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Abstract: Computer experiments often involve both qualitative and quantitative factors,
posing challenges for efficient experimental designs. Strongly coupled designs (SCDs)
are proposed in this paper to balance flexibility in run size and stratification properties
between qualitative and quantitative factor columns. The existence and construction of
SCDs are investigated. When s ⩾ 2 is a prime or a prime power, the constructed SCDs of λs3

runs can accommodate 2s − 1 qualitative factors and a substantial number of quantitative
factors. Furthermore, a series of SCDs with su rows and (u − 3)s3 columns of quantitative
factors are constructed, where u ⩾ 4, with certain columns of quantitative factors achieving
stratification in two or higher dimensions. The proposed SCDs achieve stratification
between any two qualitative factors and all quantitative factors, which is superior to MCDs.
With the number of levels of the qualitative factors given as s2, DCDs have λs4 rows, while
SCDs have only λs3 rows, offering more flexibility. Furthermore, in the designs constructed
in this paper with fewer than 100 rows, in 11 out of 17 cases, SCDs have a larger number
and higher levels of qualitative factors than DCDs.

Keywords: computer experiment; completely resolvable orthogonal array; qualitative and
quantitative factor; regular design; space-filling design

MSC: 62K05; 62K99

1. Introduction
With the rapid development of computer science, an increasing number of scientists

and engineers are using computer experiments to study complex physical systems. Space-
filling designs are feasible for these types of experiments as they spread the design points
in the design region as uniformly as possible (Santner, Williams and Notz, 2003; Fang,
Li and Sudjianto, 2006) [1,2]. Based on the effect sparsity principle (Wu and Hamada,
2021) [3], only a few factors are expected to be active, which makes it reasonable to focus
on uniformity properties in low-dimensional projections. Latin hypercube designs (LHDs),
which are among the most popular space-filling designs, satisfy one-dimensional uniformity
(McKay, Beckman and Conover, 1979) [4]. Owen (1992) and Tang (1993) [5,6] proposed two
methods to generate LHDs based on orthogonal arrays (OAs), which inherit t-dimensional
projection properties when an OA of strength t is used. He and Tang (2013) [7] proposed a
new class of arrays called strong orthogonal arrays (SOAs). To achieve better stratification
properties, the strength of SOAs should be 3 or higher (He and Tang, 2014) [8], though
this can lead to large run sizes. SOAs of strengths of 2+, introduced by He, Cheng and
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Tang (2018) [9], are more economical than SOAs of strength 3 while retaining the same
two-dimensional stratification. Zhou and Tang (2019) [10] proposed SOAs of strength 3−,
which maintain the same three-dimensional stratification as SOAs of strength 3, as well as
the same factor levels as SOAs of strength 2. Recent studies on the construction of designs
achieving stratification in low dimensions also include those of Liu et al. (2024), and Wang,
Lin and Liu (2024) [11,12].

In some cases, computer experiments involve both quantitative and qualitative factors.
Qian, Wu and Wu (2008) [13] proposed a Gaussian process model framework to address the
integration of qualitative and quantitative factors in computer modeling. This framework
achieves integration by constructing and validating correlation functions that incorporate
both types of factors. Han et al. (2009) [14] proposed a Bayesian methodology for predicting
computer experiments with both qualitative and quantitative inputs, modeling outputs for
different qualitative levels as having similar functional behavior in the quantitative inputs.
Huang et al. (2016) [15] introduced SLHDs with good uniformity for each slice and an
adaptive analysis strategy to improve prediction precision and assess similarities among
qualitative variable levels in computer experiments.

Qian (2012) [16] suggested sliced LHDs (SLHDs) for this type of experiment. Recently,
Kumar et al. (2024) [17] investigated the construction methods for sliced orthogonal
LHDs with unequal batch sizes. Guo et al. (2023) [18] proposed methods for constructing
orthogonal and nearly orthogonal general SLHDs; these designs ensure orthogonality not
only in the overall design but also within each layer before and after collapsing. Wang,
Wang and Xue (2023) [19] proposed a sequential optimal LHD method to improve the space-
filling properties of two-layer computer simulators. In SLHDs, stratification is achieved
between all qualitative and quantitative factors; however, this can lead to a significant
increase in the run sizes as the number and levels of qualitative factors expand. To provide
more economical run sizes, Deng, Hung and Lin (2015) [20] proposed marginally coupled
designs (MCDs). Subsequently, a large number of researchers have contributed to the study
of MCDs with better properties, such as orthogonality or low-dimensional stratification,
including He, Lin and Sun (2017); He et al. (2017); He, Lin and Sun (2019); and Zhou,
Yang and Liu (2021) [21–24]. To study the interaction of the qualitative and quantitative
factors, Yang et al. (2023) [25] proposed doubly coupled designs (DCDs) and studied
their constructions. DCDs employ better stratification properties between qualitative and
quantitative factors compared to MCDs, though this comes at the cost of reducing the
number of qualitative factors. Zhou, Huang and Li (2024) [26] investigated the construction
of group DCDs.

In this paper, a new type of design called strongly coupled designs (SCDs) is proposed
for computer experiments with both quantitative and qualitative factors. Similar to DCDs,
SCDs achieve stratification between any two qualitative factors and all quantitative factors
to a certain extent. Compared to MCDs, SCDs are more feasible for studying interactions
between any two qualitative factors and all quantitative factors. The stratification require-
ments among qualitative factors are relaxed which makes the run sizes of SCDs more
flexible than those of DCDs. For example, when the levels of the qualitative factors are s2,
DCDs divide the design corresponding to the quantitative factors into s4 small LHDs, with
each corresponding to a specific level combination of two qualitative factors, while SCDs
divide it into s3 small LHDs.

The characteristics and construction methods of SCDs are also studied. The necessary
and sufficient conditions for the existence of SCDs are provided from three different per-
spectives, and SCDs with λs3 runs, where s ⩾ 2 is a prime or a prime power, and λ is a
positive integer, are constructed. For a given run size, the constructed SCDs can accom-
modate a greater number of qualitative factors than DCDs in many cases. Additionally,
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the construction of SCDs with desirable space-filling properties for quantitative factors is
investigated. A series of designs with su runs and (u − 3)s3 columns of quantitative factors,
where u ⩾ 4, are constructed. In these designs, certain quantitative factor columns achieve
stratification in two or more dimensions.

The remainder of this paper is organized as follows. In Section 2, some basic con-
cepts are introduced, SCDs are defined, and their existence is studied. In Section 3, the
construction of SCDs is explored, including those with desirable space-filling properties for
quantitative factors. Examples are provided to illustrate the construction process and the
properties of the resulting designs. The paper is concluded with a discussion in Section 4.
Some theorem proofs are deferred to the Appendix A.

2. Definitions and Characterizations
In this section, key concepts relevant to our work are reviewed, and the definition of

SCDs is proposed. Additionally, three characterizations of SCDs are presented, providing
heuristic guidance for the construction methods discussed in the next section.

