. With this in mind, this

paper proposes new definitions named the IWLPs of WP and SP factors in the FFSP design,

denoted by IwWLP and IsWLP, respectively. And based on these patterns, we propose the new

criteria, denoted by CwWLP and CsWLP, to select good designs according to different prior

information. Actually, the CwWLP and CsWLP are the linear combination of the IwWLP and

IsWLP, respectively, and they apply to the situations where the potential significant factors

belong to WP or SP. In general, if the backgrounds do not show the certain information on the

potential important factors belonging to which plot or how many important factors are in the

design, we suggest the criterion CWLP for selecting good designs. This criterion in fact is the

proportional combination of CwWLP and CsWLP.

The paper is organized as follows. Section 2 introduces some preliminaries. In Section 3,

we develop the relationships between the IWLP and other popular criteria. Some new criteria

that measure the degree of aliasing between certain individual factors (i.e., WP and SP factors)

and effects involving other factors in an FFSP design will be introduced in Section 4. Section 5

is devoted to selecting effective designs using the new criteria, and some examples are provided

for illustrating the theoretical results. General results for the IWLP and concluding remarks

are given in Section 6.

2 Preliminaries

In this section, we recall some important definitions and notation used in the sequel. A

2n−m FF design F is defined by m independent words W1, . . . ,Wm, and the defining contrast

subgroup of F consists of 2m− 1 nonzero words formed by all possible products of independent

words. Let Ai(F ) be the number of distinct defining words of length i in the defining contrast

subgroup of F . The vector W (F ) = (A1(F ), . . . , An(F )) is called the WLP of F . The resolution

R is the smallest i with Ai(F ) > 0. A design has maximum resolution if no other design has

a larger resolution. In general, a design with a positive A1 or A2 would be useless, so we only

consider the design with resolution R ≥ III. For two 2n−m designs F1 and F2 with W (F1)

and W (F2), respectively, if there exists an r(3 ≤ r ≤ n), such that Ar(F1) < Ar(F2) and

Aj(F1) = Aj(F2) for j = 3, . . . , r−1 in these two WLPs, then F1 is said to have less aberration

than F2, and F1 is said to have MA if there is no other design having less aberration[2]. For
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a column γ in F , let Aj(γ) denote the number of length j defining words involving γ in the

defining relation of F , then the IWLP of γ is defined to be W (γ) = (A3(γ), A4(γ), . . . , An(γ))[6].

Frankly speaking, an FFSP design can be considered as a usual 2n−m FF design but written

as a 2(n1+n2)−(m1+m2) design, where n1 is the number of WP factors denoted by the capital

letters A,B,C, . . . in this paper, and n2 is the number of SP factors denoted by lowercase

letters p, q, r, . . .. In such a design, there are m1 WP and m2 (m2 = m−m1) SP defining words,

respectively. A WP defining word means that there is no SP factor in the word, and an SP

defining word contains at least one SP factor. From the nature of an FFSP design, a necessary

requirement is that, an SP defining word can contain any number of WP factors, but it is not

allowed that an SP defining word contains only one SP factor since if so the split-plot nature of

this kind of experiments will be destroyed[24]. Accordingly, the two-factor interactions (2FIs)

in an FFSP design can be divided into three types: WP2FI, SP2FI and WS2FI. Specially, a

WP2FI is the interaction of two WP factors, an SP2FI is the interaction of two SP factors,

and a WS2FI is the interaction of a WP factor and an SP factor. Similarly, a WP3FI and an

SP3FI are the interaction of three WP factors and of three SP factors, respectively. In FFSP

designs, effects involving only WP factors are called WP-type effects, and effects involving at

least one SP factor are called SP-type effects. Correspondingly, an alias set is said to be of

WP-type if it contains at least one WP-type effect, or of SP-type otherwise. As the WP level

error is typically larger than the SP level error[25], a good FFSP design should have lower-order

SP-type effects not aliased with WP effects as many as possible. Then, an FFSP design obeys

the following rules

(i) there is no defining word that contains only one SP factor;

(ii) the number of lower-order SP-type effects which are not aliased with WP effects is as large

as possible.

The concepts of clear main effect and 2FI are introduced as follows.

Definition 2.1 A main effect is said to be clear if it is not aliased with any other main

effect or any 2FI. A 2FI is said to be clear if it is not aliased with any main effect or any other

2FI.

Proposition 2.2 For any column α in a design F , the main effect for α is clear if and

only if A3(α) = 0. All the 2FIs involving α are clear if and only if A3(α) = A4(α) = 0.

3 Relationships Between IWLP and Other Criteria for FF Designs

In this section, we investigate the relationships between the IWLP and other criteria for FF

designs. Throughout the section, we consider the designs with resolution III or higher.

3.1 Relationship Between IWLP and MA

In general, we suppose that all three-factor and higher order interactions are negligible.

In this case, A3(F ) and A4(F ) are always paid more attention in the literature and practice.

A3(F ) can be used to measure the aliasing relationship between main effects and 2FIs, and
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A4(F ) implies the aliasing among 2FIs of a 2n−m design. For a column γ in F , the following

lemma from [26] is obvious.

Lemma 3.1 For a 2n−m design F , we have the following relationship

A3(F ) =

∑
γ A3(γ)

3
and A4(F ) =

∑
γ A4(γ)

4
.

