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Abstract: Maximin distance designs are a kind of space-filling design, and are widely

used in computer experiments. However, although much work has been done on

constructing such designs, doing so for a large number of rows and columns remains

challenging. In this paper, we propose a theoretical construction method that

generates a maximin L1-distance Latin hypercube design with a run size that is

close to the number of columns, or half the number of columns. Our theoretical

results show that some of the constructed designs are both maximin L1-distance

and equidistant designs, which means that their pairwise L1-distances are all equal,

and that they are uniform projection designs. Other designs are asymptotically

optimal under the maximin L1-distance criterion. Moreover, the proposed method

is efficient for constructing high-dimensional Latin hypercube designs that perform

well under the maximin L1-distance criterion.

Key words and phrases: Computer experiment, Latin square, maximin distance

design, space-filling design.

1. Introduction

Computer experiments are increasingly being used to investigate complex

systems (Fang, Li and Sudjianto, 2006). In doing so, it is crucial to use a good

space-filling design in order to explore the design space effectively and build a

high-quality metamodel. Generating a space-filling design involves seeking design

points that fill a bounded design region as uniformly as possible. Much work

has been done on constructing such designs, including Latin hypercube designs

(LHDs; McKay, Beckman and Conover, 1979) and their extensions (Lin, Mukerjee

and Tang, 2009), maximin distance designs (Johnson, Moore and Ylvisaker,

1990), and uniform designs (Fang et al., 2018).

One fruitful approach to constructing space-filling designs is to use orthogonal

arrays (Hedayat, Sloane and Stufken, 1999). Owen (1992) and Tang (1993)

consider randomized orthogonal arrays and orthogonal array-based LHDs, respec-

tively, representing an important development in this area. Orthogonal arrays

have also been used to construct orthogonal LHDs; see Steinberg and Lin (2006),

Pang, Liu and Lin (2009), Sun, Liu and Lin (2009, 2010), Sun, Pang and Liu
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(2011), and Wang et al. (2018). Another approach is to find optimal designs

based on other criteria, such as uniformity measures (Fang, Li and Sudjianto,

2006; Fang et al., 2018), the maximin and minimax distances (Johnson, Moore

and Ylvisaker, 1990), and the integrated mean squared error (Montgomery, 2008).

Santner, Williams and Notz (2018) comprehensively examine various space-filling

measures, finding that the maximin distance criterion, which maximizes the

minimal distance between all pairs of points, is preferable to the other criteria.

Morris and Mitchell (1995) use a simulated annealing algorithm to search for

maximin LHDs. Joseph and Hung (2008) propose an algorithm that generates

an orthogonal maximin LHD by combining correlation and distance performance

measures. Ba, Myers and Brenneman (2015) propose an efficient algorithm that

searches for maximin distance sliced LHDs, available as an R package called

“SLHD.” Numerous other algorithms have also been proposed for constructing

maximin LHDs; see Lin and Tang (2015) for a review. Such algorithmic methods

are useful for generating flexible LHDs, but are not efficient for constructing

large designs, owing to their computational complexity. However, large designs

are needed for computer experiments; for example, Morris (1991) and Kleijnen

(1997) provide many computer models that involve several hundred factors. Xiao

and Xu (2017) note that in such cases, it is not unreasonable to assume effect

sparsity. Thus, saturated or even supersaturated LHDs are useful for identifying

a few active factors using limited runs.

Zhou and Xu (2015) propose constructing maximin LHDs by using a linear-

level permutation based on good lattice point sets. Xiao and Xu (2017) propose

methods for constructing LHDs with large L1-distances that use Costas arrays.

Wang, Xiao and Xu (2018) use Williams transformations of good lattice point

designs to construct a series of maximin LHDs, some of which are optimal under

the maximin L1-distance criterion and have small pairwise correlations between

columns. He (2019) proposes a method for constructing maximin distance designs

from interleaved lattices. Zhou, Yang and Liu (2020) use the rotation method

to construct maximin L2-distance LHDs based on a 22 full factorial design and

a series of saturated two-level regular designs. Li, Liu and Tang (2021) propose

an easy-to-use method for constructing maximin distance designs based on some

carefully selected small designs.

Focusing on two-dimensional projection uniformity, Sun, Wang and Xu

(2019) propose a design criterion called the uniform projection criterion. Uniform

projection designs generated under this criterion scatter points uniformly in

all dimensions, and have good space-filling properties in terms of distance,

uniformity, and orthogonality. Moreover, the authors show that maximin L1-

equidistant designs are uniform projection designs, and provide a method for

constructing uniform projection designs based on good lattice point sets when

the number of rows is an odd prime.
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Lin and Kang (2016) propose a general method for constructing Latin

hypercubes with flexible run sizes for computer experiments. The method uses

arrays with a special structure and LHDs. They show that their method can be

used to generate maximin LHDs with flexible run sizes under the ϕr criterion.

However, constructing maximin distance LHDs with many rows and columns

remains challenging. Here, we propose a method for generating maximin L1-

distance LHDs with run sizes that are close to the number of columns, or half

the number of columns. Some of the resulting designs are also Latin squares,

which are widely used in designs of experiments and in other fields, see, for

example, Hedayat, Sloane and Stufken (1999) and Keedwell and Dénes (2015).

Our theoretical results show that some of the constructed designs are both

maximin L1-distance and equidistant designs, which means their pairwise L1-

distances are all equal, as well as being uniform projection designs. Furthermore,

others are asymptotically optimal under the maximin L1-distance criterion.

The rest of this paper is organized as follows. Section 2 provides preliminaries

needed for the development in the subsequent sections. The proposed construc-

tion method is presented in Section 3. Theoretical results and comparisons are

provided in Section 4. Section 5 concludes the paper. All proofs are deferred to

the Appendix.

2. Preliminaries

For a positive integer b, let Zb denote the set {1, . . . , b}. Given any two

integers a and b, gcd(a, b) denotes the greatest common divisor of a and b. If

gcd(a, b) = 1, then a is coprime to b. For any real number r, ⌊r⌋ is the integer

part of r.