An n × m array, where the j-th column has sj levels, {0, 1, . . . , sj − 1}, is called an
OA of strength t, denoted by OA(n, m, s1 × · · · × sm, t), if every n × t subarray contains
each t-tuple with equal frequency. When s1 = · · · = sm = s, the array is symmetric
and is denoted as OA(n, m, s, t) for simplicity. An OA(n, m, s, t) is said to be completely
resolvable, denoted by CROA(n, m, s, t), if its rows can be partitioned into n/s subarrays,
each of which is an OA(s, m, s, 1).

An r × e array D(r, e, s) is called a difference scheme based on GF(s) if it satisfies the
following property: for all i and j such that 1 ⩽ i, j ⩽ e and i ̸= j, the vector difference
between the i-th and j-th columns contains each element of GF(s) with equal frequency.
Difference schemes are fundamental in the construction of CROAs.

An SOA of strength t, denoted by SOA(n, m, st, t), is an n × m matrix with entries
from {0, 1, . . . , st − 1}. For any subarray consisting of g columns (1 ⩽ g ⩽ t), it can
be collapsed into an OA(n, g, su1 × · · · × sug , g), where u1, . . . , ug are positive integers
satisfying u1 + · · ·+ ug = t. The st levels of a factor are collapsed into suj levels using the
mapping ⌊a/st−uj⌋, where a = 0, 1, . . . , st − 1 and 1 ⩽ j ⩽ g. Here, ⌊b⌋ denotes the greatest
integer less than or equal to b. An SOA of strength 2+, denoted by SOA(n, m, s2, 2+),
is an SOA(n, m, s2, 2) with the additional property that any two distinct columns can be
collapsed into both an OA(n, 2, s2 × s, 2) and an OA(n, 2, s × s2, 2). Similarly, an SOA of
strength 3−, denoted by SOA(n, m, s2, 3−), is an SOA(n, m, s2, 2+) with the property that
any three distinct columns can be collapsed into an OA(n, 3, s, 3).

For two matrices E = (eij)m×n and F = ( fij)u×v with entries from GF(s), their Kro-
necker sum ⊕ is defined as

E ⊕ F =


e11+̇F · · · e1n+̇F

...
. . .

...
em1+̇F · · · emn+̇F

,

where +̇ denotes addition in GF(s). 1s is used to denote a vector of length s con-
sisting entirely of ones. For any vector w = (w1, . . . , wm)T , w ⊗ 1s is defined as
(w1, . . . , w1, w2, . . . , wm)T and 1s ⊗ w is defined as (w1, . . . , wm, . . . , w1, . . . , wm)T .

Let D = (D1, D2) be a design with q qualitative factors and p quantitative factors,
where D1 and D2 are sub-designs for qualitative and quantitative factors, respectively. A
design D is called an MCD if D2 is an LHD and the rows in D2 corresponding to each level
of any factor in D1 form a small LHD. A DCD is an MCD with the additional property
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that the rows in D2 corresponding to each level combination of any two factors in D1 form
an LHD.

In this paper, we introduce a new class of designs for computer experiments with
both quantitative and qualitative factors. Suppose the s2 levels of any qualitative factor are
divided into s groups based on a specified grouping method, with each group labeled by a
group number: 0, 1, . . . , s − 1. The definition of SCDs is presented below.

Definition 1. An n-run design D = (D1, D2), with q s2-level qualitative factors and p quanti-
tative factors, is called a strongly coupled design, denoted by SCD(n, (s2)q, p), if it satisfies the
following conditions:

(i) D2 is an LHD;
(ii) The rows in D2 corresponding to each group number of any column in D1 form an LHD;
(iii) The rows in D2 corresponding to each combination of group number and level from any two

columns in D1 form an LHD.

For D1 = (z1, . . . , zq), to simplify the following discussion, the s2 levels of qualitative
factors are encoded as 0, 1, . . . , s2 − 1. The group number is defined as z̄i = ⌊ zi

s ⌋, which
is obtained by collapsing the s2 levels into s levels, with levels sharing the same group
number classified into the same group. In this paper, D1 is set as an SOA(n, q, s2, 2+). For
D2 = (d1, . . . , dp), define

sD2 = ⌊D2

s
⌋ = (d̄1, . . . , d̄p) and D̃2 = ⌊

sD2

s2 ⌋ = (d̃1, . . . , d̃p),

where ⌊a⌋ represents the largest integer not exceeding a.
Next, we present the necessary and sufficient conditions for the existence of SCDs.

Theorem 1 specifies the conditions that must be satisfied between columns from D1 and D2.

Theorem 1. Suppose D1 = (z1, . . . , zq) is an SOA(n, q, s2, 2+), and D2 = (d1, . . . , dp) is an
LHD(n, p). The design D = (D1, D2) is an SCD(n, (s2)

q, p) if and only if:

(i) (z̄i, d̄k) is an OA(n, 2, s(n/s), 2) for any 1 ⩽ i ⩽ q, 1 ⩽ k ⩽ p;
(ii) (zi, z̄j, d̃k) is an OA(n, 3, s2s(n/s3), 3) for any 1 ⩽ i ̸= j ⩽ q, 1 ⩽ k ⩽ p.

Assume that D1 is generated by the formula sA+ B. Theorem 2 provides the necessary
and sufficient conditions that the columns of A and B must satisfy for the existence of SCDs.

Theorem 2. Suppose that D1 = (z1, . . . , zq) is an SOA(n, q, s2, 2+) generated by D1 = sA + B,
where A = (z̄1, . . . , z̄q) and B = (b1, . . . , bq). The design D = (D1, D2) is an SCD(n, (s2)

q, p)
if and only if:

(i) A can be divided as (A(1)T
, . . . , A(n/s3)T

)T , where each A(l) is a CROA(s3, q, s, 2), for
1 ⩽ l ⩽ n/s3;

(ii) For any two columns z̄(l)i and z̄(l)j in A(l), and the corresponding rows b(l)i in bi, the three

tuples (z̄(l)i , z̄(l)j , b(l)i ) form an OA(n, 3, s3, 3), for any 1 ⩽ i ̸= j ⩽ q, 1 ⩽ l ⩽ n/s3.

Assume that D1 = sA + B and sD2 = s2C + sE + F. Theorem 3 provides the necessary
and sufficient conditions that the columns of A, B, C, E, and F must satisfy.

Theorem 3. Suppose D1 is an SOA(n, q, s2, 2+) and D2 is an LHD(n, p), where D1 and sD2

are generated by D1 = sA + B and sD2 = s2C + sE + F, respectively. The design D = (D1, D2)

is an SCD(n, (s2)
q, p) if and only if there exist five arrays: A = (z̄1, . . . , z̄q) = OA(n, q, s, 2),

B = (b1, . . . , bq) = OA(n, q, s, 1), C = (d̃1, . . . , d̃p) = OA(n, p, n/s3, 1), E = (e1, . . . , ep) =
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OA(n, p, s, 1), and F = ( f1, . . . , fq) = OA(n, q, s, 1), such that for any 1 ⩽ i ̸= j ⩽ q and
1 ⩽ k ⩽ p, both (z̄i, fk, ek, d̃k) and (z̄i, bi, z̄j, d̃k) are OA(n, 4, s3(n/s3), 4).

