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A B S T R A C T

For multi-factor experiments that cannot run all the factors in a completely random order,
fractional factorial split-plot (FFSP) designs are often used in practice. When some prior
knowledge has shown that some factors are more likely to be significant than others, Han
et al. (2023) proposed the individual word length patterns (IWLPs) of whole-plot (WP) and
sub-plot (SP), denoted by the IwWLP and IsWLP respectively, in the FFSP design. In this paper,
we propose a construction method for optimal FFSP designs based on these two criteria, where
the key of the method is to construct generating matrices for different FFSP designs from the
generating matrix of a fractional factorial design, and hence we get a class of effective FFSP
designs. These designs are more applicable in many situations. The results for 16-run two-level
FFSP designs are tabulated in the supplementary material for possible use by practitioners.

1. Introduction

Two-level fractional factorial (FF) designs are commonly used for factorial experiments. A 2−𝑘th fraction of a 2𝑛 factorial design
consisting of 2𝑛−𝑘 distinct combinations is referred to as a 2𝑛−𝑘 design, which denotes a fraction with 2𝑛−𝑘 runs and 𝑛 two-level
factors. The design has 𝑛−𝑘 independent columns and is determined by 𝑘 independent defining words. In order to compare 2𝑛−𝑘 FF
designs, many criteria have been proposed, such as maximum resolution (Box and Hunter, 1961), minimum aberration (Fries and
Hunter, 1980), clear effects (Wu and Chen, 1992), general minimum lower-order confounding (Zhang et al., 2008) and so on.

When the experimenters have any prior knowledge that some factors are particularly more significant than others, Li et al.
(2015) proposed a new criterion called the individual word length pattern (IWLP) that measures the degree of aliasing between an
individual factor and the effects involving other factors. The critical difference between this criterion and most existing criteria for
2𝑛−𝑘 FF designs is that it does not treat all factors as being of equal importance.

When an experiment is performed, it is a natural assumption that the experimental runs can be completely randomized. However,
this is impractical in practice when it is difficult to change the levels of some factors in the experiment. In such a case, a fractional
factorial split-plot (FFSP) design may represent a practical and popularly used experimental strategy. In general, an FFSP experiment
has two types of factors: the factors with hard-to-change levels which are called whole-plot (WP) factors, and the factors with
relatively-easy-to-change levels which are sub-plot (SP) factors. Such an experiment can be arranged by an FFSP design. The concepts
for these criteria such as minimum aberration (MA) and clear effects can be easily extended to FFSP designs, see e.g. Huang et al.
(1998), Bingham and Sitter (1999a,b), Mukerjee and Fang (2002), Ai and Zhang (2004), Cheng and Tsai (2009) for researches
on MA two-level FFSP designs, and Yang et al. (2006), Zhao and Chen (2012), Zhao and Zhao (2015), Han et al. (2020a,b) for
researches on FFSP designs under the clear effects criterion.

∗ Corresponding author.
E-mail address: mqliu@nankai.edu.cn (M.-Q. Liu).
https://doi.org/10.1016/j.spl.2024.110311
Received 16 July 2024; Received in revised form 26 October 2024; Accepted 19 November 2024
vailable online 28 November 2024 
167-7152/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/stapro
https://www.elsevier.com/locate/stapro
mailto:mqliu@nankai.edu.cn
https://doi.org/10.1016/j.spl.2024.110311
https://doi.org/10.1016/j.spl.2024.110311


X. Han et al.

d
i

F

i
2
o

F
S

W
m
𝐴
𝐴
t
o
o
h

h

I

Statistics and Probability Letters 219 (2025) 110311 
As we know, the criteria mentioned above consider all factors as equally important, which is not suit for the situation that
some factors are more significant than others if we have some prior information about the importance of factors in an experiment.
Compared with these criteria, Han et al. (2022) proposed new criteria named the IWLPs of WP and SP factors in the FFSP design,
enoted by IwWLP and IsWLP, respectively. These two criteria are very useful for us to assign columns to factors after an FFSP design
s selected. In this way, constructing the optimal designs under these two criteria is meaningful. Note that Huang et al. (1998) first

established the relation between FFSP designs and FF designs. This relation was best seen through the generating matrices by which
FFSP designs were well represented. Then, they used this relation and the concept of MA for FF designs to study FFSP designs. In
the end, they explored methods for constructing two-level MA FFSP designs.