Clearly, for a given column γ in F , A3(F ) and A4(F ) are functions of A3(γ) and A4(γ),

respectively. More generally, we can directly conclude that Ak(F ) is a function of Ak(γ). The

corresponding expression is

Ak(F ) =

∑
γ Ak(γ)

k
, (1)

where k=3, 4, . . . . Compared with the WLP, IWLP has an elaborate expression with an

important factor. If an experimenter does not have any such prior knowledge, perhaps an MA

design is more suitable. But if the experimenter has some prior knowledge about the ordering of

the factors according to their importance in the experiment, IWLP should be a more suitable

choice, since more information can be provided to clearly estimate the differently important

effects via an orderly identification of the important factors.

3.2 Relationship Between IWLP and GMC

For a 2n−m design, Zhang, et al.[4] introduced the sequence

#C = (#1 C2,
#
2 C1,

#
2 C2,

#
0 C3,

#
1 C3,

#
2 C3,

#
3 C1,

#
3 C2,

#
3 C3, . . .), (2)

which is called the aliased effect-number pattern (AENP) of the design, where #
i Cj = (#i C

(0)
j ,

#
i C

(1)
j , . . . , #

i C
(Kj)
j ), #

i C
(k)
j is the number of ith-order effects aliased with k jth-order effects

and Kj =
(
n
j

)
. The design sequentially maximizing the components of the AENP is called a

GMC design. Zhang, et al.[27] gave the simplified version of (2) as

#C = (#1 C2,
#
2 C2,

#
1 C3,

#
2 C3,

#
3 C2,

#
3 C3, . . .)

for designs with resolution III or higher.

The following result shows the relationship between IWLP and GMC in a 2n−m design.

Theorem 3.2 Given a 2n−m design with R ≥ III, for i = 3, 4, . . . , n, we have the following

relationships

#
i C

(0)
0 =

(
n

i

)
−
∑
γ Ai(γ)

i
.

Proof According to the definition of components in the AENP, we can easily get that #
i C

(0)
0

means the number of clear i-order effects in a design. So from [4], we can get the relationship

between WLP and #
i C

(0)
0 as follows

#
i C

(0)
0 =

(
n

i

)
−Ai.

Then according to equation (1), we get the conclusion.

This theorem tells us that we can get the degree of aliasing between an individual factor

and effects involving other factors according to the form of IWLP.
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3.3 Relationship Between IWLP and Clear Effects

For a design F , let C1(F ) and C2(F ) denote the numbers of clear main effects and 2FIs

respectively. According to the clear effects criterion[12], we should sequentially maximize C1(F )

and C2(F ) to select good designs.

Let

a = #{βγ : A4(βγ) = 0} and b = #{α : A3(α) = 1}

denote the number of 2FIs that do not appear in any defining word with length 4, and the

number of main effects that only appear in one defining word with length 3, respectively. Here

the α in A3(α) denotes one factor (or column) and, similarly, the β and γ in the A4(βγ) denote

two factors (or columns). The relationship between IWLP and clear effects criterion is shown

as follows.

Theorem 3.3 For a 2n−m design F , we have the following relationship

C1(F ) =
∑
γ

I{A3(γ) = 0} and C2(F ) = a− b,

where I{·} is the indicator function which takes the value 1 or 0 depending on whether the

condition {·} is true or not.

Proof The first equality is obvious. For the second equality, C2 is the number of clear

2FIs, which equals the number of all 2FIs minus the number of 2FIs that are aliased with any

main effect or any other 2FI. Inspired by [4], we have

C2(F ) =#
2 C

(0)
2 −#

1 C
(1)
2 = a− b.

This completes the proof.

4 IWLPs for FFSP Designs

4.1 IwWLP and IsWLP for FFSP Designs

According to rules (i) and (ii) in Section 2, we can respectively define the IWLPs of a WP

and an SP factor for an FFSP design for comparing designs.

Definition 4.1 For a column α in an FFSP design F , let Aiwj (α) denote the number of

length j defining words involving α with i WP factors and (j− i) SP factors and Aksj (α) denote

the number of length j defining words involving α with k SP factors and j − k WP factors.

It is obvious that Aiwj (α) = A
(j−i)s
j (α) for a given FFSP design d. Throughout this paper,

we use the notation of Aiwj (α) to illustrate the results. From rule (i), the defining word that

contains only one SP factor is forbidden in F , so we have A
(j−1)w
j (α) = A1s

j (α) = 0, j ≥ 3.

We first consider the case of column α being a WP factor. It is obvious that, A1w
3 (α) 6= 0

means that column α is aliased with at least one SP2FI, A3w
3 (α) 6= 0 means that column α is

aliased with at least one WP2FI. For A1w
3 (α) and A3w

3 (α), we need care more about A1w
3 (α)

since rule (ii) tells us that we should consider the SP defining words involving WP factors at
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first. As for A1w
4 (α), A2w

4 (α) and A4w
4 (α), A1w

4 (α) 6= 0 means that column α is aliased with at

least one SP3FI, A2w
4 (α) 6= 0 means that column α is aliased with at least one WS3FI or an

SP2FI is aliased with at least one WP2FI, A4w
4 (α) 6= 0 means that α is in at least one WP

defining word with length 4. From rule (ii), A2w
4 (α) 6= 0 means an SP2FI is included in at least

one WP alias set and A1w
4 6= 0 means an SP3FI is included in at least one WP alias set. From

the effect hierarchy principle[5], the lower-order effects are more likely to be important than

higher order effects, so when we consider the order of SP effects, A2w
4 (α) is more important

than A1w
4 (α). Hence, we rank the order of defining words with length 4 involving column α

into the following sequence

A4(α) = (A2w
4 (α), A1w

4 (α), A4w
4 (α)),

and sequentially minimize this sequence. Similarly, we have the rank of length 5 defining words

containing column α as follows

A5(α) = (A3w
5 (α), A2w

5 (α), A1w
5 (α), A5w

5 (α)).