3. Construction Methods
In this section, methods for constructing SCDs, as well as the ones with desirable space-

filling properties for quantitative factors, are proposed. We focus on cases where s ⩾ 2 is
a prime or a prime power. The SCDs constructed in Section 3.1 can accommodate 2s − 1
qualitative factors and a large number of quantitative factors. For the SCDs constructed
in Section 3.2, when the run size n = su, the number of columns for quantitative factors is
(u − 3)s3, and certain columns of quantitative factors achieve stratification in two or more
higher dimensions.

3.1. Construction of SCDs

SCDs with run sizes n = λs3 can be obtained using Algorithm 1, where s ⩾ 2 is a
prime or a prime power, and λ is a positive integer.

Algorithm 1: Construction of SCDs

Step 1. Let H = (h1, . . . , hs) be a D(s, s, s). Define O = (0, . . . , s − 1)T ⊕ H = (o1, . . . , os),
an OA obtained by developing the difference schemes H.

Step 2. Define a1 = h1 ⊕ o1, and Ai = (h1, hi)⊕ oi for i = 2, . . . , s. Let

A(1) = · · · = A(λ) = (a1, A2, . . . , As), and A = (A(1)T
, . . . , A(λ)T

)T .
Step 3. For 1 ⩽ ji,m, ki,m ⩽ s, where 1 ⩽ i ⩽ s, 1 ⩽ m ⩽ 2, ji,m ̸= ki,m and ji,m ̸= 1, define:

b1 = hj1,1 ⊕ ok1,1 with j1,1 ̸= 1; bi1 = hji,1 ⊕ oki,1
with ki,1 ̸= 1 and ji,1 ̸= i, or ki,1 = 1

and ji,1 = i; bi2 = hji,2 ⊕ oki,2
with ji,2 = i. Let Bi = (bi1, bi2), and

B(1) = · · · , B(λ) = (b1, B2, . . . , Bs). Then obtain B = (B(1)T
, . . . , B(λ)T

)T .
Step 4. Define ci = ωi ⊗ 1s3 , where ωi is a permutation of (0, . . . , λ − 1) for 1 ⩽ i ⩽ λ!. For

1 ⩽ l ⩽ λ and 1 ⩽ k ⩽ s2!, define e(l)k = ((1s ⊗ β
(l)
1,k)

T , . . . , (1s ⊗ β
(l)
s,k)

T)T , where

(β
(l)
1,k

T
, . . . , β

(l)
s,k

T
)T is a permutation of (0, . . . , s2 − 1)T . For 1 ⩽ δ ⩽ (s2!)λ , let

eδ = (e(1)k1

T
, . . . , e(λ)kλ

T
)T , where 1 ⩽ kl ⩽ s2!. Then, obtain E = (e1, . . . , e

(s2!)λ).

Step 5. Let D1 = sA + B and sD2 = (s2c1 + E, . . . , s2cλ! + E). For each column in sD2, replace
the s positions of level i by all possible random permutation of {is, is + 1, . . . ,
is + (s − 1)}, i = 0, 1, . . . , n/s − 1, columns juxtapose these matrices to obtain D2,
then obtain D = (D1, D2).

To make it easier for readers to understand the algorithm, we provide the flow chart
in Figure 1 to explain the algorithm.

The properties of the constructed designs are summarized in the following theorem.

Theorem 4. The design D constructed in Algorithm 1 is an SCD(n, (s2)q, p) with n = λs3,
q = 2s − 1 and p = λ!(s2!)λ(s!)λs2

, where λ is a positive integer.

An example is now given to illustrate the construction procedure and the properties
of the constructed designs.
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Input: H = (h1, . . . , hs)

O = (0, . . . , s − 1)T ⊕ H = (o1, . . . , os)

Obtain A = (A(1)T
, . . . , A(λ)T

)T by step 2 Obtain ci = ωi ⊗ 1s3 by step 4, 1 ⩽ i ⩽ λ!

Obtain B = (B(1)T
, . . . , B(λ)T

)T by step 3

D1 = sA + B

Obtain E = (e1, . . . , e
(s2!)λ) by step 4

sD2 = (s2c1 + E, . . . , s2cλ! + E)

Obtain D2 from sD2 by step 5

D = (D1, D2)

Output: D

Figure 1. Flow chart of Algorithm 1.

Example 1. For s = λ = 2, let

H = (h1, h2) =

(
0 0
0 1

)
,

then,

O = (0, 1)T ⊕ H =

(
0 0 1 1
0 1 1 0

)T

= (o1, o2).

Define a1 = h1 ⊕ o1 = (0, 0, 1, 1, 0, 0, 1, 1)T ,

A2 = (h1, h2)⊕ o2 =

(
0 1 1 0 0 1 1 0
0 1 1 0 1 0 0 1

)T

,

then,

A =

(
A(1)

A(2)

)
=

(
a1 A2

a1 A2

)
=



0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 1 1 0 1 0 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 1 1 0 1 0 0 1



T

.
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Define b1 = b21 = b22 = h2 ⊕ o1 = (0, 0, 1, 1, 1, 1, 0, 0)T , then,

B =

(
B(1)

B(2)

)
=

(
b1 B2

b1 B2

)
=



0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0



T

.

As λ = 2, let w1 = (0, 1) and w2 = (1, 0). Correspondingly, obtain

c1 = w1 ⊗ 18 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)T ,

c2 = w2 ⊗ 18 = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T .

For 1 ⩽ k ⩽ 24, both (β
(1)
1,k

T
, β

(1)
2,k

T
)

T
and (β

(2)
1,k

T
, β

(2)
2,k

T
)

T
are a permutation of (0, 1, 2, 3)T . Let

eδ =

(
e(1)k1

e(2)k2

)
=

(12 ⊗ β
(1)
1,k1

)
T

, (12 ⊗ β
(1)
2,k1

)
T

(12 ⊗ β
(2)
1,k2

)
T

, (12 ⊗ β
(2)
2,k2

)
T

T

,

for 1 ⩽ δ ⩽ 242, 1 ⩽ k1, k2 ⩽ 24. Define E = (e1, . . . , e242), then, obtain sD2 = (4c1 +E, 4c2 +E).
The first 24 columns of sD2 are listed in Table 1. The two positions of level 0, 1, . . . , 7 are replaced by
all possible random permutations of {0, 1}, {2, 3}, . . . , {14, 15}, respectively. The columns of these
matrices are then juxtaposed to form D2.