With this in mind, this paper utilizes the way described above to construct optimal designs under IwWLP and IsWLP, based on
Table 2 in Li et al. (2015) which tabulates the IWLPs of all non-isomorphic 16-run regular FF designs.

The paper is organized as follows. Section 2 introduces some preliminaries and the way we use to construct optimal designs. In
Section 3, we propose a construction method for FFSP designs from FF designs, where the method is mainly based on constructing
generating matrices for different FFSP designs from the generating matrix of an FF design. Then we obtain optimal FFSP designs
based on all regular non-isomorphic 16-run FF designs, where the detailed optimal FFSP designs with 16 runs are tabulated in
the Supplementary Material. We also propose effective designs when the focus is on all possible number of particularly important
factors. Concluding remarks are given in Section 4.

2. Preliminaries

In this section, we first recall criteria of IwWLP and IsWLP, and then we show generating matrices corresponding to the FF and
FSP designs.

Based on the natural features of an FFSP design, Han et al. (2022) proposed criteria of IwWLP and IsWLP. Before introducing the
criteria, we recall some important notation and definitions. A 2𝑛−𝑘 FF design 𝑑 is defined by 𝑘 independent words 𝑊1,… , 𝑊𝑘, and the
defining contrast subgroup of 𝑑 consists of 2𝑘− 1 nonzero words formed by all possible products of the independent words. Let 𝐴𝑖(𝑑)
be the number of distinct defining words of length 𝑖 in the defining contrast subgroup of 𝑑. The vector 𝑊 (𝑑) = (𝐴1(𝑑),… , 𝐴𝑛(𝑑))
s called the wordlength pattern (WLP) of 𝑑. For an FFSP design, it can be considered as a usual 2𝑛−𝑘 FF design but written as a
(𝑛1+𝑛2)−(𝑘1+𝑘2) design, where 𝑛1 is the number of WP factors denoted by capital letters 𝐴, 𝐵 , 𝐶 ,… in this paper, and 𝑛2 is the number
f SP factors denoted by lowercase letters 𝑝, 𝑞 , 𝑟,…. In such a design, there are 𝑘1 WP and 𝑘2 (𝑘2 = 𝑘 − 𝑘1) SP defining words,

respectively. Similarly to the WLP for FF designs, we can respectively define the IWLPs of a WP and an SP factor for an FFSP design.
or a column 𝛼 in an FFSP design, let 𝐴𝑖𝑤

𝑗 (𝛼) denote the number of length 𝑗 defining words involving 𝛼 with 𝑖 WP factors and (𝑗 − 𝑖)
P factors.

An FFSP design obeys the following two rules: there is no defining word that contains only one SP factor, and the number of
lower-order SP-type effects which are not aliased with WP effects is as large as possible. Consider the case of column 𝛼 being a

P factor. It is obvious that, 𝐴1𝑤
3 (𝛼) ≠ 0 means that column 𝛼 is aliased with at least one interaction of two SP factors, 𝐴3𝑤

3 (𝛼) ≠ 0
eans that column 𝛼 is aliased with at least one interaction of two WP factors. For 𝐴1𝑤

3 (𝛼) and 𝐴3𝑤
3 (𝛼), we need care more about

1𝑤
3 (𝛼) since the second rule tells us that we should consider the SP defining words involving WP factors at first. As for 𝐴1𝑤

4 (𝛼),
2𝑤
4 (𝛼) and 𝐴4𝑤

4 (𝛼), 𝐴1𝑤
4 (𝛼) ≠ 0 means that column 𝛼 is aliased with at least one interaction of three SP factors, 𝐴2𝑤

4 (𝛼) ≠ 0 means
hat column 𝛼 is aliased with at least one interaction of one WP factor and two SP factors, 𝐴4𝑤

4 (𝛼) ≠ 0 means that 𝛼 is in at least
ne WP defining word of length 4. From the second rule, 𝐴2𝑤

4 (𝛼) ≠ 0 means an interaction of two SP factors is included in at least
ne WP alias set, and 𝐴1𝑤

4 (𝛼) ≠ 0 means an interaction of three SP factors is included in at least one WP alias set. From the effect
ierarchy principle (Wu and Hamada, 2021), the lower-order effects are more likely to be important than higher order effects, so

when we consider the order of SP effects, 𝐴2𝑤
4 (𝛼) is more important than 𝐴1𝑤

4 (𝛼). Hence, we rank the order of defining words of
length 4 involving column 𝛼 into the sequence {𝐴2𝑤