In general, we have

Ak(α) = (A
(k−2)w
k (α), A

(k−3)w
k (α), . . . , A1w

k (α), Akwk (α)).

From the effect hierarchy principle and Definition 4.1, for a column α from the WP part of

an FFSP design F , we define the vector

IwWLP(F, α) = (A1w
3 (α), A3w

3 (α)︸ ︷︷ ︸
A3(α)

, A2w
4 (α), A1w

4 (α), A4w
4 (α)︸ ︷︷ ︸

A4(α)

, . . . , A
(k−2)w
k (α), . . . , Akwk (α)︸ ︷︷ ︸

Ak(α)

, . . .)

(3)

as the IWLP of α for F . Since Aiwj (α) = A
(j−i)s
j (α), expression (3) is equivalent to the following

vector

(A2s
3 (α), A0s

3 (α), A2s
4 (α), A3s

4 (α), A0s
4 (α), . . . , A2s

k (α), . . . , A0s
k (α), . . .). (4)

Next, we consider any column α from the SP part of an FFSP design F . Upon using the

similar method and principle, we define the vector

IsWLP(F, α) = (A1w
3 (α), A0w

3 (α), A2w
4 (α), A1w

4 (α), A0w
4 (α), . . . , A

(k−2)w
k (α), . . . , A0w

k (α), . . .)

(5)

as the IWLP of α for F . Since Aiwj (α) = A
(j−i)s
j (α), expression (5) is equivalent to the following

vector

(A2s
3 (α), A3s

3 (α), A2s
4 (α), A3s

4 (α), A4s
4 (α), . . . , A2s

k (α), . . . , Aksk (α), . . .). (6)

So, a good design is to minimize the sequences (3) and (5) in turn, or equivalently, to minimize

the sequences (4) and (6) in turn.

For a given FFSP design, IwWLP and IsWLP provide useful measures for ranking the

columns. If we have some prior information on which factors being more likely to be significant

than others, we should assign those factors to the columns that minimize the aliasing between

those important factors and the others. In the following, we give an example to illustrate how

to rank the columns.
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Example 4.2 Consider the 2(5+4)−(1+3) design d1 with defining words

I = ABCDE = ABpq = ACpr = BCps.

According to the definition, the detailed values of IsWLP and IwWLP can be calculated and

listed in Table 1.

Table 1: The IwWLP and IsWLP of d1

A2w
4 A1w

4 A4w
4 A3w

5 A2w
5 A1w

5 A5w
5 05 06 07 A7w

9 A6w
9 A5w

9 A4w
9 A3w

9 A2w
9 A1w

9 A9w
9

A 4 0 0 2 0 0 1 0 0 1 0 0 0 0 0

B 4 0 0 2 0 0 1 0 0 1 0 0 0 0 0

C 4 0 0 2 0 0 1 0 0 1 0 0 0 0 0

D 0 0 0 6 0 0 1 0 0 1 0 0 0 0 0

E 0 0 0 6 0 0 1 0 0 1 0 0 0 0 0

A2w
4 A1w

4 A0w
4 A3w

5 A2w
5 A1w

5 A0w
5 05 06 07 A7w

9 A6w
9 A5w

9 A4w
9 A3w

9 A2w
9 A1w

9 A0w
9

p 3 0 1 3 0 0 0 0 0 1 0 0 0 0 0

q 3 0 1 3 0 0 0 0 0 1 0 0 0 0 0

r 3 0 1 3 0 0 0 0 0 1 0 0 0 0 0

s 3 0 1 3 0 0 0 0 0 1 0 0 0 0 0

* 0k denotes that the k components of vector (A
(k−1)w
k+1 , A

(k−2)w
k+1 , . . ., A1w

k+1, A
(k+1)w
k+1 ) or vector (A

(k−1)w
k+1 ,

A
(k−2)w
k+1 , . . ., A1w

k+1, A0w
k+1) are all zeros, here k=5, 6, 7.

Table 1 indicates that we should assign the important WP factors on column D or E or

columnsD and E if some priori knowledge shows that one or two WP factors are more important

than other WP factors.