The resulting design D = (D1, D2) is an SCD(16, 43, 24229). When collapsing D1 into 2
levels, the rows in D2 corresponding to each level of any factor in D1 form an LHD(8, 24229). When
collapsing any two columns of D1 into 4 × 2 or 2 × 4 levels, the rows in D2 corresponding to each
level combination of any two factors in D1 form an LHD(2, 24229). Furthermore, the first two
columns of D2 achieve stratification on 2 × 2 grids.

Table 1. The SCD generated in Example 1.

D1 The First 24 Columns of sD2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 0 0 4 5 5 4 6 6 5 4 6 6 4 5 6 6 4 5 5 4 7 7 7 7 7 7
0 2 2 5 4 6 6 4 5 6 6 4 5 5 4 7 7 7 7 7 7 4 5 5 4 6 6
3 3 3 4 5 5 4 6 6 5 4 6 6 4 5 6 6 4 5 5 4 7 7 7 7 7 7
3 1 1 5 4 6 6 4 5 6 6 4 5 5 4 7 7 7 7 7 7 4 5 5 4 6 6
1 1 3 6 6 4 5 5 4 7 7 7 7 7 7 4 5 5 4 6 6 5 4 6 6 4 5
1 3 1 7 7 7 7 7 7 4 5 5 4 6 6 5 4 6 6 4 5 6 6 4 5 5 4
2 2 0 6 6 4 5 5 4 7 7 7 7 7 7 4 5 5 4 6 6 5 4 6 6 4 5
2 0 2 7 7 7 7 7 7 4 5 5 4 6 6 5 4 6 6 4 5 6 6 4 5 5 4

Table 2 lists various SCDs generated for different positive integer values of λ, demon-
strating the flexibility of SCDs in accommodating different run sizes. Each row in the table
shows the design’s ability to accommodate qualitative and quantitative factors. As the ex-
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periment size increases, the number of quantitative factors that the design can accommodate
increases significantly.

Table 2. Some generated SCDs where λ is a positive integer.

s n D1 D2

2 8λ SOA(8λ, 3, 22, 2+) LHD(8λ, λ!(4!)λ24λ)
3 27λ SOA(27λ, 5, 22, 2+) LHD(27λ, λ!(9!)λ(3!)9λ)
4 64λ SOA(64λ, 7, 22, 2+) LHD(64λ, λ!(16!)λ(4!)16λ)
5 125λ SOA(125λ, 9, 22, 2+) LHD(125λ, λ!(25!)λ(5!)25λ)

Table 3 presents the comparison of SCDs, DCDs, and MCDs with the same run sizes.
All three kinds of designs can accommodate a large number of qualitative factors, with
MCDs supporting significantly more qualitative and quantitative factors than SCDs and
DCDs. However, SCDs and DCDs outperform MCDs in terms of the stratification property
between qualitative and quantitative factors. For SCDs and DCDs, in 11 out of 17 cases,
SCDs have a larger number and higher levels of qualitative factors than DCDs. In the
remaining cases, SCDs accommodate only one fewer qualitative factor than DCDs.

Table 3. Comparison of SCDs, DCDs, and MCDs.

n SCD DCD MCD

8 SCD(8,43,4!24) DCD(8,22,262!) MCD(8,24,4!24)
16 SCD(16,43,2!(4!)228) DCD(16,44,(4!)5) MCD(16,44,4!244)
24 SCD(24,43,3!(4!)3212) DCD(24,22,2186!) MCD(24,212,12!212)
27 SCD(27,95,9!(3!)9) DCD(27,33,6123!) MCD(27,39,9!69)
32 SCD(32,43,4!(4!)4216) DCD(32,44,(4!)102!) MCD(32,48,8!248)
40 SCD(40,43,5!(4!)5220) DCD(40,22,23010!) MCD(40,220,20!220)
48 SCD(48,43,6!(4!)6224) DCD(48,44,(4!)153!) MCD(48,412,12!2412)
54 SCD(54,95,2!(9!)2(3!)18) DCD(54,33,6246!) MCD(54,318,18!618)
56 SCD(56,43,7!(4!)7228) DCD(56,22,24214!) MCD(56,228,28!228)
64 SCD(64,43,8!(4!)8232) DCD(64,44,(4!)204!) MCD(64,416,16!2410)
72 SCD(72,43,9!(4!)9236) DCD(72,33,6328!) MCD(72,324,24!624)
80 SCD(80,43,10!(4!)10240) DCD(80,44,(4!)255!) MCD(80,48,20!2420)
81 SCD(81,95,3!(9!)3(3!)27) DCD(81,33,6369!) MCD(81,327,27!627)
88 SCD(88,43,11!(4!)11244) DCD(88,22,26622!) MCD(88,244,44!244)
96 SCD(96,43,12!(4!)12248) DCD(96,44,(4!)306!) MCD(96,416,24!2424)

3.2. Construction of SCDs with Desirable Space-Filling Properties

This section focuses on constructing SCDs in which D2 has desirable space-filling
properties. A series of designs with su rows and (u − 3)s3 columns of quantitative factors
are constructed for u ⩾ 4. These designs ensure that certain columns of quantitative factors
achieve stratification in two or higher dimensions.

Let ξ1, . . . , ξu represent u independent columns with entries from GF(s), each of
length n = su. A regular saturated OA can be constructed by first listing these indepen-
dent columns and then adding all possible interactions. This design is denoted as S =

{u1ξ1 + · · ·+ uuξu | ui ∈ GF(s), (u1, . . . , uu) ̸= (0, . . . , 0), and the first nonzero entry is 1}.
Subsequently, select columns from S to construct SCDs in which D2 possesses desirable
space-filling properties. For when s ⩾ 3 is a prime or a prime power, we propose our
construction method in Algorithm 2.
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Algorithm 2: Construction of SCDs with desirable space-filling properties

Step 1. Define A1 = {ξ1 + (s − 1)ξ2 + wξ3 | 1 ⩽ w ⩽ s − 2} and A2 = {ξ1 + wξ2 + (s − 1)ξ3

| 1 ⩽ w ⩽ s − 2}. Construct

A = (ξ1 + (s − 1)ξ2, ξ2 + (s − 1)ξ3, A1, A2, ξ1 + (s − 1)ξ2 + (s − 1)ξ3).

Step 2. Repeat ξ2 and ξ3 s − 2 times to form B1 = (ξ2, . . . , ξ2) and B2 = (ξ3, . . . , ξ3),
respectively. Let B = (ξ1, ξ2, B1, B2, ξ1). Construct D1 = sA + B.

Step 3. Define E = (ξ1 + (s − 1)ξ2, . . . , ξ1 + (s − 1)ξ2) and F = (ξ1, . . . , ξ1), where ξ1 + (s
− 1)ξ2 and ξ1 are each repeated (u − 3)s3 times.