A Latin square of order n is an n × n square matrix with n2 entries of n

different elements, none of them occurring twice within any row or column of

the matrix. An isotopism of a Latin square L permutes the rows, columns, and

elements of L, resulting in another Latin square, which is said to be isotopic to

L. These two Latin squares belong to the same isotopy class (an isotopy class of

Latin squares is an equivalence class for the isotopy relation). An LHD, denoted

by LHD(n, s), is an n× s matrix in which each column is a permutation of the n

different elements from Zn. A Latin square of order n is a special LHD(n, n) if

the n different elements are taken from Zn.

For an integer q ≥ 1, define dq(x,y) = (
∑s

i=1 |xi − yi|q)1/q as the Lq-distance

of any two row vectors, x = (x1, . . . , xs) and y = (y1, . . . , ys). In this paper, we

take q = 1. Define the L1-distance of design D as

d1(D) = min{d1(x,y) : x ̸= y,x,y ∈ D}.
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Table 1. Latin squares constructed using (3.2) for N = 11 and 22.

N = 11 N = 22

1 2 3 4 5 1 3 5 7 9

2 4 5 3 1 3 9 7 1 5

3 5 2 1 4 5 7 3 9 1

4 3 1 5 2 7 1 9 5 3

5 1 4 2 3 9 5 1 3 7

A maximin L1-distance design D∗ is defined as a design that satisfies

d1(D
∗) = max

D
d1(D),

from among all possible candidate designs.

3. Construction Method

For a positive integer N , the number of positive integers that are less than

and coprime to N is ϕ(N), where ϕ(·) is the Euler function. It is easy to see that

ϕ(N) is even for any integer N > 2. Define a generator vector h as

h = (h1, . . . , hn), (3.1)

where 1 = h1 < · · · < hn ≤ ⌊N/2⌋, and gcd(hi, N) = 1, for i = 1, . . . , n, and

n = ϕ(N)/2. It is easy to verify that h consists of the first ϕ(N)/2 elements of

the generator vector for the N × ϕ(N) good lattice point sets. Taking h given in

(3.1) as the generator vector, we obtain an n × n square matrix L = (rij), with

its (i, j)th element rij defined by

rij = min{hi ∗ hj (mod N), N − hi ∗ hj (mod N)}, i, j = 1, . . . , n. (3.2)

Lemma 1. The n×n matrix L constructed in (3.2) is a Latin square of order n

with n different elements {h1, . . . , hn}.

Example 1. Let N = 11 and 22. Then, n = ϕ(N)/2 = 5, h = (1, 2, 3, 4, 5) for

N = 11, and h = (1, 3, 5, 7, 9) for N = 22. The Latin squares constructed using

(3.2) are listed in Table 1.

For the Latin square L constructed using (3.2), replace each element hi with

i, for i = 1, . . . , n, and denote the obtained matrix as D. Then, D is both an

LHD(n, n) and a Latin square of order n with n different elements in Zn. The

following example shows that design D performs well under the maximin L1-

distance criterion.

Example 2. Take the Latin square for N = 22 in Table 1 as an example. Replace

each element hi with i, for i = 1, . . . , n, that is, 1 → 1, 3 → 2, 5 → 3, 7 → 4,
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Algorithm 1 Construction of maximin L1-distance LHD(n, n).

Step 1. For a given integer N , obtain the generator vector h = (h1, . . . , hn) from (3.1),
where n = ϕ(N)/2.

Step 2. Generate the n× n Latin square L using (3.2), where each row and column is
a permutation of {h1, . . . , hn}.

Step 3. Replace each element hi in L with i, for i = 1, . . . , n, and denote the resulting
LHD(n, n) as D.

and 9 → 5. Then, we have
1 3 5 7 9

3 9 7 1 5

5 7 3 9 1

7 1 9 5 3

9 5 1 3 7

 −→


1 2 3 4 5

2 5 4 1 3

3 4 2 5 1

4 1 5 3 2

5 3 1 2 4

 .

It is easy to see that the generated matrix is both an LHD(5, 5) and a Latin

square of order 5. Furthermore, the L1-distances of the two LHD(5, 5)’s obtained

when N = 11 and 22 are both equal to 10 = (5 + 1)5/3.

For an LHD(n, s), the average pairwise L1-distance is (n+ 1)s/3 (Zhou and

Xu, 2015). In addition, the minimum pairwise L1-distance cannot exceed the

integer part of the average. Hence, the upper bound of the L1-distance of any

LHD(n, s) is dupper = ⌊(n + 1)s/3⌋. It can be verified that the LHDs obtained

in Example 2 are maximin L1-distance designs. Inspired by this, we propose

Algorithm 1 for constructing maximin distance LHDs.

Note that we can also use N − h as the generator vector in Algorithm 1. In

this case, the obtained design is the same as that constructed using the generator

vector h.

For the LHD(n, n) D constructed by Algorithm 1, let l1, . . . , ln be its 1st to

nth rows, and αi be the bijection from l1 = (1, . . . , n) to li = (li1, . . . , lin) with

αi(k) = lik, for k = 1, . . . , n, i = 1, . . . , n. Here, α1 is obviously an identity

mapping, and we have the following result.

Lemma 2. The transformation set {α1, α2, . . . , αn} is a commutative group.

Remark 1. For any two distinct rows li and lj(i < j) from D, reorder the

elements of li such that its elements are in increasing order, that is, li is

transformed to l1. Apply the same permutation on the elements of row lj,

and denote the newly obtained row by l′j. From Lemma 2 and the definition

of the L1-distance criterion, it is easy to verify that l′j is still a row of D, and

d1(li, lj) = d1(l1, l
′
j). Hence, the pairwise L1-distances between rows in D take at
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most n− 1 different values.

Example 3. To illustrate Remark 1, take the LHD(5, 5) D (listed in Table 1)

constructed by Algorithm 1 for N = 11 as an example. Let α1, α2, α3, α4, α5 be

the five bijections corresponding to its rows l1, l2, l3, l4, l5, respectively. It can be

verified that α−1
i (li) = l1, for i = 1, . . . , 5, and the following equalities hold:

d1(l2, l3) = d1(α
−1
2 (l2), α

−1
2 (l3)) = d1(l1, l4),

d1(l2, l4) = d1(α
−1
2 (l2), α

−1
2 (l4)) = d1(l1, l2),

d1(l2, l5) = d1(α
−1
2 (l2), α

−1
2 (l5)) = d1(l1, l3),

d1(l3, l4) = d1(α
−1
3 (l3), α

−1
3 (l4)) = d1(l1, l5),

d1(l3, l5) = d1(α
−1
3 (l3), α

−1
3 (l5)) = d1(l1, l2),

d1(l4, l5) = d1(α
−1
4 (l4), α

−1
4 (l5)) = d1(l1, l4).