4.2 Statistical Justifications of IwWLP and IsWLP for FFSP Designs

For an N × n FFSP design, suppose we have the prior information that the factor assigned

to column α is particularly important such that all effects involving α are of primary interest,

then the true model can be written as

Y = β0I +X1β1 +

m−1∑
j=2

(Xj(α)βj(α) +Xj(α)βj(α)) +Xm(α)βm(α) + ε, (7)

where Y denotes the vector of n observations, β0 is the grand mean and I is an n× 1 column

vector with all elements unity, X1 is the original design matrix D, β1 is the vector of all

main effects, βj(r) denotes the
(
m−1
j−1

)
j-factor interactions involving α, βj(α) denotes the other

j-factor interactions not involving α, Xj(α) and Xj(α) represent the corresponding model

matrices, and ε is the vector of random errors. For an orthogonal design, if we only fit the main

effects model

Y = β0I +X1β1 + ε, (8)
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the least squares estimate of β1 is β̂1 = (XT
1 X1)−1XT

1 Y = n−1XT
1 Y . Under the true model

(7), we have

E(β̂1) = β1 +

m−1∑
j=2

(Cj(α)βj(α) + Cj(α)βj(α)) + Cm(α)βm(α),

where Cj(α) = n−1XT
1 Xj(α) and Cj(α) = n−1XT

1 Xj(α) for j ≥ 2. For an FF design, [26]

showed that sequentially minimizing |C2(α)|2, |C3(α)|2, . . . , |Cm−1(α)|2 is equivalent to sequen-

tially minimizing A3(α), A4(α), . . . , Am(α), in other words, the column with the best IWLP

sequentially minimizes the number of j-factor interactions involving α aliased with the grand

mean and main effects, in the order given by j = 2, 3, . . . ,m.

Motivated by [26], we now discuss the relationship between |Cj(α)|2 and IwWLP or IsWLP for

FFSP designs as follows. The proof is trivial and is omitted here.

Lemma 4.3 For an FFSP design F , let columns α1 and α2 be a WP and an SP factor,

respectively. Then for 2 ≤ j ≤ m− 1, we have the following relationships

|Cj(α1)|2 =j
{
A1w
j+1(α1) + · · ·+A

(j−1)w
j+1 (α1) +A

(j+1)w
j+1 (α1)

}
+
{
A1w
j (α1) +A2w

j (α1) + · · ·+A
(j−2)w
j (α1) +A

(j)w
j (α1)

}
+ (m− j)

{
A1w
j−1(α1) + · · ·+A

(j−3)w
j−1 (α1) +A

(j−1)w
j−1 (α1)

}
+
{
A1w
j−1 + · · ·+A

(j−3)w
j−1 +A

(j−1)w
j−1

}
; and

|Cj(α2)|2 =j
{
A2s
j+1(α2) + · · ·+A

(j)s
j+1(α2) +A

(j+1)s
j+1 (α2)

}
+
{
A2s
j (α2) +A3s

j (α2) + · · ·+A
(j−1)s
j (α2) +A

(j)s
j (α2)

}
+ (m− j)

{
A2s
j−1(α2) + · · ·+A

(j−2)s
j−1 (α2) +A

(j−1)s
j−1 (α2)

}
+
{
A2s
j−1 + · · ·+A

(j−2)s
j−1 +A

(j−1)s
j−1

}
.

For an FFSP design, let us consider the bias contributed by the j-factor interactions when

we estimate β1. From the effect hierarchy principle and Section 4.1, sequentially minimizing

(|C2(α)|2, |C3(α)|2, . . . , |Cm−1(α)|2) is equivalent to sequentially minimizing

(A1w
3 (α), A3w

3 (α)︸ ︷︷ ︸
A3(α)

, A2w
4 (α), A1w

4 (α), A4w
4 (α)︸ ︷︷ ︸

A4(α)

, . . . , A(m−2)w
m (α), . . . , Amwm (α)︸ ︷︷ ︸

Am(α)

).

From the above conclusions, we have the following result.

Theorem 4.4 For an FFSP design F , assigning a factor to the column with the best

IwWLP or IsWLP is equivalent to sequentially minimizing the contamination of interactions

involving this factor on the estimation of grand mean and main effects.

5 Combined WLPs with Examples

Apart from ranking columns for a given design, IwWLP and IsWLP can also assist in

selecting designs. From some different designs, the new patterns would help to select the better
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one. The following example illustrates how to select the better design.

Example 5.1 (Example 4.2 continued) Following Example 4.2, we consider another two

2(5+4)−(1+3) designs d2 with

I = ABCDE = ABDpq = ACDpr = BCDps,

and d3 with

I = ABCDE = ABpq = ACpr = ADps.

Note that the d1 in Example 4.2 is a GMC-FFSP design. Here d2 is an MA-MSA-FFSP

design[23] and d3 is an MA design[28]. According to the definitions, Tables 1, 2 and 3 list the

IwWLP and IsWLP for all factors in the above three designs, respectively.

Table 2: The IwWLP and IsWLP of d2

A2w
4 A1w

4 A4w
4 A3w

5 A2w
5 A1w

5 A5w
5 05 06 A6w

8 A5w
8 A4w

8 A3w
8 A2w

8 A1w
8 A8w

8 08

A 3 0 0 3 0 0 1 0 0 1 0 0 0 0

B 3 0 0 3 0 0 1 0 0 1 0 0 0 0

C 3 0 0 3 0 0 1 0 0 1 0 0 0 0

D 0 0 0 6 0 1 1 0 0 0 0 0 0 0

E 3 0 0 3 0 0 1 0 0 1 0 0 0 0

A2w
4 A1w

4 A0w
4 A3w

5 A2w
5 A1w

5 A0w
5 05 06 A6w

8 A5w
8 A4w

8 A3w
8 A2w

8 A1w
8 A0w

8 08

p 3 0 0 3 0 1 0 0 0 1 0 0 0 0

q 3 0 0 3 0 1 0 0 0 1 0 0 0 0

r 3 0 0 3 0 1 0 0 0 1 0 0 0 0

s 3 0 0 3 0 1 0 0 0 1 0 0 0 0

* 0k denotes that the k components of vector (A
(k−1)w
k+1 ,A

(k−2)w
k+1 ,. . .,A1w

k+1, A
(k+1)w
k+1 ) or vector

(A
(k−1)w
k+1 ,A

(k−2)w
k+1 ,. . ., A1w

k+1,A0w
k+1) are all zeros, here k=5, 6, 8.