Step 4. Let Rv = {ξ1 + u2ξ2 + u3ξ3 + uv+3ξv+3|u2, u3 ∈ GF(s), uv+3 ∈ GF(s)\{0}} ∪ {ξ2 +

u3ξ3 + uv+3ξv+3|u3 ∈ GF(s), uv+3 ∈ GF(s)\{0}} ∪ {ξ3 + uv+3ξv+3|uv+3 ∈ GF(s)\
{0}} ∪ {ξv+3} = (rv,1, . . . , rv,s3), where 1 ⩽ v ⩽ u − 3. Define

T =


su−4 1 · · · su−6 su−5

su−5 su−4 · · · su−7 su−6

...
...

. . .
...

...
s s2 · · · su−4 1
1 s · · · su−5 su−4

 = (t1, . . . , tu−3).

Let C = (C1, . . . , Cs3), where

C f = (r1, f , . . . , ru−3, f )T, 1 ⩽ f ⩽ s3.

Step 5. Construct sD2 = s2C + sE + F. For each column of sD2, replace the s positions of
level i with a random permutation of {is, is + 1, . . . , is + (s − 1)} to obtain D2, where
i = 0, 1, . . . , s2 − 1. Finally, let D = (D1, D2).

A flow chart is provided in Figure 2 to explain the algorithm.
For s = 2, SCDs with desirable space-filling properties can be constructed by

modifying Algorithm 2 as follows: set A = (ξ1, ξ1 + ξ2), B = (ξ1 + ξ2 + ξ3, ξ1 + ξ3),
E = (ξ2, . . . , ξ2), and F = (ξ1 + ξ3, . . . , ξ1 + ξ3), where ξ2 and ξ1 + ξ3 are repeated (u− 3)s3

times. The properties of the resulting designs for s ⩾ 2, where s is a prime or a prime
power, are summarized in Theorem 5.

Theorem 5. For s ⩾ 2, where s is a prime or a prime power, and u ⩽ 4, the design D constructed
above is an SCD(su, (s2)q, (u − 3)s3) with the following properties:

(i)

q =

2, when s = 2,

2s − 1, when s ⩾ 3 is a prime or a prime power;

(ii) For any m columns d̃i1 , . . . , d̃im with ⌊(i1 − 1)/(u − 3)⌋ = · · · = ⌊(im − 1)/(u − 3)⌋,
where m ⩽ u − 3, the columns d̃i1 , . . . , d̃im achieve stratification on s × · · · × s grids;

(iii) When ⌊(i − 1)/(u − 3)⌋ ̸= ⌊(i′ − 1)/(u − 3)⌋, the columns d̃i and d̃i′ achieve stratification
on su−3 × s and s × su−3 grids.
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Input: ξ1, . . . , ξu

Obtain A by step 1 Obtain E and F by step 3

Obtain B by step 2

D1 = sA + B

Obtain C by step 4

sD2 = s2C + sE + F

Obtain D2 from sD2 by step 5

D = (D1, D2)

Output: D

Figure 2. Flow chart of Algorithm 2.

An example is now provided to illustrate the construction procedure and the properties
of the resulting designs.

Example 2. For s = 3 and u = 4, let ξ1, ξ2, ξ3, ξ4 be four independent columns of length 34.
Define A1 = ξ1 + 2ξ2 + ξ3 and A2 = ξ1 + ξ2 + 2ξ3. Construct

A = (ξ1, ξ2, ξ3)

1 0 1 1 1
0 1 2 1 2
2 2 1 2 2

.

Let B1 = ξ2 and B2 = ξ3. Then,

B = (ξ1, ξ2, ξ3)

1 0 0 0 1
0 1 1 0 0
0 0 0 1 0

.

Construct D1 = sA + B; the resulting D1 is presented in Table 4.
Next, define E = (ξ1 + 2ξ2, . . . , ξ1 + 2ξ2) and F = (ξ1, . . . , ξ1), where both ξ1 + 2ξ2 and

ξ1 are repeated nine times. Let R1 = (ξ1, ξ2, ξ3, ξ4)1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 1 2 0 1 2 1 1 0
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 1 2 1

.

With T = 1, we have C = R1. Construct sD2 = s2C + sE + F, which is also presented in
Table 4. Finally, obtain D2 by replacing the three positions of each level 0, 1, . . . , 26 with random
permutations of {0, 1, 2}, {3, 4, 5}, . . . , {78, 79, 80}, respectively.
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Table 4. The generated SCD in Example 2.