This means that the L1-distance of any two different rows in D is equal to one

of the L1-distances between its 1st row l1 and other rows lj′ , for j′ = 2, 3, 4, 5.

Hence, the pairwise L1-distances between rows in D take at most four different

values.

Lemma 2 also implies that each transformation in the set {α1, α2, . . . , αn}
has an inverse mapping. Then, the design D generated by Algorithm 1 has the

following property.

Corollary 1. For row l1 and any two other rows li and lj (2 ≤ i, j ≤ n) of design

D generated by Algorithm 1, with corresponding transformations α1, αi, and αj,

respectively, if αj is the inverse mapping of αi, then d1(l1, li) = d1(l1, lj).

Remark 2. From Lemma 2 and Corollary 1, the pairwise L1-distances of the

LHD(n, n) D generated by Algorithm 1 take at most ⌊n/2⌋ different values, which
are included in the set {d1(l1, li), 2 ≤ i ≤ n}.

Example 4 (Example 3 continued). For N = 11, consider the LHD(5, 5) D

constructed by Algorithm 1. It is easy to check that α−1
2 = α5, α

−1
3 = α4, α

−1
4 =

α3, and α−1
5 = α2. Then, we have

d1(l1, l2) = d1(α5(l1), α5(l2)) = d1(l5, l1) = d1(l1, l5),

d1(l1, l3) = d1(α4(l1), α4(l3)) = d1(l4, l1) = d1(l1, l4).

Therefore, the pairwise L1-distances between the rows in D take at most two

different values.

In fact, for the LHD(n, n) D constructed by Algorithm 1, the number of

different values of the pairwise L1-distances between its rows is far less than

⌊n/2⌋ in most cases. For a given positive integer n, because there may be more

than one LHD(n, n) that can be constructed from Algorithm 1, Figure 1 plots
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Figure 1. Maximum number of different values of the pairwise L1-distances in the
LHD(n, n)’s constructed by Algorithm 1.

the maximum number of different values of the pairwise L1-distances between

different rows from among all possible such designs for each n (n ≤ 800). From

Figure 1, it is easy to see that there are few designs with ⌊n/2⌋ different values

of the pairwise L1-distances; in most cases, the number of different values of the

pairwise L1-distances is far less than ⌊n/2⌋.
For further clarification, we consider 11 ≤ N ≤ 118, and list the possible

LHD(n,n)’s generated by Algorithm 1 with different n values in Table 2. We

define the efficiency of an LHD(n, s) D under the maximin L1-distance criterion

as d1(D)/dupper, with dupper = ⌊(n + 1)s/3⌋ (Zhou and Xu, 2015). It is obvious

that d1(D)/dupper ≤ 1, and a design with larger efficiency is preferable. When

d1(D)/dupper < 1, we select the largest d1(D)/dupper, and give the corresponding

two smallest N ’s (if they exist) with different #{d1(li, lj)}(number of different

pairwise L1-distances for the same n). Table 2 shows that the number of different

values of the pairwise L1-distances is far less than ⌊n/2⌋, and the LHD(n, n)’s

constructed by the proposed method perform well under the maximin L1-distance

criterion.

Because there is more than one positive integer N that has the same value

of the Euler function ϕ(·), for a given positive integer n, there is more than one

possible LHD(n, n) that can be constructed by Algorithm 1. To further explore

the overall performance of the proposed method under the maximin L1-distance

criterion, Figure 2 plots the minimum efficiency for each n (n ≤ 800). It is easy

to see that the minimum efficiency of the constructed LHD(n, n) converges to

one for large n. The proposed method can be used to generate large LHDs with

large L1-distances.
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Table 2. Pairwise L1-distances of the LHD(n, n)’s generated by Algorithm 1.

N n #{d1(li, lj)} d1(D) d1(D)/dupper
11, 22 5 1 10 1.00

13, 26 6 1 14 1.00

17, 34 8 1 24 1.00

19, 38 9 1 30 1.00

25, 33 10 2, 3 34 0.94

23, 46 11 1 44 1.00

39 12 4 48 0.92

29, 58 14 1 70 1.00

31, 62 15 1 80 1.00

51 16 4 86 0.96

37, 74 18 1 114 1.00

41, 82 20 1 140 1.00

43, 86 21 1 154 1.00

69 22 5 162 0.96

47, 94 23 1 184 1.00

65 24 8 186 0.93

53, 106 26 1 234 1.00

81 27 3 244 0.97

87, 116 28 5, 6 262 0.97

59, 118 29 1 290 1.00
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Figure 2. Minimum efficiencies of LHD(n, n)’s generated by Algorithm 1 for general N ’s,
where n = ϕ(N)/2.

4. Theoretical Results and Comparisons

The proposed method generates optimal LHDs under the maximin L1-

distance criterion for different values ofN . Next, we further explore the properties

of the LHDs constructed by Algorithm 1 in different cases. Throughout the paper,

we assume that p is an odd prime.
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Table 3. Two LHD(6, 6)’s D1 and D2 generated by Algorithm 1 for N = 13 and 26.

D1 D2

1 2 3 4 5 6 1 2 3 4 5 6

2 4 6 5 3 1 2 5 6 3 1 4

3 6 4 1 2 5 3 6 1 5 4 2

4 5 1 3 6 2 4 3 5 2 6 1

5 3 2 6 1 4 5 1 4 6 2 3

6 1 5 2 4 3 6 4 2 1 3 5

4.1. N = p and 2p

When N = p and 2p, the generator vectors in (3.1) are h = (1, 2, . . . , n) and

(1, 3, . . . , 2n−1), respectively, where n = ϕ(N)/2 = (p−1)/2. It is easy to verify

that the integer 3 divides n or n + 1 for p ≥ 5. The following result holds for a

design D generated by Algorithm 1.

Theorem 1. For N = p or 2p, and n = ϕ(N)/2 = (p − 1)/2, the LHD(n, n)

D generated by Algorithm 1 is a maximin L1-distance LHD, with its pairwise

L1-distances between rows all equal to n(n+ 1)/3.