Table 3: The IwWLP and IsWLP of d3

A2w
4 A1w

4 A4w
4 A3w

5 A2w
5 A1w

5 A5w
5 05 06 A6w

8 A5w
8 A4w

8 A3w
8 A2w

8 A1w
8 A8w

8 08

A 3 0 0 3 0 0 1 0 0 1 0 0 0 0

B 3 0 0 3 0 0 1 0 0 1 0 0 0 0

C 3 0 0 3 0 0 1 0 0 1 0 0 0 0

D 3 0 0 3 0 0 1 0 0 1 0 0 0 0

E 0 0 0 6 0 1 1 0 0 0 0 0 0 0

A2w
4 A1w

4 A0w
4 A3w

5 A2w
5 A1w

5 A0w
5 05 06 A6w

8 A5w
8 A4w

8 A3w
8 A2w

8 A1w
8 A0w

8 08

p 3 0 0 3 0 1 0 0 0 1 0 0 0 0

q 3 0 0 3 0 1 0 0 0 1 0 0 0 0

r 3 0 0 3 0 1 0 0 0 1 0 0 0 0

s 3 0 0 3 0 1 0 0 0 1 0 0 0 0

* 0k denotes that the k components of vector (A
(k−1)w
k+1 ,A

(k−2)w
k+1 ,. . .,A1w

k+1, A
(k+1)w
k+1 ) or vector

(A
(k−1)w
k+1 ,A

(k−2)w
k+1 ,. . ., A1w

k+1,A0w
k+1) are all zeros, here k=5, 6, 8.
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It can be observed that the types and numbers of IwWLPs and IsWLPs of all factors in the

designs d2 and d3 are the same. This means that the choices of d2 and d3 are equivalent. So it is

not necessary to discuss d3 in the following. For d1 and d2, we can see that the factors D and E

in Table 1 have the same best IwWLP, i.e. both are (03, 6, 0, 0, 1,05,06,07, 0, 0, 1, 0, 0, 0, 0, 0),

while the factor D in Table 2 has the best IwWLP, which is (03, 6, 0, 1, 1, 05,06,07,08). So

we can conclude that we will select design d1 if some priori knowledge shows that one or two

WP factors are more important than other WP factors. If some priori knowledge shows that

i (i = 1, 2, 3, 4) SP factors are more important than others, we will select design d2. That is

because the IsWLP of all factors in d2 are (3, 0, 0, 3, 0, 1, 0,05,06, 0, 0, 1, 0, 0, 0, 0,08), which are

better than those in d1 with (3, 0, 1, 3, 0, 0, 0,05,06,07, 0, 0, 1, 0, 0, 0, 0, 0).

For some given designs, one can calculate the IwWLP or IsWLP of each factor for each design

accordingly. The experimenter could select the design whose factors have the best IwWLP or

(and) IsWLP if the prior information shows that the number of potential important factors is

less than the number of the factors with the best IwWLP or (and) IsWLP. When the number

of important factors according to the prior information is larger than the number of the factors

with the best IwWLP or IsWLP, we consider the following combined WLP(CWLP).

For an FFSP design, it is usual to see that there are some factors with the same IwWLP or

IsWLP, such as IwWLP = (3, 0, 0, 3, 0, 0, 1,05,06, 0, 0, 1, 0, 0, 0, 0,08) for factors A,B,C,E in

design d2 in Example 5.1. Accordingly, for an FFSP design represented by an N ×n matrix, let

k1 denote the number of distinct IwWLPs, (IwWLP)i denote the ith type of IwWLP, λi denote

the occurrence frequency of (IwWLP)i, and m1 denote the number of WP factors. Based on

the definition of IwWLP in Section 4.1, we can gain a combined WLP(CwWLP) for an FFSP

design F as

CwWLP(F ) =

k1∑
i=1

ωi(IwWLP)i,

where the weight ωi is often taken to be the occurrence probability of (IwWLP)i, i.e. ωi =

λi/m1. Similarly, we have CsWLP for an FFSP design as

CsWLP(F ) =

k2∑
i=1

υi(IsWLP)i,

where k2 denotes the number of distinct IsWLPs, (IsWLP)i denotes the ith type of IsWLP,

µi denotes the occurrence frequency of (IsWLP)i, m2 denotes the number of SP factors, the

weight υi is often taken to be the occurrence probability of (IsWLP)i, i.e. υi = µi/m2.

As discussed above, for some given designs, we first calculate the IwWLP or IsWLP of each

factor for each design accordingly, and then select the best design according to the following

rules:

(i) if the priori knowledge shows that the number of potential important WP (or SP) factors

is less than the number of factors with the best IwWLP (or IsWLP), we will select the

design according to the IwWLP (or IsWLP) criterion;
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(ii) otherwise, we select the best design according to the CwWLP (or CsWLP) when the prior

information shows that the WP (or SP) factors are more important than SP (or WP)

factors.