4 (𝛼), 𝐴1𝑤
4 (𝛼), 𝐴4𝑤

4 (𝛼)} and sequentially minimize this sequence. In general, we
ave

IwWLP(𝑓 , 𝛼) = (𝐴1𝑤
3 (𝛼), 𝐴3𝑤

3 (𝛼)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝐴3(𝛼)

, 𝐴2𝑤
4 (𝛼), 𝐴1𝑤

4 (𝛼), 𝐴4𝑤
4 (𝛼)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴4(𝛼)

,… , 𝐴(𝑛1+𝑛2−2)𝑤
𝑛1+𝑛2

(𝛼),… , 𝐴1𝑤
𝑛1+𝑛2

(𝛼), 𝐴(𝑛1+𝑛2)𝑤
𝑛1+𝑛2

(𝛼)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐴𝑛1+𝑛2 (𝛼)

).

When the factor 𝛽 is an SP factor, the principle is similar. Based on the above discussion, Han et al. (2022) proposed IwWLP and
sWLP as follows.

For columns 𝛼 and 𝛽 from the WP and SP parts of a 2(𝑛1+𝑛2)−(𝑘1+𝑘2) FFSP design 𝑓 , respectively, define the vectors

IwWLP(𝑓 , 𝛼) = (𝐴1𝑤
3 (𝛼), 𝐴3𝑤

3 (𝛼), 𝐴2𝑤
4 (𝛼), 𝐴1𝑤

4 (𝛼), 𝐴4𝑤
4 (𝛼),… , 𝐴(𝑛1+𝑛2−2)𝑤

𝑛1+𝑛2
(𝛼),… , 𝐴1𝑤

𝑛1+𝑛2
(𝛼), 𝐴(𝑛1+𝑛2)𝑤

𝑛1+𝑛2
(𝛼)) (1)

and

IsWLP(𝑓 , 𝛽) = (𝐴1𝑤
3 (𝛽), 𝐴0𝑤

3 (𝛽), 𝐴2𝑤
4 (𝛽), 𝐴1𝑤

4 (𝛽), 𝐴0𝑤
4 (𝛽),… , 𝐴(𝑛1+𝑛2−2)𝑤

𝑛1+𝑛2
(𝛽),… , 𝐴0𝑤

𝑛1+𝑛2
(𝛽)) (2)

as the IWLPs of 𝛼 and 𝛽 for 𝑓 , respectively. A good design is to minimize the sequences (1) and (2) in turn.
According to the definitions of IwWLP and IsWLP, we can have the corresponding criteria for finding the best IwWLP and IsWLP of

an FFSP design.
2 
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Definition 1. Suppose that 𝑓 is a 2(𝑛1+𝑛2)−(𝑘1+𝑘2) design. For every WP or SP factor in 𝑓 , there is a corresponding IwWLP or IsWLP.
For columns 𝛼1 and 𝛼2 from the WP of 𝑓 with IwWLP(𝑓 , 𝛼1) and IwWLP(𝑓 , 𝛼2) as defined in (1). Let 𝑟 be the smallest 𝑖 such that
𝐴𝑗 𝑤
𝑖 (𝛼1) ≠ 𝐴𝑗 𝑤

𝑖 (𝛼2). Then 𝛼1 is better than 𝛼2 if 𝐴𝑗 𝑤
𝑟 (𝛼1) < 𝐴𝑗 𝑤

𝑟 (𝛼2). 𝛼1 is said to be the best WP factor of 𝑓 if no other 𝛼𝑙 (𝑙 = 2, 3,… , 𝑛1)
is better than it, and IwWLP(𝑓 , 𝛼1) is called the best IwWLP of 𝑓 . Similarly, we can define the best SP factor and best IsWLP of 𝑓 .