Remark 3. (i) Theorem 1 suggests that when N is an odd prime or twice an

odd prime, the pairwise L1-distances of D are all equal to a constant. We call

such a design an equidistant LHD, which is a maximin L1-distance LHD. (ii)

Hence, by Theorem 3 in Sun, Wang and Xu (2019), the constructed designs

when N = p and 2p are also uniform projection designs, which have good space-

filling properties, not only in two dimensions, but also in all dimensions. (iii)

When N = p, the LHD(n, n) D is the same as the design H constructed in

Wang, Xiao and Xu (2018). Then, by Theorem 7 in Wang, Xiao and Xu (2018),

we have that the average pairwise absolute correlation between columns of D,

denoted by ρave(D), satisfies ρave(D) < 2/(n− 1).

Example 5. For bothN = 13 and 26, and n = ϕ(N)/2 = 6, the generator vectors

are h = (1, 2, 3, 4, 5, 6) and h = (1, 3, 5, 7, 9, 11), respectively. Table 3 lists the two

LHD(6, 6)’s generated by Algorithm 1. Here, the pairwise L1-distances between

the rows of each design are all equal to 14, implying that both D1 and D2 are

equidistant and maximin L1-distance LHDs. In addition, if we permute the rows,

columns, and elements of D1 according to the permutation(
1 2 3 4 5 6

1 4 5 2 3 6

)
, (4.1)

then the obtained design is D2; that is, D1 and D2 are equivalent (i.e., they

belong to the same isotopy class). This may not be true in general; see Table 2.
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Consider two equidistant LHDs D1 and D2 for N = p and 2p, respectively,

constructed by Algorithm 1, and let

D∗ = [D1, D2]. (4.2)

Then, we have the following result.

Theorem 2. The LHD(n, 2n) D∗ defined in (4.2) is also equidistant, and thus a

maximin L1-distance LHD, with its pairwise L1-distances between rows all equal

to 2n(n+ 1)/3, where n = (p− 1)/2.

Remark 4. The 1st and (n + 1)th columns in D∗ constructed by (4.2) are the

same, and we denote the design obtained by deleting its (n + 1)th column as

D∗
−1. When we delete one column from an LHD with n rows, its L1-distance

reduces by at most n−1; thus, the L1-distance of the LHD(n, 2n−1) D∗
−1 satisfies

d1(D
∗
−1) ≥ (2n2−n+3)/3. In addition, it is easy to obtain that d1(D

∗
−1)/dupper >

1 − 1/(n + 1), which means that D∗
−1 is an asymptotically optimal LHD, where

dupper = ⌊(n+ 1)(2n− 1)/3⌋.

Theorem 2 is obvious from the equidistant property of the LHDs constructed

by Algorithm 1 when N = p and 2p. Furthermore, if there are more than two

equidistant LHDs with the same number of rows, we can generate larger maximin

distance LHDs with more columns that are also equidistant.

Example 6 (Example 5 continued). Consider p = 13. The two LHD(6, 6)’s

D1 and D2 generated by Algorithm 1 for N = p and 2p, respectively, are listed in

Table 3. From Theorem 1, it follows that they are both equidistant LHDs with

d1(D1) = d1(D2) = 14. The corresponding LHD(6, 12) D∗ constructed in (4.2)

is also equidistant, with d1(D
∗) = 28, which attains the upper bound of the L1-

distance. Because the first columns in each of the two designs listed in Table 3

are the same, we can obtain an LHD(6, 11) D∗
−1 by deleting one of the repeated

columns. Then, d1(D
∗
−1) = 23, which is very close to the corresponding upper

bound dupper = 25.

For an LHD(n, n) constructed by Algorithm 1, by adding a row with its

n elements all n + 1, the obtained design has the same L1-distance as the

corresponding LHD(n, n), and the following result holds.

Lemma 3. Let D be an equidistant LHD(n, n) constructed by Algorithm 1 for

N = p and 2p, and let D′ be the LHD(n + 1, n) obtained by adding a row of

(n+ 1)’s to D. Then, d1(D
′) = d1(D) = (n+ 1)n/3, and

d1(D
′)

dupper
≥ 1− 1

n+ 2
→ 1 as n → ∞,

where dupper = ⌊(n+ 2)n/3⌋.
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Lemma 3 is obvious, and shows that D′ is an asymptotically optimal design

under the maximin L1-distance criterion. In addition, when we delete any column

from an LHD(n, s) D, its L1-distance reduces by at most n− 1. After repeating

this procedure multiple times, we have the following result.

Lemma 4. Let D be an equidistant LHD(n, n) constructed by Algorithm 1.

Deleting any kc columns yields an LHD(n, n− kc), denoted by D′. Then,

d1(D
′)

dupper
≥ 1− 2

kc
n− kc

.

If kc is a fixed constant, not increasing with n, then d1(D
′)/dupper → 1 as n →

∞; that is, designs obtained by deleting columns from an equidistant LHD are

asymptotically optimal LHDs with different sizes under the maximin L1-distance

criterion. Similar results hold for deleting columns from any (asymptotically)

optimal design under the maximin L1-distance criterion.

4.2. N = 2t and 2tp

When N(≥ 16) is double even, that is, N/2 is an even integer, according to

Lemma 1 in Elsawah, Fang and Deng (2021), we have n = ϕ(N)/2 = ϕ(N/2), and

n is even. For a design D generated by Algorithm 1, denote D′ as the submatrix

of D that consists of its first n/2 columns. Then, we have the following result

from Theorem 5 in Elsawah, Fang and Deng (2021). We omit the proof.

Theorem 3. For any double even integer N(≥ 16), let D = (lij) be the LHD(n, n)

generated by Algorithm 1, where n = ϕ(N)/2. We have the following results:

(i) The elements in D satisfy lij + li(n+1−j) = n+ 1 and lij + l(n+1−i)j = n+ 1,

for any i, j = 1, . . . , n, which implies

D =

(
A1 n+ 1−A2

n+ 1−A3 A4

)
,

where A1 is the n/2×n/2 leading principal submatrix of D, and A2, A3, and

A4 can be obtained from A1 by reversing the orders of the columns, rows,

and both, respectively;

(ii) Denote D′ as the n × n/2 submatrix of D that consists of its first n/2

columns, that is, D′ =

(
A1

n+ 1−A3

)
. Then, D′ is an LHD(n, n/2), and

d1(D
′) = d1(D)/2.