In other case, if we get the same result for two or more designs according to the above rules,

we can consider the following CWLP for an FFSP design F as

CWLP(F ) =
m1

m
CwWLP(F ) +

m2

m
CsWLP(F )

=

k1∑
i=1

ω
(1)
i (IwWLP)i +

k2∑
j=1

ω
(2)
j (IsWLP)j ,

where the weight ω
(1)
i is often taken to be the occurrence probability of (IwWLP)i in the whole

design, i.e. ω
(1)
i = λi/m, the weight ω

(2)
j is often taken to be the occurrence probability of

(IsWLP)j in the whole design, i.e. ω
(2)
j = µj/m, and m = m1 +m2 denotes the number of all

factors.

In order to illustrate how to select the best design under the CWLP criterion, let us see the

following example.

Example 5.2 (Example 5.1 continued) When the number of important WP factors ex-

ceeds two according to the prior information, we can use the CwWLP and CWLP criteria to

select the best design. For designs d1 and d2, we have

CwWLP(d1) =

2∑
i=1

ωi(IwWLP)i

=
2

5
(0, 0, 0, 6, 0, 0, 1,05,06,07, 0, 0, 1, 0, 0, 0, 0, 0)

+
3

5
(4, 0, 0, 2, 0, 0, 1,05,06,07, 0, 0, 1, 0, 0, 0, 0, 0)

=

(
12

5
, 0, 0,

18

5
, 0, 0, 1,05,06,07, 0, 0, 1, 0, 0, 0, 0, 0

)
, and

CwWLP(d2) =

2∑
i=1

ωi(IwWLP)i

=
1

5
(0, 0, 0, 6, 0, 1, 1,05,06,07,08)

+
4

5
(3, 0, 0, 3, 0, 0, 1,05,06, 0, 0, 1, 0, 0, 0, 0,08)

=

(
12

5
, 0, 0,

18

5
, 0,

1

5
, 1,05,06, 0, 0,

4

5
, 0, 0, 0, 0,08

)
.

According to the CwWLP, we prefer design d1 when we have l ≥ 3 important WP factors. In

other case, if we do not have any idea on selecting the design according to the above methods,
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we can use the CWLP by combining CsWLP and CwWLP together. Here

CWLP(d1) =
5

9
CwWLP(d1) +

4

9
CsWLP(d1)

=
5

9

(
12

5
, 0, 0,

18

5
, 0, 0, 1,05,06,07, 0, 0, 1, 0, 0, 0, 0, 0

)
,

+
4

9
(3, 0, 1, 3, 0, 0, 0,05,06,07, 0, 0, 1, 0, 0, 0, 0, 0)

=

(
8

3
, 0,

4

9
,

10

3
, 0, 0,

5

9
,05,06,07, 0, 0, 1, 0, 0, 0, 0, 0

)
, and

CWLP(d2) =
5

9
CwWLP(d2) +

4

9
CsWLP(d2)

=
5

9

(
12

5
, 0, 0,

18

5
, 0,

1

5
, 1,05,06, 0, 0,

4

5
, 0, 0, 0, 0,08

)
+

4

9
(3, 0, 0, 3, 0, 1, 0,05,06, 0, 0, 1, 0, 0, 0, 0,08)

=

(
8

3
, 0, 0,

10

3
, 0,

5

9
,

5

9
,05,06, 0, 0,

8

9
, 0, 0, 0, 0,08

)
.

According to the CWLP, we can select d2 for designing the experiment.

Next, we give an example to explain all kinds of situations for selecting the best design.

Example 5.3 Consider the following two 2(4+6)−(0+5) designs

d4 : I = BDpq = ABpr = CDps = ABCDpt = ACpu, and

d5 : I = BDpq = BCpr = ADps = CDpt = ABpu,

where design d4 is an MA-MSA-FFSP design and d5 is a GMC-FFSP design[23]. According to

the definitions, we have Tables 4 and 5 listing the IwWLP and IsWLP for the factors in both

designs, respectively.

Table 4: The IwWLP and IsWLP of d4

A2w
4 A1w

4 A4w
4 04 A

4w
6 A3w

6 A2w
6 A1w

6 A6w
6 06 07 08 A

8w
10 A7w

10 A6w
10 A5w

10 A4w
10 A3w

10 A2w
10 A1w

10 A10w
10

A 6 0 0 3 0 6 0 0 0 0 0 0 1 0 0 0 0

B 6 0 0 3 0 6 0 0 0 0 0 0 1 0 0 0 0

C 6 0 0 3 0 6 0 0 0 0 0 0 1 0 0 0 0

D 6 0 0 3 0 6 0 0 0 0 0 0 1 0 0 0 0

A2w
4 A1w

4 A0w
4 04 A

4w
6 A3w

6 A2w
6 A1w

6 A6w
6 06 07 08 A

8w
10 A7w

10 A6w
10 A5w

10 A4w
10 A3w

10 A2w
10 A1w

10 A0w
10

p 4 0 2 1 0 8 0 0 0 0 0 0 1 0 0 0 0

q 4 0 2 1 0 8 0 0 0 0 0 0 1 0 0 0 0

r 4 0 2 1 0 8 0 0 0 0 0 0 1 0 0 0 0

s 4 0 2 1 0 8 0 0 0 0 0 0 1 0 0 0 0

t 4 0 2 1 0 8 0 0 0 0 0 0 1 0 0 0 0

u 4 0 2 1 0 8 0 0 0 0 0 0 1 0 0 0 0

* 0k denotes that the k components of vector (A
(k−1)w
k+1 , A

(k−2)w
k+1 , . . ., A1w

k+1, A
(k+1)w
k+1 ) or vector

(A
(k−1)w
k+1 , A

(k−2)w
k+1 , . . ., A1w

k+1, A0w
k+1) are all zeros, here k=4, 6, 7, 8.
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Table 5: The IwWLP and IsWLP of d5