Based on Definition 1, we can get the best IwWLP and IsWLP of each FFSP design. For an FFSP design, some different WP or SP
factors may correspond to the same IwWLP or IsWLP. For different 2(𝑛1+𝑛2)−(𝑘1+𝑘2) designs, their best IwWLPs or IsWLPs may not be
the same. From the above discussion, we can get the process of selecting the optimal FFSP design. Firstly, calculate the IsWLPs and
IwWLPs of all FFSP designs with given parameters, and obtain the best IsWLP and IwWLP after comparison. Secondly, record the
respective numbers of columns with the best IsWLP and IwWLP in each design, and the design containing the maximum number
of columns with the best IsWLP or IwWLP is the optimal FFSP design. It is worth noting that the optimal designs containing the
respective maximum numbers of columns with the best IsWLP and best IwWLP may not be the same design, and this phenomenon
is quite normal. At this point, researchers can choose the proper design according to their actual needs.

Here we present a practical example to illustrate the application of the proposed criteria. Consider an experiment to improve a
eat treatment process on truck leaf springs reported in Pignatiello and Ramberg (1985). The heat treatment that forms the camber

(or curvature) in leaf springs consists of heating in a high-temperature furnace, processing by a forming machine, and quenching in
an oil bath. The height of an unloaded spring, known as free height, is an important quality characteristic whose target value is 8.0
inches. An experimental goal is to make the variation about the target 8.0 as small as possible. The five factors were chosen across
the various stages of the process: furnace temperature (B) and heating time (C) are from the heating stage, transfer time (D) is the
time it takes the conveyer to transport the springs from the furnace to the forming machine, hold-down time (E) is the time that the
springs are held in a high-pressure press to form the camber, and quench oil temperature (Q) is from the quenching stage. These
factors are all quantitative. Furnace temperature (B) and quench oil temperature (Q) are difficult to change and can be used as WP
factors. The other three factors can be used as SP factors. This constitutes an FFSP design. Suppose we have prior information that
factor B is a significant factor, then we need to choose a design that has the fewest interactions aliased with factor B. In this case,
an optimal FFSP design under the IwWLP criterion is the most suitable one.

In the following, we introduce generating matrices (Franklin, 1984) corresponding to the FF and FFSP designs. In fact, each FF
r FFSP design corresponds to a generating matrix. The generating matrix can be transformed to a standard form through matrix

operations, so that we can find the corresponding design more easily. There are three steps for this process.
The first step is about the correspondence between an FF design and the generating matrix. The defining contrast subgroup of a

2𝑛−𝑘 FF design 𝑑 can be represented by the generating matrix 𝑔. Without loss of generality, the generating matrix 𝑔 can be written
in the form of

𝑔 = (I C), (3)

where I is the 𝑘 × 𝑘 identity matrix and C is a 𝑘 × (𝑛− 𝑘) matrix with its elements equal to 0 or 1, in which every row must contain
at least one 1. In fact, every row of 𝑔 corresponds to a defining word of design 𝑓 .

The second step is about the correspondence between an FFSP design and the generating matrix. Similarly to the first step, one
an apply generating matrix 𝑔 to two-level FFSP designs. Suppose that there are 𝑛1 factors in the WP part with fractionation element
1, and 𝑛2 factors in the SP part with fractionation element 𝑘2. Then there are 2𝑛1−𝑘1 treatment combinations in the WP part and
(𝑛1+𝑛2)−(𝑘1+𝑘2) treatment combinations for the total FFSP design. Let 𝑔1 be the generating matrix of a 2𝑛1−𝑘1 design 𝑑1 for the WP
art, then 𝑔1 can be denoted as

𝑔1 = (I1 Cl),

where I1 is the 𝑘1 × 𝑘1 identity matrix and Cl is a 𝑘1 × (𝑛1 − 𝑘1) matrix. Let 𝑔2 be the generating matrix of a 2𝑛2−𝑘2 design 𝑑2 for the
P part. If the fractionation in the SP part depends only on the SP factors, then

𝑔2 = (I2 C2),

where I2 is the 𝑘2×𝑘2 identity matrix, and C2 is a 𝑘2× (𝑛2−𝑘2) matrix. The design matrix for the total FFSP design can be represented
by the generating matrix

𝑔 =
(

𝑔1 O
O 𝑔2

)

=

𝑘1 𝑛1 − 𝑘1 𝑘2 𝑛2 − 𝑘2
( )

I1 C1 O1 O2 𝑘1
O3 O4 I2 C2 𝑘2

, (4)

where all the elements in O,O1,O2,O3 and O4 are zeros. In general, letters from the WP part are allowed to appear in the generators
or the SP part. So the generating matrix 𝑔 of such a 2(𝑛1+𝑛2)−(𝑘1+𝑘2) FFSP design will now have the form of