Theorem 3 (i) shows that when N(≥ 16) is double even, the correspond-

ing LHD(n, n) generated by Algorithm 1 has a fold-over or mirror-symmetric

structure with respect to both rows and columns.
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Table 4. LHD(n, n)’s constructed by Algorithm 1 for double even integers N = 28 and
32.

D1: LHD(6, 6) for N = 28 D2: LHD(8, 8) for N = 32

1 2 3 4 5 6 1 2 3 4 5 6 7 8

2 4 6 1 3 5 2 5 8 6 3 1 4 7

3 6 2 5 1 4 3 8 4 2 7 5 1 6

4 6 2 8 1 7 3 5

4 1 5 2 6 3

5 3 1 6 4 2 5 3 7 1 8 2 6 4

6 5 4 3 2 1 6 1 5 7 2 4 8 3

7 4 1 3 6 8 5 2

8 7 6 5 4 3 2 1

Example 7. Consider the double even integers N = 28 and 32. The correspond-

ing LHD(6, 6) and LHD(8, 8) constructed by Algorithm 1 are listed in Table 4.

Divide each of the two LHDs into four blocks, as shown in Table 4. Then, it

is easy to verify that property (i) in Theorem 3 holds. Let D′
1 and D′

2 be the

6 × 3 and 8 × 4 submatrices consisting of the first-half columns of D1 and D2,

respectively. Then, d1(D
′
1) = d1(D1)/2 = 6 and d1(D

′
2) = d1(D2)/2 = 11.

When N = 4p and n = ϕ(N)/2 = p− 1, the corresponding generator vector

h consists of p − 1 elements {2j − 1, j = 1, . . . , p}\{p}. When N = 2t and

n = ϕ(N)/2 = 2t−2, the corresponding generator vector is h = (1, 3, . . . , 2n− 1).

We have the following results for N = 2t and 4p.

Theorem 4. Let D be the LHD(n, n) generated by Algorithm 1, with n = ϕ(N)/2.

(i) If N = 4p and p ≥ 5, then n = ϕ(N)/2 = p− 1 and

d1(D) =

{
n2/3, if p (mod 3) = 1,

(n2 + 2)/3, if p (mod 3) = 2;

(ii) If N = 2t and t ≥ 3, then n = 2t−2 and

d1(D) =
n2 + 2

3
.

In addition, for both cases, we have d1(D)/dupper ≥ 1− 1/(n+1), where dupper =

⌊(n+ 1)n/3⌋.

We can establish similar theoretical results for the constructed LHD(n, n)’s

when N = 2tp (t > 2), with more elaborate arguments; the details are omitted

here. Figure 3 plots the efficiencies of the LHD(n, n)’s generated by Algorithm 1

when N = 2tp (t = 3, 4 and 16 < p < 200), showing that the constructed designs

perform well under the maximin L1-distance criterion.
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Figure 3. Efficiencies of LHD(n, n)’s generated by the proposed method for N = 23p and
24p.

Corollary 2. From Theorems 3 and 4, the following results hold for the

LHD(n, n/2) D′:

(i) if N = 4p and p ≥ 5, then n = ϕ(N)/2 = p− 1 and

d1(D
′) =

{
n2/6, if p (mod 3) = 1,

(n2 + 2)/6, if p (mod 3) = 2;

(ii) if N = 2t and t ≥ 4, then n = 2t−2 and

d1(D
′) =

n2 + 2

6.

Because the upper bound of d1(D
′) is dupper = ⌊(n + 1)n/6⌋, it is easy to

verify that d1(D
′)/dupper → 1 as n → ∞ for each case listed in Corollary 2; that

is, the LHD(n, n/2) D′ is an asymptotically optimal design under the maximin

L1-distance criterion. More generally, when N is double even, for each LHD(n, n)

constructed by the proposed method, the corresponding submatrix that consists

of its first n/2 columns is asymptotically optimal under the maximin L1-distance

criterion, as long as the LHD(n, n) itself is asymptotically optimal.

In Figure 4, we compare the efficiencies of the LHD(p − 1, (p − 1)/2)’s

generated by the linear permutation of good lattice point sets method (LP-GLP,

Zhou and Xu, 2015), the R package SLHD (SLHD, Ba, Myers and Brenneman,

2015), and the proposed method (“new method”) in Algorithm 1 for 5 ≤ p < 200.

Because the last row of a p × (p − 1) good lattice point set D is (0, . . . , 0), the

last row of the linear permutation good lattice point set Db is (b, . . . , b), for
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Figure 4. Efficiencies of the LHD(p− 1, (p− 1)/2)’s generated by various methods.

b = 0, 1, . . . , p−1. We use the leave-one-out method given in Wang, Xiao and Xu

(2018) to generate an LHD(p−1, p−1) based on each Db. Then, we can construct

p LHD(p− 1, (p− 1)/2)’s by taking the first (p− 1)/2 columns of each design. Of

these p designs, we choose the one with the largest L1-distance for comparison.

The SLHD package generates optimal designs under the average reciprocal inter-

point distance measure ϕr (Morris and Mitchell, 1995). Therefore, we run the

command maximinSLHD with the option t = 1 and the default settings (r = 15)

100 times, and choose the design with the largest L1-distance. For comparison,

from the LHD(p−1, p−1) generated by Algorithm 1 when N = 4p, we choose the

first (p−1)/2 columns to obtain an LHD(p−1, (p−1)/2), as stated in Theorem 3.

Figure 4 shows that the proposed method outperforms the other two methods as p

becomes larger. Moreover, the proposed method generates LHD(p−1, (p−1)/2)’s

without a computer search for any given p.

To further explore the performance of the constructed designs, we consider

the maximin L2-distance criterion. We define the efficiency of an LHD(n, s) under

the L2-distance as its L2-distance divided by the corresponding upper bound d2,

where d2 =
√
⌊n(n+ 1)s/6⌋; see Theorem 3 in Zhou and Xu (2015). Figure 5

shows the efficiencies (under the L2-distance) of the designs generated by various

methods. For the R package SLHD, we run the command maximinSLHD with

the option t = 1 and the default settings 100 times, and record the maximum

L2-distance of these designs. Figure 5 shows that the proposed method still

outperforms the other two methods under the L2-distance. When p ≥ 17 (except

when p = 173), the L2-distances of the LHD(p− 1, (p− 1)/2)’s generated by the

proposed method are larger than the maximum L2-distances of the corresponding

LHDs generated by the R package SLHD.
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Figure 5. Efficiencies (under the L2-distance) of the LHD(p − 1, (p − 1)/2)’s generated
by various methods.