D1 sD2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 9 9 9 9 9 9 9 9 9 18 18 18 18 18 18 18 18 18 9 9 9 18 18 18 9 18 9
0 0 0 0 0 18 18 18 18 18 18 18 18 18 9 9 9 9 9 9 9 9 9 18 18 18 9 9 9 18 9 18
6 6 3 7 6 0 0 0 9 9 9 18 18 18 0 0 0 9 9 9 18 18 18 0 9 18 0 9 18 9 9 0
6 6 3 7 6 9 9 9 18 18 18 0 0 0 18 18 18 0 0 0 9 9 9 9 18 0 18 0 9 18 0 9
6 6 3 7 6 18 18 18 0 0 0 9 9 9 9 9 9 18 18 18 0 0 0 18 0 9 9 18 0 0 18 18
3 3 6 5 3 0 0 0 18 18 18 9 9 9 0 0 0 18 18 18 9 9 9 0 18 9 0 18 9 18 18 0
3 3 6 5 3 9 9 9 0 0 0 18 18 18 18 18 18 9 9 9 0 0 0 9 0 18 18 9 0 0 9 9
3 3 6 5 3 18 18 18 9 9 9 0 0 0 9 9 9 0 0 0 18 18 18 18 9 0 9 0 18 9 0 18
0 4 7 3 6 6 15 24 6 15 24 6 15 24 6 15 24 6 15 24 6 15 24 15 15 15 15 15 15 6 6 6
0 4 7 3 6 15 24 6 15 24 6 15 24 6 24 6 15 24 6 15 24 6 15 24 24 24 6 6 6 15 24 15
0 4 7 3 6 24 6 15 24 6 15 24 6 15 15 24 6 15 24 6 15 24 6 6 6 6 24 24 24 24 15 24
6 1 1 1 3 6 15 24 15 24 6 24 6 15 6 15 24 15 24 6 24 6 15 15 24 6 15 24 6 15 15 6
6 1 1 1 3 15 24 6 24 6 15 6 15 24 24 6 15 6 15 24 15 24 6 24 6 15 6 15 24 24 6 15
6 1 1 1 3 24 6 15 6 15 24 15 24 6 15 24 6 24 6 15 6 15 24 6 15 24 24 6 15 6 24 24
3 7 4 8 0 6 15 24 24 6 15 15 24 6 6 15 24 24 6 15 15 24 6 15 6 24 15 6 24 24 24 6
3 7 4 8 0 15 24 6 6 15 24 24 6 15 24 6 15 15 24 6 6 15 24 24 15 6 6 24 15 6 15 15
3 7 4 8 0 24 6 15 15 24 6 6 15 24 15 24 6 6 15 24 24 6 15 6 24 15 24 15 6 15 6 24
0 8 5 6 3 3 21 12 3 21 12 3 21 12 3 21 12 3 21 12 3 21 12 21 21 21 21 21 21 3 3 3
0 8 5 6 3 12 3 21 12 3 21 12 3 21 21 12 3 21 12 3 21 12 3 3 3 3 12 12 12 12 21 12
0 8 5 6 3 21 12 3 21 12 3 21 12 3 12 3 21 12 3 21 12 3 21 12 12 12 3 3 3 21 12 21
6 5 8 4 0 3 21 12 12 3 21 21 12 3 3 21 12 12 3 21 21 12 3 21 3 12 21 3 12 12 12 3
6 5 8 4 0 12 3 21 21 12 3 3 21 12 21 12 3 3 21 12 12 3 21 3 12 21 12 21 3 21 3 12
6 5 8 4 0 21 12 3 3 21 12 12 3 21 12 3 21 21 12 3 3 21 12 12 21 3 3 12 21 3 21 21
3 2 2 2 6 3 21 12 21 12 3 12 3 21 3 21 12 21 12 3 12 3 21 21 12 3 21 12 3 21 21 3
3 2 2 2 6 12 3 21 3 21 12 21 12 3 21 12 3 12 3 21 3 21 12 3 21 12 12 3 21 3 12 12
3 2 2 2 6 21 12 3 12 3 21 3 21 12 12 3 21 3 21 12 21 12 3 12 3 21 3 21 12 12 3 21
4 0 3 3 4 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 4 4 4 4 4 4 4 4 4
4 0 3 3 4 22 22 22 22 22 22 22 22 22 4 4 4 4 4 4 4 4 4 13 13 13 22 22 22 13 22 13
4 0 3 3 4 4 4 4 4 4 4 4 4 4 22 22 22 22 22 22 22 22 22 22 22 22 13 13 13 22 13 22
1 6 6 1 1 13 13 13 22 22 22 4 4 4 13 13 13 22 22 22 4 4 4 4 13 22 4 13 22 13 13 4
1 6 6 1 1 22 22 22 4 4 4 13 13 13 4 4 4 13 13 13 22 22 22 13 22 4 22 4 13 22 4 13
1 6 6 1 1 4 4 4 13 13 13 22 22 22 22 22 22 4 4 4 13 13 13 22 4 13 13 22 4 4 22 22
7 3 0 8 7 13 13 13 4 4 4 22 22 22 13 13 13 4 4 4 22 22 22 4 22 13 4 22 13 22 22 4
7 3 0 8 7 22 22 22 13 13 13 4 4 4 4 4 4 22 22 22 13 13 13 13 4 22 22 13 4 4 13 13
7 3 0 8 7 4 4 4 22 22 22 13 13 13 22 22 22 13 13 13 4 4 4 22 13 4 13 4 22 13 4 22
4 4 1 6 1 10 19 1 10 19 1 10 19 1 10 19 1 10 19 1 10 19 1 10 10 10 10 10 10 1 1 1
4 4 1 6 1 19 1 10 19 1 10 19 1 10 1 10 19 1 10 19 1 10 19 19 19 19 1 1 1 10 19 10
4 4 1 6 1 1 10 19 1 10 19 1 10 19 19 1 10 19 1 10 19 1 10 1 1 1 19 19 19 19 10 19
1 1 4 4 7 10 19 1 19 1 10 1 10 19 10 19 1 19 1 10 1 10 19 10 19 1 10 19 1 10 10 1
1 1 4 4 7 19 1 10 1 10 19 10 19 1 1 10 19 10 19 1 19 1 10 19 1 10 1 10 19 19 1 10
1 1 4 4 7 1 10 19 10 19 1 19 1 10 19 1 10 1 10 19 10 19 1 1 10 19 19 1 10 1 19 19
7 7 7 2 4 10 19 1 1 10 19 19 1 10 10 19 1 1 10 19 19 1 10 10 1 19 10 1 19 19 19 1
7 7 7 2 4 19 1 10 10 19 1 1 10 19 1 10 19 19 1 10 10 19 1 19 10 1 1 19 10 1 10 10
7 7 7 2 4 1 10 19 19 1 10 10 19 1 19 1 10 10 19 1 1 10 19 1 19 10 19 10 1 10 1 19
4 8 8 0 7 16 7 25 16 7 25 16 7 25 16 7 25 16 7 25 16 7 25 25 25 25 25 25 25 7 7 7
4 8 8 0 7 25 16 7 25 16 7 25 16 7 7 25 16 7 25 16 7 25 16 7 7 7 16 16 16 16 25 16
4 8 8 0 7 7 25 16 7 25 16 7 25 16 25 16 7 25 16 7 25 16 7 16 16 16 7 7 7 25 16 25
1 5 2 7 4 16 7 25 25 16 7 7 25 16 16 7 25 25 16 7 7 25 16 25 7 16 25 7 16 16 16 7
1 5 2 7 4 25 16 7 7 25 16 16 7 25 7 25 16 16 7 25 25 16 7 7 16 25 16 25 7 25 7 16
1 5 2 7 4 7 25 16 16 7 25 25 16 7 25 16 7 7 25 16 16 7 25 16 25 7 7 16 25 7 25 25
7 2 5 5 1 16 7 25 7 25 16 25 16 7 16 7 25 7 25 16 25 16 7 25 16 7 25 16 7 25 25 7
7 2 5 5 1 25 16 7 16 7 25 7 25 16 7 25 16 25 16 7 16 7 25 7 25 16 16 7 25 7 16 16
7 2 5 5 1 7 25 16 25 16 7 16 7 25 25 16 7 16 7 25 7 25 16 16 7 25 7 25 16 16 7 25
8 0 6 6 8 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 8 8 8 8 8 8 8 8 8
8 0 6 6 8 8 8 8 8 8 8 8 8 8 17 17 17 17 17 17 17 17 17 17 17 17 26 26 26 17 26 17
8 0 6 6 8 17 17 17 17 17 17 17 17 17 8 8 8 8 8 8 8 8 8 26 26 26 17 17 17 26 17 26
5 6 0 4 5 26 26 26 8 8 8 17 17 17 26 26 26 8 8 8 17 17 17 8 17 26 8 17 26 17 17 8
5 6 0 4 5 8 8 8 17 17 17 26 26 26 17 17 17 26 26 26 8 8 8 17 26 8 26 8 17 26 8 17
5 6 0 4 5 17 17 17 26 26 26 8 8 8 8 8 8 17 17 17 26 26 26 26 8 17 17 26 8 8 26 26
2 3 3 2 2 26 26 26 17 17 17 8 8 8 26 26 26 17 17 17 8 8 8 8 26 17 8 26 17 26 26 8
2 3 3 2 2 8 8 8 26 26 26 17 17 17 17 17 17 8 8 8 26 26 26 17 8 26 26 17 8 8 17 17
2 3 3 2 2 17 17 17 8 8 8 26 26 26 8 8 8 26 26 26 17 17 17 26 17 8 17 8 26 17 8 26
8 4 4 0 5 23 5 14 23 5 14 23 5 14 23 5 14 23 5 14 23 5 14 14 14 14 14 14 14 5 5 5
8 4 4 0 5 5 14 23 5 14 23 5 14 23 14 23 5 14 23 5 14 23 5 23 23 23 5 5 5 14 23 14
8 4 4 0 5 14 23 5 14 23 5 14 23 5 5 14 23 5 14 23 5 14 23 5 5 5 23 23 23 23 14 23
5 1 7 7 2 23 5 14 5 14 23 14 23 5 23 5 14 5 14 23 14 23 5 14 23 5 14 23 5 14 14 5
5 1 7 7 2 5 14 23 14 23 5 23 5 14 14 23 5 23 5 14 5 14 23 23 5 14 5 14 23 23 5 14
5 1 7 7 2 14 23 5 23 5 14 5 14 23 5 14 23 14 23 5 23 5 14 5 14 23 23 5 14 5 23 23
2 7 1 5 8 23 5 14 14 23 5 5 14 23 23 5 14 14 23 5 5 14 23 14 5 23 14 5 23 23 23 5
2 7 1 5 8 5 14 23 23 5 14 14 23 5 14 23 5 5 14 23 23 5 14 23 14 5 5 23 14 5 14 14
2 7 1 5 8 14 23 5 5 14 23 23 5 14 5 14 23 23 5 14 14 23 5 5 23 14 23 14 5 14 5 23
8 8 2 3 2 20 11 2 20 11 2 20 11 2 20 11 2 20 11 2 20 11 2 20 20 20 20 20 20 2 2 2
8 8 2 3 2 2 20 11 2 20 11 2 20 11 11 2 20 11 2 20 11 2 20 2 2 2 11 11 11 11 20 11
8 8 2 3 2 11 2 20 11 2 20 11 2 20 2 20 11 2 20 11 2 20 11 11 11 11 2 2 2 20 11 20
5 5 5 1 8 20 11 2 2 20 11 11 2 20 20 11 2 2 20 11 11 2 20 20 2 11 20 2 11 11 11 2
5 5 5 1 8 2 20 11 11 2 20 20 11 2 11 2 20 20 11 2 2 20 11 2 11 20 11 20 2 20 2 11
5 5 5 1 8 11 2 20 20 11 2 2 20 11 2 20 11 11 2 20 20 11 2 11 20 2 2 11 20 2 20 20
2 2 8 8 5 20 11 2 11 2 20 2 20 11 20 11 2 11 2 20 2 20 11 20 11 2 20 11 2 20 20 2
2 2 8 8 5 2 20 11 20 11 2 11 2 20 11 2 20 2 20 11 20 11 2 2 20 11 11 2 20 2 11 11
2 2 8 8 5 11 2 20 2 20 11 20 11 2 2 20 11 20 11 2 11 2 20 11 2 20 2 20 11 11 2 20
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The constructed design D is an SCD(81, (32)5, 27), where D1 is an SOA(81, 5, 32, 2+) and
D2 is an LHD(81, 27). When D1 is collapsed into three levels, the rows in D2 corresponding to each
level of any factor in the collapsed D1 form an LHD(27, 27). Furthermore, when D1 is collapsed
into 9 × 3 or 3 × 9 levels, the rows in D2 corresponding to each level combination of any two factors
in the collapsed D1 form an LHD(3, 27). Moreover, d̃1 and d̃2 achieve stratification on 3 × 3 grids.