𝑔 =

𝑘1 𝑛1 − 𝑘1 𝑘2 𝑛2 − 𝑘2
( )

I1 C1 O1 O2 𝑘1
B1 B2 I2 C2 𝑘2

. (5)

Here, I1, I2,Cl,C2,O1 and O2 are the matrices with the same structures as above; B1 and B2 are matrices with elements 0 and 1;
(I1 C1), denoted by 𝑔1, represents the generating matrix of the WP part; and (B1 B2 I2 C2) represents the generating matrix of the
SP part. In fact, the 𝑔 in (5) is a natural generalization of the 𝑔 in (4).
3 
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The third step is to convert the form in (5) to a standard form for the generating matrix 𝑔 of an FFSP design by performing
operations between rows and switching some columns. The purpose of this step is to make it clear which FFSP designs can be
btained from FF designs. A standard form for the generating matrix 𝑔 is as follows

𝑔 =

𝑘1 𝑘2 𝑛1 − 𝑘1 𝑛2 − 𝑘2
( )

I1 O1 C1 O2 𝑘1
O3 I2 B3 C2 𝑘2

. (6)

3. Optimal designs based on 𝐈𝐰WLP and 𝐈𝐬WLP

In this section, we first introduce how to use the generating matrix 𝑔 of an FF design to construct generating matrices for different
FSP designs and thus generate those FFSP designs. Then we obtain and tabulate the effective designs for non-isomorphic 16-run
FSP designs using the construction method of generating matrix.

One can get different FFSP designs by different permutations between rows or columns of 𝑔. The essence of the difference is that
the dimension of O2 in form (6) varies with different values of 𝑘1 and 𝑘2. Each type of dimension of O2 corresponds to an FFSP
design, and the parameters of 𝑛1, 𝑛2, 𝑘1 and 𝑘2 can be got from the dimensions of those parts in the standard form. That is the way
we use to construct optimal designs.

The following example shows how to get 2(𝑛1+𝑛2)−(𝑘1+𝑘2) FFSP designs from a 29−5 FF design. The strategy here is to rearrange
he generating matrix 𝑔 of a 29−5 design to be of the form (6), whose two key features are as follows:

1. The left part of 𝑘 columns is the identity matrix of dimension 𝑘 × 𝑘, here 𝑘=5.
2. The upper right corner is a 𝑘1 × (𝑛2 − 𝑘2) matrix of zeros.

Example 1. Suppose there is a 29−5 FF design with generating relation 𝐼 = 𝐴𝐵 𝐸 = 𝐴𝐶 𝐹 = 𝐴𝐷 𝐺 = 𝐵 𝐶 𝐷 𝐻 = 𝐴𝐵 𝐶 𝐷 𝐽 . The
enerating matrix of this design is

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐽
1 1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0
0 1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (7)

The following cases are the FFSP designs that we can construct through this 29−5 design.
Case 1: In contrast to form (6), we convert the matrix to

𝐸 𝐹 𝐺 𝐻 𝐽 𝐴 𝐵 𝐶 𝐷

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

1 0 0 0 0 1 1 0 0
0 1 0 0 0 1 0 1 0

𝑔 = 0 0 1 0 0 1 0 0 1 = (I C)
0 0 0 1 0 0 1 1 1
0 0 0 0 1 1 1 1 1
𝐴 𝐵 𝑝 𝑞 𝑟 𝐶 𝐷 𝐸 𝑠 ← 𝐶 𝑎𝑠𝑒 1
𝐴 𝑝 𝑞 𝑟 𝑠 𝐵 𝐶 𝑡 𝑢 ← 𝐶 𝑎𝑠𝑒 2
𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝑣 𝐴 𝐵 ← 𝐶 𝑎𝑠𝑒 41

𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝐴 𝑣 𝐵 ← 𝐶 𝑎𝑠𝑒 42

𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝐴 𝐵 𝑣 ← 𝐶 𝑎𝑠𝑒 43

. (8)