We also compare these three methods under the ϕr (r = 15) criterion (where

a smaller value is better). For the R package SLHD, we run the command

maximinSLHD with the option t = 1 and the default settings 100 times,

and record the minimum ϕr value of these designs. To better illustrate the

performance of the three methods, we define the relative ϕr efficiency (where

a smaller value is better) of a design D as ϕr(D)/ϕr(DSLHD), where DSLHD

is the design generated by the R package SLHD as a reference. The relative

ϕr efficiency may be larger or smaller than one, in contrast to the efficiencies

defined for Figures 4 and 5. Figure 6 shows the relative ϕr efficiencies of the

LHD(p − 1, (p − 1)/2)’s generated by various methods. Clearly the designs

generated by the proposed method have smaller relative ϕr efficiencies. Thus,

the proposed method outperforms the other two methods in terms of the ϕr

criterion.

Note that the method of Lin and Kang (2016) can also be used to generate

maximin LHDs under the ϕr criterion. Their numerical results show that the

designs constructed using their method have larger ϕr values (thus, worse) than

those of the designs constructed using the R package SLHD. In contrast, because

our designs have smaller ϕr values than those of the designs constructed by the

R package SLHD, our designs perform better than those obtained using the

method of Lin and Kang (2016). As an example, using N = 404, we obtain

an LHD(100, 50). By deleting the last two columns and the last two rows,

and rearranging the levels for each column, we obtain an LHD(98, 48) with a

ϕr value of 0.1096, which is better than any constructed using the method of

Lin and Kang (2016) (whose smallest ϕr value is 0.1164). The ϕr values are

evaluated on standardized designs with n levels, scaled to [0.5/n, 1− 0.5/n].
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Figure 6. Relative ϕr efficiencies of the LHD(p − 1, (p − 1)/2)’s generated by various
methods.

Table 5. Maximin L1-distance LHDs obtained from the theoretical results.

Source LHD(n, s) d1(D)/dupper
Theorem 1 LHD((p− 1)/2, (p− 1)/2) 1

Theorem 2 LHD((p− 1)/2, p− 1) 1

Remark 4 LHD((p− 1)/2, p− 2) ≥ 1− 1/(n+ 1)

Lemma 3 LHD((p+ 1)/2, (p− 1)/2) ≥ 1− 1/(n+ 2)

Lemma 4 LHD((p− 1)/2, (p− 1)/2− kc) ≥ 1− 2kc/(n− kc)

Theorem 4 LHD(p− 1, p− 1) ≥ 1− 1/(n+ 1)

Theorem 4 LHD(2t−2, 2t−2) ≥ 1− 1/(n+ 1)

Corollary 2 LHD(p− 1, (p− 1)/2) ≥ 1− 1/(n+ 1)

Corollary 2 LHD(2t−2, 2t−3) ≥ 1− 1/(n+ 1)

To conclude this section, Table 5 lists the possible sizes of the (asymptoti-

cally) maximin L1-distance LHDs that can be obtained directly from the above

theoretical results. Some designs are maximin L1-distance LHDs and others

are asymptotically optimal under the maximin L1-distance criterion, and their

efficiencies exceed 95% for n ≥ 50.

4.3. Numerical studies

In this subsection, we further explore the properties of the LHD(n, n)

D obtained from Algorithm 1 for more general N with n = ϕ(N)/2 using

simulations.

Figure 7 shows the efficiencies of the LHD(n, n)’s generated by Algorithm 1

for N = 5p, 7p, 11p, and 13p (13 < p < 200), with n = 2(p− 1), 3(p− 1), 5(p− 1),

and 6(p − 1), respectively. Figure 8 shows the efficiencies of the LHD(n, n)’s

generated by the proposed method for N = p2 and p3 (5 ≤ p < 100), with
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Figure 7. Efficiencies of LHD(n, n)’s generated by the proposed method for N =
5p, 7p, 11p, and 13p.

n = p(p− 1)/2 and p2(p− 1)/2, respectively. It is easy to see that the generated

LHDs are all asymptotically maximin L1-distance designs, and d1(D) approaches

dupper as p becomes larger. In general, when N = p1p2 or pm1 (p1, p2 are odd

primes, m ≥ 2), the LHD(n, n)’s generated by Algorithm 1 are all asymptotically

optimal designs under the maximin L1-distance criterion. Furthermore, we can

obtain addtional asymptotically optimal LHDs with different sizes by deleting

columns (see Lemma 4) or rows (see Theorem 9 in Wang, Xiao and Xu, 2018)

from the constructed LHDs.

We give the following results on the L1-distance of the constructed LHD(n, n)

D for different N values. We have verified the results up to p = 1000:

d1(D) ≥
{
⌊(4p2 − 10p)/3⌋+ 2, when N = 5p, n = 2(p− 1),

3p2 − 7p+ 6, when N = 7p, n = 3(p− 1).

Using simulations, we find that the lower bound is achieved by some N for either

of the two cases. Moreover, the corresponding upper bounds for N = 5p and 7p

are dupper = ⌊(4p2−6p+2)/3⌋ and 3p2−5p+2, respectively. Thus, the efficiencies

of the LHD(n, n)’s generated by Algorithm 1 for N = 5p and 7p satisfy

d1(D)

dupper
>

{
1− 2p/(2p2 − 3p+ 1), when N = 5p, n = 2(p− 1),

1− 2p/(3p2 − 5p+ 2), when N = 7p, n = 3(p− 1),

which implies that d1(D)/dupper → 1 as n → ∞ for a design D generated by

Algorithm 1 when N = 5p and 7p.
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Figure 8. Efficiencies of LHD(n, n)’s generated by the proposed method for N = p2 and
p3.

5. Conclusion

We have proposed a method for constructing maximin L1-distance LHDs.