A2w
4 A1w

4 A4w
4 04 A4w

6 A3w
6 A2w

6 A1w
6 A6w

6 06 A6w
8 A5w

8 A4w
8 A3w

8 A2w
8 A1w

8 A8w
8 08 09

A 6 0 0 2 0 6 0 0 0 0 2 0 0 0 0

B 7 0 0 2 0 4 0 0 0 0 2 0 1 0 0

C 6 0 0 2 0 6 0 0 0 0 2 0 0 0 0

D 7 0 0 2 0 4 0 0 0 0 2 0 1 0 0

A2w
4 A1w

4 A0w
4 04 A4w

6 A3w
6 A2w

6 A1w
6 A0w

6 06 A6w
8 A5w

8 A4w
8 A3w

8 A2w
8 A1w

8 A0w
8 08 09

p 5 0 2 0 0 6 0 0 0 0 2 0 1 0 0

q 5 0 2 0 0 6 0 0 0 0 2 0 1 0 0

r 4 0 2 1 0 7 0 0 0 0 1 0 1 0 0

s 4 0 2 1 0 7 0 0 0 0 1 0 1 0 0

t 4 0 2 1 0 7 0 0 0 0 1 0 1 0 0

u 4 0 2 1 0 7 0 0 0 0 1 0 1 0 0

* 0k denotes that the k components of vector (A
(k−1)w
k+1 , A

(k−2)w
k+1 , . . ., A1w

k+1, A
(k+1)w
k+1 ) or vector

(A
(k−1)w
k+1 , A

(k−2)w
k+1 , . . ., A1w

k+1, A0w
k+1) are all zeros, here k=4, 6, 8, 9.

From these two tables, we can conclude that if some priori knowledge shows one or two WP

factors or at most four SP factors are important, we will select design d5. For other situations,

we can use the weighted criteria, i.e. CwWLP, CsWLP, or even CWLP.

In this example, we have

CwWLP(d4) = (6, 0, 0,04, 3, 0, 6, 0, 0,06,07,08, 0, 0, 0, 0, 1, 0, 0, 0, 0), and

CwWLP(d5) =
2

4
(6, 0, 0,04, 2, 0, 6, 0, 0,06, 0, 0, 2, 0, 0, 0, 0,08,09)

+
2

4
(7, 0, 0,04, 2, 0, 4, 0, 0,06, 0, 0, 2, 0, 1, 0, 0,08,09)

=

(
13

2
, 0, 0,04, 2, 0, 5, 0, 0,06, 0, 0, 2, 0,

1

2
, 0, 0,08,09

)
.

According to these two CwWLPs, if we know that most of the WP factors are potentially

important, we can select d4 as a better one. Similarly, if most of the SP factors are important,

we will also take d4 as a better one, since

CsWLP(d4) = (4, 0, 2,04, 1, 0, 8, 0, 0,06,07,08, 0, 0, 0, 0, 1, 0, 0, 0, 0), and

CsWLP(d5) =
2

6
(5, 0, 2,04, 0, 0, 6, 0, 0,06, 0, 0, 2, 0, 1, 0, 0,08,09)

+
4

6
(4, 0, 2,04, 1, 0, 7, 0, 0,06, 0, 0, 1, 0, 1, 0, 0,08,09)

=

(
13

3
, 0, 2,04,

2

3
, 0,

20

3
, 0, 0,06, 0, 0,

4

3
, 0, 1, 0, 0,08,09

)
.

Furthermore, if we have no much priori knowledge, we can use the CWLP for choosing a better
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design. Here

CWLP(d4) =
4

10
(6, 0, 0,04, 3, 0, 6, 0, 0,06,07,08, 0, 0, 0, 0, 1, 0, 0, 0, 0)

+
6

10
(4, 0, 2,04, 1, 0, 8, 0, 0,06,07,08, 0, 0, 0, 0, 1, 0, 0, 0, 0)

=

(
24

5
, 0,

6

5
,04,

9

5
, 0,

36

5
, 0, 0,06,07,08, 0, 0, 0, 0, 1, 0, 0, 0, 0

)
, and

CWLP(d5) =
4

10
CwWLP(d5) +

6

10
CsWLP(d5)

=
4

10

(
13

2
, 0, 0,04, 2, 0, 5, 0, 0,06, 0, 0, 2, 0,

1

2
, 0, 0,08,09

)
+

6

10

(
13

3
, 0, 2,04,

2

3
, 0,

20

3
, 0, 0,06, 0, 0,

4

3
, 0, 1, 0, 0,08,09

)
=

(
26

5
, 0,

6

5
,04,

6

5
, 0, 6, 0, 0,06, 0, 0,

8

5
, 0,

4

5
, 0, 0,08,09

)
.

Accordingly, we can select d3 as a better design.

6 Further Results and Concluding Remarks

In this paper, we first established the relationships between the IWLP criterion and other

popular criteria for regular FF designs. Then we extended the IWLP criterion to the FFSP

design and proposed the corresponding criteria, such as IwWLP, IsWLP, CwWLP and CsWLP.