Table 5 presents several SCDs constructed using the method in Algorithm 2. The
designs ensure good stratification for quantitative factors while accommodating varying
numbers of qualitative and quantitative factors. As the run size of the experimental design
increases, the number of columns for qualitative and quantitative factors also increases.
This highlights the SCD’s effectiveness in achieving space-filling and its capacity to handle
multi-factor experiments efficiently.

Table 5. Some SCDs generated by Algorithm 2.

s n D1 D2 p + q

2 16 SOA(16, 2, 22, 2+) LHD(16, 8) 10
2 32 SOA(32, 2, 22, 2+) LHD(32, 16) 18
2 64 SOA(64, 2, 22, 2+) LHD(64, 24) 26
2 128 SOA(128, 2, 22, 2+) LHD(128, 32) 34
3 81 SOA(81, 5, 32, 2+) LHD(81, 27) 32
3 243 SOA(243, 5, 32, 2+) LHD(243, 54) 59
3 729 SOA(729, 5, 32, 2+) LHD(729, 81) 86
4 256 SOA(256, 7, 42, 2+) LHD(256, 64) 71
4 1024 SOA(1024, 7, 42, 2+) LHD(1024, 128) 135
5 625 SOA(625, 9, 52, 2+) LHD(625, 125) 134

4. Concluding Remarks
In this paper, a new class of designs for computer experiments with both quantitative

and qualitative factors, referred to as SCDs, is introduced. These designs can be seen
as a generalization of MCDs proposed by Deng, Hung and Lin (2015) [20] and DCDs
introduced by Yang et al. (2023) [25]. Similar to DCDs, certain stratification can be achieved
between any two qualitative factors and all quantitative factors in SCDs. The stratification
requirements among qualitative factor columns are relaxed, making the run sizes of SCDs
more flexible than those of DCDs.

The characteristics and construction methods of SCDs are investigated. Necessary
and sufficient conditions for the existence of SCDs are derived from three perspectives,
providing valuable insights for their construction. Additionally, two methods for con-
structing SCDs are proposed. When s ⩾ 2 is a prime or a prime power, the constructed
SCDs can accommodate 2s − 1 qualitative factors and a substantial number of quantitative
factors. Furthermore, a series of SCDs with su rows and (u − 3)s3 columns of quantitative
factors, where u ⩾ 4, is constructed, with certain columns of quantitative factors achieving
stratification in two or higher dimensions. In the future, designs for qualitative factors
could be extended to achieve higher-dimensional stratification properties, such as SOAs
with strength t ⩾ 3 or SOAs with strength 3−.
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Appendix A

Proof of Theorem 1. According to part (ii) of Definition 1, the n/s rows in D2 correspond-
ing to each level of any factor in sD1 form an LHD if and only if any two columns in sD1 and
sD2 together form an OA of strength 2. In other words, for any 1 ⩽ i ⩽ q, 1 ⩽ k ⩽ p, the pair
(z̄i, d̄k) forms an OA(n, 2, s(n/s), 2). Similarly, when any two columns of D1 are collapsed
into s2 × s or s × s2 levels, the n/s3 rows in D2 corresponding to each level combination of
any two factors in the collapsed D1 form an LHD if and only if (zi, z̄j, d̃k) form an OA of
strength 3, where 1 ⩽ i ̸= j ⩽ q and 1 ⩽ k ⩽ p. This completes the proof.