Our theoretical results and numerical studies show that the proposed method

can be used to generate (asymptotically) optimal LHDs that perform well under

the maximin L1-distance criterion. In particular, when N = p and 2p, the

constructed LHDs are all equidistant LHDs; thus, they are maximin L1-distance

LHDs and uniform projection designs. Moreover, larger equidistant LHDs can

be constructed by using two or more equidistant LHDs with the same number of

rows. Section 4.3 provides lower bounds for the L1-distances of the constructed

LHDs for more general N using numerical computations. Additional theoretical

support is possible with more elaborate arguments.

The maximin L1-distance LHDs constructed using the proposed method are

limited to special row and column sizes. This limitation is easy to overcome.

Asymptotically optimal LHDs with flexible row and column sizes can be generated

easily based on the constructed designs using Theorem 9 in Wang, Xiao and Xu

(2018). Furthermore, the integer programming algorithm of Vázquez and Xu

(2024) can be used to obtain more flexible maximin L1-distance designs based on

the constructed LHDs.
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Appendix: Proofs

A.1. Proof of Lemma 1

Let L = (rT
1 , . . . , r

T
n )

T , where ri is the ith row of L and T is the notation for

transpose. It is obvious that r1 = h and LT = L. To prove that L is a Latin

square, it is sufficient to verify that each ri (i = 1, . . . , n) is a permutation on the

set {h1, . . . , hn}.
Let ri = (ri1, . . . , rin). For k = 1, . . . , n, we have rik = min{hi ∗

hk (mod N), N − hi ∗ hk (mod N)}. It is easy to check that rik ≤ ⌊N/2⌋
and gcd(rik, N) = 1, thus rik is an element of the set {h1, . . . , hn}. As

gcd(hi, N) = 1 (1 ≤ i ≤ n), for any two entries rik and riw (k ̸= w), it is

easy to obtain that rik ̸= riw, otherwise, at least one of the following conditions

holds: (1) N divides hi, (2) N divides hk − hw, (3) N divides hk + hw, which

leads to a contradiction. Consequently, each ri is a permutation on the set

{h1, . . . , hn}, which completes the proof.

A.2. Proof of Lemma 2

Let G = {α1, . . . , αn}. G is a commutative group if the following conditions

hold:

(C1) if α, β ∈ G, then αβ ∈ G;

(C2) the identity mapping is in G;

(C3) if α ∈ G, then its inverse mapping α−1 is in G;

(C4) for any α, β ∈ G, the equality αβ = βα holds.

Item (C2) holds obviously as α1(∈ G) is an identity mapping, so only (C1), (C3),

and (C4) need to be verified.

It is easy to see that the elements of Latin square L in (3.2) satisfy rik =

min{±hi ∗ hk (mod N)}. Suppose p is an odd prime, we can prove the lemma in

two cases.

(i) WhenN = p (≥ 5) and n = (p−1)/2. The generator vector is h = (1, . . . , n),

thus the design D = (lij)n×n constructed by Algorithm 1 is the same as L.

For i = 1, . . . , n, we have

αi(k) = lik = rik = min{±i ∗ k (mod N)}, where k = 1, . . . , n.

Choose another transformation αj (j ̸= i) from G, then αj(k) = min{±j ∗
k (mod N)} for k = 1, . . . , n. The resultant of αi and αj can then be

expressed as

αjαi(k) = αj(min{±i ∗ k (mod N)})
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= min{±j ∗ i ∗ k (mod N)}
= αiαj(k),

where k = 1, . . . , n, so item (C4) holds. Since

min{±j ∗ i ∗ k (mod N)} = min{±{j ∗ i(mod N)} ∗ k (mod N)}
= min{±min{±j ∗ i (mod N)} ∗ k (mod N)}
= min{±w ∗ k (mod N)},

where w = min{±j ∗ i (mod N)} ∈ Zn; it is easy to verify that αjαi(k) =

αiαj(k) = αw(k), that is, αjαi ∈ G, so item (C1) holds.

For each αi, there exists a unique integer j0 (1 ≤ j0 ≤ n) such that min{±j0∗
i (mod N)} = 1. Then αj0 and αi satisfy the following equality:

αj0αi(k) = αiαj0(k) = min{±j0 ∗ i ∗ k (mod N)}
= min{±min{±j0 ∗ i (mod N)} ∗ k (mod N)}
= k,

where k = 1, . . . , n. That is, αj0 is the inverse mapping of αi, and for each

αi in G, its inverse mapping is also in G, so item (C3) holds.

(ii) When N ̸= p and n = ϕ(N)/2. From Lemma 1, for any two integers i and

k (1 ≤ i, k ≤ n), there exists a unique integer t (1 ≤ t ≤ n) satisfying

ht = min{±hi ∗ hk (mod N)},

which means αi(k) = t. In addition, for each hi, there exists a unique integer

i′ (1 ≤ i′ ≤ n) such that

min{±hi ∗ hi′ (mod N)} = h1 = 1.

Then, similar to the discussions in case (i), it is easy to verify that items

(C1), (C3), and (C4) hold.

In summary, G is a commutative group. This completes the proof.

A.3. Proof of Corollary 1

If the transformation αj is the inverse mapping of the transformation αi,

that is, (αi)
−1 = αj, then (αi)

−1α1 = αjα1 = αj, where α1 is the identity

mapping. Take the transformation αj on the rows l1 and li, then, these two rows

are transformed to rows lj and l1, respectively. Thus, according to the definition

of L1-distance of two row vectors, we have d1(l1, li) = d1(l1, lj), which completes

the proof.
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A.4. Proof of Theorem 1

For a given integer N , define w(x) as the modified Williams’ transformation

in Wang, Xiao and Xu (2018), that is,

w(x) =

{
2x, if x < N/2;

2(N − x), if x ≥ N/2.

When N = p, the generator vector in (3.1) is h = (1, . . . , n), where n =

ϕ(N)/2 = (p − 1)/2. Hence, the LHD(n, n) D generated by Algorithm 1 is the

same as L in (3.2), and it can be verified that D is also the same as the design H

constructed in Wang, Xiao and Xu (2018) by modified Williams’ transformation.

Therefore, the result follows from Theorem 4 of Wang, Xiao and Xu (2018).

For N = 2p and n = ϕ(N)/2 = (p − 1)/2, let U = (xij) be the N × ϕ(N)

good lattice point design with generator vector (1, 3, . . . , p− 2, p+2, . . . , N − 1).