Thus, comparing (I C) with form (6), we can obtain 𝑘1 = 2, 𝑘2 = 3, 𝑛2 − 𝑘2 = 1 (𝑛2 = 1 + 3 = 4), and 𝑛1 − 𝑘1 = 3 (𝑛1 = 3 + 2 = 5).
Relabel 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺, 𝐻 and 𝐽 to 𝐶, 𝐷, 𝐸, 𝑠, 𝐴, 𝐵, 𝑝, 𝑞 and 𝑟, respectively, where the new 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 are WP factors,
and 𝑝, 𝑞, 𝑟 and 𝑠 are SP factors. See (8) for the corresponding factors before and after relabeling. Then we can get a 25−2 WP design
with factors 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 and generating relation 𝐼 = 𝐴𝐶 𝐷 = 𝐵 𝐶 𝐸, similarly, we have a 24−3 SP design with factors 𝑝, 𝑞, 𝑟 and
𝑠 and generating relation 𝐼 = 𝐶 𝑝𝑠 = 𝐷 𝐸 𝑞 𝑠 = 𝐶 𝐷 𝐸 𝑟𝑠.

Case 2: Another FFSP design can also be got from the above matrix with 𝑘1 = 1, 𝑘2 = 4, 𝑛2 − 𝑘2 = 2 (𝑛2 = 2 + 4 = 6), and
1−𝑘1 = 2 (𝑛1 = 2 + 1 = 3). And this design contains a 23−1 WP design with factors 𝐴, 𝐵 and 𝐶 and generating relation 𝐼 = 𝐴𝐵 𝐶, and
26−4 SP design with factors 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 and 𝑢 and generating relation 𝐼 = 𝐵 𝑝𝑡 = 𝐵 𝑞 𝑢 = 𝐶 𝑟𝑡𝑢 = 𝐵 𝐶 𝑠𝑡𝑢. See (8) for the corresponding

factors before and after relabeling.
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Case 3: Another FFSP design can be derived from the preceding 29−5 design. Observe that the column under factor 𝐴 in (7) has
one zero element. We want to move it to the upper right corner. First we switch columns to get

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐸 𝐹 𝐺 𝐻 𝐽 𝐵 𝐶 𝐷 𝐴
1 0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 0 1 1
0 0 0 1 0 1 1 1 0
0 0 0 0 1 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (9)

then switch runs to get

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐸 𝐹 𝐺 𝐻 𝐽 𝐵 𝐶 𝐷 𝐴
0 0 0 1 0 1 1 1 0
1 0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 0 1 1
0 0 0 0 1 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (10)

in the end, switch columns to get

𝑔′ =

𝐻 𝐹 𝐺 𝐸 𝐽 𝐵 𝐶 𝐷 𝐴

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

1 0 0 0 0 1 1 1 0
0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 0 1 1
0 0 0 1 0 1 0 0 1
0 0 0 0 1 1 1 1 1
𝐴 𝑝 𝑞 𝑟 𝑠 𝐵 𝐶 𝐷 𝑡 ← 𝐶 𝑎𝑠𝑒 3

. (11)

Comparing 𝑔′ with form (6), we have 𝑘1 = 1, 𝑘2 = 4, 𝑛2 − 𝑘2 = 1 (𝑛2 = 1 + 4 = 5), and 𝑛1 − 𝑘1 = 3 (𝑛1 = 3 + 1 = 4). Relabel 𝐴, 𝐵, 𝐶, 𝐷,
, 𝐹 , 𝐺, 𝐻 and 𝐽 to 𝑡, 𝐵, 𝐶, 𝐷, 𝑟, 𝑝, 𝑞, 𝐴 and 𝑠, respectively, where the new 𝐴, 𝐵, 𝐶 and 𝐷 are WP factors, and 𝑝, 𝑞, 𝑟, 𝑠 and 𝑡 are
P factors. Then we can get a 24−1 WP design with factors 𝐴, 𝐵, 𝐶 and 𝐷 and generating relation 𝐼 = 𝐴𝐵 𝐶 𝐷, and a 25−4 SP design
ith factors 𝑝, 𝑞, 𝑟, 𝑠 and 𝑡 and generating relation 𝐼 = 𝐵 𝑟𝑡 = 𝐶 𝑝𝑡 = 𝐷 𝑞 𝑡 = 𝐵 𝐶 𝐷 𝑠𝑡. See (11) for the corresponding factors before and
fter relabeling.
Case 4: In the end, we construct designs with 𝑘1 = 0. In this case, the generating matrix must have the form of 𝑔 = (I2 B3 C2)