The IwWLP and IsWLP criteria are simple tools to assist practitioners in assigning factors to

the appropriate design columns. By sequentially minimizing IwWLP (or IsWLP), we can use

the prior information on factors’ importance to reduce the estimation bias caused by model

misspecification.

Section 5 shows that IwWLP and IsWLP are not only useful for assigning factors to design

columns but also helpful for selecting designs. We also consider different cases in practice

for selecting the designs under the IwWLP, IsWLP, CwWLP and CsWLP. According to the

examples, we tabulate some tables to illustrate the results. Tables 6 and 7 summarize the results

on the IwWLPs, IsWLPs, CwWLPs and CsWLPs, of designs d1, d2, d4 and d5, respectively. If

we need to compare the CWLPs of these designs, Table 8 shows us the results. Table 9 provides

some design recommendations for different situations.

It is worth mentioning that the critical difference between the proposed criteria and the

most existing criteria for FFSP designs is that the statuses of factors may not be the same.

When it is known in advance that some factors are more important than others from some

prior information, the proposed criteria are more appropriate than the other existing criteria

for selecting good designs. For simplicity, we focus on two-level designs here. However, the

proposed criteria can be easily extended to designs with higher-level factors.
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Table 6: The IwWLPs and CwWLPs of designs d1, d2, d4 and d5

Design Column (α) IwWLP∗ CwWLP∗

d1 A, B, C (4, 0, 0, 2, 0, 0, 1) ( 12
5
, 0, 0, 18

5
, 0, 0, 1)

D, E (0, 0, 0, 6, 0, 0, 1)

d2 A, B, C, E (3, 0, 0, 3, 0, 0, 1) ( 12
5
, 0, 0, 18

5
, 0, 1

5
, 1)

D (0, 0, 0, 6, 0, 1, 1)

Design Column (α) IwWLP# CwWLP#

d4 A, B, C, D (6, 0, 0, 04, 3, 0, 6, 0, 0) (6, 0, 0, 04, 3, 0, 6, 0, 0)

d5 A, C (6, 0, 0, 04, 2, 0, 6, 0, 0) ( 13
2

, 0, 0, 04, 2, 0, 5, 0, 0)

B, D (7, 0, 0, 04, 2, 0, 4, 0, 0)

∗: the pattern is (A2w
4 ,A1w

4 ,A4w
4 ,A3w

5 ,A2w
5 ,A1w

5 ,A5w
5 ).

#: the pattern is (A2w
4 ,A1w

4 ,A4w
4 ,04,A4w

6 ,A3w
6 ,A2w

6 ,A1w
6 ,A6w

6 ).

04 denotes that the 4 components of vector (A3w
5 , A2w

5 , A1w
5 , A5w

5 ) are zeros.

Table 7: The IsWLPs and CsWLPs of designs d1, d2, d4 and d5

Design Column (β) IsWLP∗ CsWLP∗

d1 p, q, r, s (3, 0, 1, 3, 0, 0, 0) (3, 0, 1, 3, 0, 0, 0)

d2 p, q, r, s (3, 0, 0, 3, 0, 1, 0) (3, 0, 0, 3, 0, 1, 0)

Design Column (α) IsWLP# CsWLP#

d4 p, q, r, s, t, u (4, 0, 2, 04, 1, 0, 8, 0, 0) (4, 0, 2, 04, 1, 0, 8, 0, 0)

d5 p, q (5, 0, 2, 04, 0, 0, 6, 0, 0) ( 13
3

, 0, 2, 04, 2
3
, 0, 20

3
, 0, 0)

r, s, t, u (4, 0, 2, 04, 1, 0, 7, 0, 0)

∗: the pattern is (A2w
4 ,A1w

4 ,A0w
4 ,A3w

5 ,A2w
5 ,A1w

5 ,A0w
5 ).

#: the pattern is (A2w
4 ,A1w

4 ,A0w
4 ,04,A4w

6 ,A3w
6 ,A2w

6 ,A1w
6 ,A0w

6 ).

04 denotes that the 4 components of vector (A3w
5 , A2w

5 , A1w
5 , A0w

5 ) are zeros.

Table 8: The CWLPs of designs

CWLP(∗) CWLP(∗)
d1 ( 8

3
, 0, 4

9
, 10

3
, 0, 0, 5

9
) d4 ( 24

5
, 0, 6

5
,04,

9
5
, 0, 36

5
, 0, 0)

d2 ( 8
3
, 0, 0, 10

3
, 0, 5

9
, 5
9
) d5 ( 26

5
, 0, 6

5
,04,

6
5
, 0, 6, 0, 0)

∗ denotes (A2w
4 ,A1w

4 , A0w
4 , A3w

5 ,A2w
5 ,A1w

5 , A0w
5 )).

# denotes (A2w
4 ,A1w

4 , A0w
4 , 04,A4w

6 ,A3w
6 ,A2w

6 ,A1w
6 , A0w

6 ).

04 denotes that the 4 components of vector (A3w
5 , A2w

5 , A1w
5 , A0w

5 ) are zeros.

Table 9: Suggested designs for different situations

1 or 2 3, 4, 5 1, 2, 3, 4 5, 6 no priori

WP factors WP factors SP factors SP factors knowledge

d1 d1 d2 \ d2

d5 d4 d5 d4 d4
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