Proof of Theorem 2. The necessity is first shown. By Theorem 1, an SCD(n, sq, p) ex-
ists if and only if both conditions (i) and (ii) of Theorem 1 are satisfied. The fact that
(zi = sz̄i + bi, z̄j, d̃k) forms an OA(n, 3, s2s(n/s3), 3) implies that (z̄i, bi, z̄j, d̃k) forms an
OA(n, 3, s3(n/s3), 4). Consequently, (z̄i, bi, z̄j) can be divided into n/s3 full factorials, de-

noted by (z̄(l)i , b(l)i , z̄(l)j ), for l = 1, . . . , n/s3, with each corresponding to one level in d̃k. Since

(z̄i, d̄k) is an OA(n, 2, s(n/s), 2), we have d̃k = ⌊d̄k/s2⌋, and thus each A(l) = (z̄(l)1 , . . . , z̄(l)q )

is a CROA(s3, q, s, 2).
Now, we prove the sufficiency by providing a method to construct D2 when

D1 = sA + B, with A and B satisfying the two conditions in Theorem 2. According to

Theorem 2, A = (A(1)T
, . . . , A(n/s3)T

)T, where A(l) = (A(l)
1 , . . . , A(l)

s2 ), is a CROA(s3, q, s, 2)
for 1 ⩽ l ⩽ n/s3. Define sD2 = (s2c1 + E, . . . , s2c(n/s3)! + E), where ci = ωi ⊗ 1s3 , with ωi

being a permutation of (0, . . . , n/s3 − 1), for 1 ⩽ i ⩽ (n/s3)!. E = (e1, . . . , e
(s2!)n/s3 ), where

ek = (e(1)k

T
, . . . , e(n/s3)

k

T
)T, and e(l)k = ((β

(l)
1,k ⊗ 1s)T, . . . , (β(l)s,k ⊗ 1s)T)T, with (β

(l)
1,k

T
, . . . , β

(l)
s,k

T
)T

being a permutation of (0, . . . , s2 − 1)T, for 1 ⩽ k ⩽ (s2)!n/s3
. Clearly, (z̄i, d̄k) forms an OA

of strength t = 2. Since d̃k = (c1, . . . , c1, . . . , c(n/s3)!), (z̄
(l)
i , z̄(l)j , b(l)i ) forms an OA(n, 3, s3, 3),

with each corresponding to one level in d̃k. Therefore, (z̄i, z̄j, d̃k) forms an OA of strength 3.
By Theorem 1, an SCD exists. The proof is completed.

Proof of Theorem 3. By Theorem 1, an SCD(n, sq, p) exists if and only if both conditions
(i) and (ii) in Theorem 1 are satisfied. Since sD2 = s2C + sE + F, for any 1 ⩽ i ⩽ q
and 1 ⩽ k ⩽ p, (z̄i, d̄k) forms an OA(n, 2, s(n/s), 2) if and only if (z̄i, fk, ek, d̃k) forms an
OA(n, 4, s3(n/s3), 4). Similarly, for D1 = sA + B, (zi, z̄j, d̃k) forms an OA(n, 3, s2s(n/s3), 3)
if and only if (z̄i, bi, z̄j, d̃k) forms an OA(n, 4, s3(n/s3), 4). The proof is completed.

Proof of Theorem 4. Let O = (0, . . . , s − 1)T ⊕ H = (o1, . . . , os) be a CROA(n, s, s, 2),
where H = (h1, . . . , hs) is a D(s, s, s). Define Fi = H ⊕ oi for i = 1, . . . , s, and let
F = (F1, . . . , Fs). The following two lemmas are first presented.

Lemma A1. If O is a CROA(n, q, s, 2) and H is a D(s, s, s), then O ⊕ H is a CROA(ns, qs, s, 2).

Lemma A2. Define a1 as the first column of F1, and Ai as the first and i-th columns of Fi for
i = 1, . . . , s. Then, A = (a1, A1, . . . , As) = (a1, . . . , a2s−1). For 1 ⩽ ji,m, ki,m ⩽ s, where
1 ⩽ i ⩽ s, 1 ⩽ m ⩽ 2, ji,m ̸= ki,m, and ji,m ̸= 1, define b1 = hj1,1 ⊕ ok1,1 with j1,1 ̸= 1,
bi1 = hji,1 ⊕ oki,1

with ki,1 ̸= 1 and ji,1 ̸= i, or ki,1 = 1 and ji,1 = i, and bi2 = hji,2 ⊕ oki,2
with

ji,2 = i. Let Bi = (bi1, bi2) and B = (b1, B2, . . . , Bs) = (b1, . . . , b2s−1). Then, (ai, aj, bi) forms an
OA(n, 3, s, 3) for any 1 ⩽ i ̸= j ⩽ 2s − 1.
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Based on the proof of Theorem 2, combined with Lemma A1 and Lemma A2, the design
D = (D1, D2) constructed in Algorithm 1 is an SCD.

Proof of Theorem 5. We first present Lemma A3, which is a straightforward generalization
of Theorem 3.29 from Hedayat, Sloane and Stufken (1999) [27].

Lemma A3. For A, B, C, E, F, and R1, . . . , Ru−3 in Algorithm 2, we have that

(i) (z̄i, fk, ck, r1, f , . . . , ru−3, f ) is an OA(su, u, s, u), for any i ̸= k, 1 ⩽ f ⩽ s3;
(ii) (z̄i, ei, z̄j, r1, f , . . . , ru−3, f ) is an OA(su, u, s, u), for any i ̸= j, 1 ⩽ f ⩽ s3;
(iii) (r1, f , . . . , ru−3, f ) is an OA(su, u − 3, s, u − 3);
(iv) (r1, f , . . . , ru−3, f , rv,l) is an OA(su, u − 2, s, u − 2) for any 1 ⩽ v ⩽ u − 3, 1 ⩽ f ̸= l ⩽ s3.

From the proof of Theorem 4 in He, Cheng and Tang (2018), D1 is an SOA. From
Theorem 3 and conditions (i) and (ii) of Lemma A3, we know that the constructed design D is
an SCD. The number of quantitative factors that the SCD can accommodate is equal to the
number of columns in B, so p = (u − 3)s3. The number of qualitative factors is equal to the
number of columns in S1 minus one, which leads to the conclusion of (i) in Theorem 5. For
⌊(i1 − 1)/(u − 3)⌋ = · · · = ⌊(im − 1)/(u − 3)⌋, where m ⩽ u − 3, the columns d̃i1 , . . . , d̃im
come from the same B f , with 1 ⩽ f ⩽ s3. From (iii) of Lemma A3, condition (ii) of Theorem 5
is established. When ⌊(i − 1)/(u − 3)⌋ ̸= ⌊(i′ − 1)/(u − 3)⌋, d̃i and d̃i′ are columns from
Bu and Bv, respectively, with u ̸= v. From (iv) of Lemma A3, condition (iii) of Theorem 5
is established.
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