With proper row and column permutations, U is equivalent to(
2C + p

2C

)
(mod N)

where C is the p× (p− 1) good lattice point design.

Then w(U) is equivalent to (
w(2C ⊕ p)

w(2C)

)
,

where 2C ⊕ p = (2C + p) (mod N). According to Theorem 1 and the proof of

Theorem 8 in Wang, Xiao and Xu (2018), the following result holds for the ith

and kth rows, denoted by ri and rk, in w(2C),

d1(ri, rk) =
2(p2 − 1)

3
, for i ̸= k, i ̸= p, k ̸= p, and i+ k ̸= p. (A.1)

Moreover, it can be verified that (A.1) also holds for w(2C ⊕ p).

In addition, when N = 2p, it can be verified that for the n×n Latin square L

generated in (3.2), the following results hold: (i) its n elements are {1, 3, . . . , p−
2}; (ii) the L1-distance of any two distinct rows in L is two times that of the

corresponding rows in LHD(n, n) D constructed using Algorithm 1; (iii) under

column permutations, L is equivalent to the submatrix of w(2C ⊕ p)/2 that

consists of its {(p+1)/2}th to (p−1)th columns and 1st, 3rd, . . . , (p−2)th rows.

Hence, according to (A.1) and properties of good lattice point design U , for any

two distinct rows in D, their L1-distance equals (p2 − 1)/12 = (n+ 1)n/3, which

means that d1(D) = (n+ 1)n/3. Thus, the theorem holds.
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A.5. Proof of Theorem 4

(i) For N = 4p and n = ϕ(N)/2 = p − 1, the corresponding generator vector

defined in (3.1) is h = (1, 3, . . . , p− 2, p+2, . . . , 2p− 1). Denote rows of the

LHD(n, n) D constructed by Algorithm 1 as l1, . . . , ln. It is easy to see that

the p − 1 elements of l1 are l1j = j, for j = 1, . . . , p − 1. For l2, its p − 1

elements are

l2j =



2 + 3(j − 1), for j = 1, . . . , (p− 1)/6;

(p+ 1)/2 + 3[j − (p+ 5)/6], for j = (p+ 5)/6, . . . , (p− 1)/3;

(p+ 5)/2 + 3[(p− 1)/2− j], for j = (p+ 2)/3, . . . , (p− 1)/2;

p− 3[j − (p− 1)/3], for j = (p+ 1)/2, . . . , 2(p− 1)/3;

3 + 3[j − (2p+ 1)/3], for j = (2p+ 1)/3, . . . , 5(p− 1)/6;

3[j − 2(p− 1)/3]− 1, for j = (5p+ 1)/6, . . . , p− 1,

when p (mod 3) = 1, and

l2j =



2 + 3(j − 1), for j = 1, . . . , (p+ 1)/6;

(p+ 3)/2 + 3[j − (p+ 7)/6], for j = (p+ 7)/6, . . . , (p+ 1)/3;

(p+ 5)/2 + 3[(p− 1)/2− j], for j = (p+ 4)/3, . . . , (p− 1)/2;

3 + 3[2(p− 2)/3− j], for j = (p+ 1)/2, . . . , 2(p− 2)/3;

1 + 3[j − (2p− 1)/3], for j = (2p− 1)/3, . . . , (5p− 7)/6;

(p+ 1)/2 + 3[j − (5p− 1)/6], for j = (5p− 1)/6, . . . , p− 1,

when p (mod 3) = 2. Then, it can be calculated that d1(l1, l2) = n2/3 for p

(mod 3) = 1, and d1(l1, l2) = (n2 + 2)/3 for p (mod 3) = 2.

For l3, it can be verified that its p− 1 elements are

l3j =



3 + 5(j − 1), for j = 1, . . . , n/10;

2 + 5(j − 1), for j = n/10 + 1, . . . , n/5;

4 + 5(2n/5− j), for j = n/5 + 1, . . . , 3n/10;

5 + 5(2n/5− j), for j = 3n/10 + 1, . . . , 2n/5;

1 + 5(j − 2n/5− 1), for j = 2n/5 + 1, . . . , n/2;

n+ 1− l3(n+1−j), for j = n/2 + 1, . . . , n,

when p (mod 5) = 1, and the corresponding L1-distance d1(l1, l3) = n2/3 +

4n/15 > d1(l1, l2). Similarly, for p with other values or other rows in D,

it can be verified that d1(l1, li) ≥ d1(l1, l2) (i = 3, . . . , n) via some tedious

calculations (details are omitted here). Therefore, the L1-distance of design

D is equal to the L1-distance between its first two rows. That is, d1(D) =
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d1(l1, l2) = n2/3 for p (mod 3) = 1, and d1(D) = d1(l1, l2) = (n2 + 2)/3 for

p (mod 3) = 2.

(ii) For N = 2t and n = ϕ(N)/2 = 2t−2, the corresponding generator vector is

h = (1, 3, . . . , 2n − 1). Results on d1(D) can be proved similarly via some

tedious calculations, so we omit the details.

In addition, for the constructed LHD(n, n) D in both cases, the upper bound

of the L1-distance is dupper = ⌊(n + 1)n/3⌋, hence, it is easy to verify that

d1(D)/dupper ≥ 1− 1/(n+ 1). This completes the proof.

References

Ba, S., Myers, W. R. and Brenneman, W. A. (2015). Optimal sliced Latin hypercube designs.

Technometrics 57, 479–487.

Elsawah A. M., Fang, K. T. and Deng Y. H. (2021). Some interesting behaviors of good lattice

point sets. Communications in Statistics-Simulation and Computation 50, 3650–3668.

Fang, K. T., Li, R. Z. and Sudjianto, A. (2006). Design and Modeling for Computer Experiments.

Chapman and Hall/CRC, New York.

Fang, K. T., Liu, M. Q., Qin, H. and Zhou, Y. D. (2018). Theory and Application of Uniform

Experimental Designs. Springer and Science Press, Singapore and Beijing.

He, X. (2019). Interleaved lattice-based maximin distance designs. Biometrika 106, 453–464.

Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and

Applications. Springer, New York.

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance designs.

J. Statist. Plann. Inference 26, 131–148.

Joseph, V. R. and Hung, Y. (2008). Orthogonal-maximin Latin hypercube designs. Statist. Sinica

18, 171–186.
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