in (6). Note that C2 is a 𝑘2 × (𝑛2 − 𝑘2) (i.e. 5 × (𝑛2 − 5)) matrix, and at least one element of each row is 1. So we cannot get a
design with 𝑛2 − 𝑘2 = 1 as 𝑔 does not contain a column with all elements being 1. Next we construct designs with 𝑘1 = 0, 𝑘2 = 5,
𝑛2 − 𝑘2 = 2 (𝑛2 = 2 + 5 = 7) and 𝑛1 − 𝑘1 = 2 (𝑛1 = 2 + 0 = 2). For this case, relabel 𝐸, 𝐹 , 𝐺, 𝐻 and 𝐽 to 𝑝, 𝑞, 𝑟, 𝑠 and 𝑡, respectively, as
P factors. For the remaining factors, there are three scenarios. The first scenario is relabeling 𝐴, 𝐵, 𝐶 and 𝐷 to 𝑢, 𝑣, 𝐴 and 𝐵, where
he new 𝐴 and 𝐵 are WP factors and 𝑢 and 𝑣 are SP factors. The generating relation is 𝐼 = 𝐴𝑞 𝑢 = 𝐵 𝑢𝑟 = 𝑝𝑢𝑣 = 𝐴𝐵 𝑠𝑣 = 𝐴𝐵 𝑡𝑢𝑣. The
econd scenario is relabeling 𝐴, 𝐵, 𝐶 and 𝐷 to 𝑢, 𝐴, 𝑣 and 𝐵. The generating relation is 𝐼 = 𝐴𝑝𝑢 = 𝐵 𝑟𝑢 = 𝑞 𝑢𝑣 = 𝐴𝐵 𝑠𝑣 = 𝐴𝐵 𝑡𝑢𝑣. And
he last scenario is relabeling 𝐴, 𝐵, 𝐶 and 𝐷 to 𝑢, 𝐴, 𝐵 and 𝑣. The generating relation is 𝐼 = 𝐴𝑝𝑢 = 𝐵 𝑞 𝑢 = 𝑟𝑢𝑣 = 𝐴𝐵 𝑠𝑣 = 𝐴𝐵 𝑡𝑢𝑣. These
re all the possible FFSP designs with 𝑘1 = 0 we can construct. See (8) for the corresponding factors before and after relabeling for
hese three scenarios.

For ease of understanding the construction of FFSP designs from the FF design above, we simplify the procedure as Algorithm
1.

From the construction method of generating matrix introduced above, we can get the FFSP designs listed in Table 1 in the
upplementary Material from FF designs. This table displays the optimal designs obtained by computing the IwWLPs and IsWLPs of
ll columns in the FFSP designs which are generated from all non-isomorphic 16-run FF designs. For designs of the same parameters
ith multiple possibilities, the final IwWLPs, IsWLPs and the corresponding numbers of factors may be the same. Since the ultimate

goal of our construction is to provide more designs with different factor arrangements, we keep one design in Table 1 in the
Supplementary Material for this case. Non-isomorphic FF designs may lead to isomorphic FFSP designs. For example, a 2(6+3)−(3+2)

design can be constructed from two 29−5 FF designs with WLP= (𝐴3, 𝐴4) = (8, 10) and (6, 10), respectively. These two FF designs
are non-isomorphic, but the resulting 2(6+3)−(3+2) designs are isomorphic. For this case, we only keep one FFSP design. It is worth
mentioning that, we have listed an extensive (but likely incomplete) set of such designs for 16 runs by using the construction method
of generating matrix. We have tried to find all such designs for 2𝑛−𝑘 = 16, with 𝑛 = 5 to 15, 𝑘2 ≥ 1, and Resolution at least III. In
Table 1 in the Supplementary Material, the notation ‘‘∗’’ after a IwWLP or IsWLP means the corresponding IwWLP or IsWLP is the
best one of the designs with the same 𝑛1, 𝑛2, 𝑘1 and 𝑘2.

When we need to arrange the specific number of significant WP or SP factors in a design, we can look for a design with the
IwWLP or IsWLP being marked by ‘‘∗’’ where the number of WP or SP factors preceding it in the table being at least equal to the
pecific number. Here are two examples to illustrate the use of the tables. For example, we can construct three non-isomorphic
(4+2)−(1+1) designs through three 26−2 designs. By comparing the IWLPs of all factors in these three designs, we get the best
wWLP being (0,0,0,0,0) and the best IsWLP being (0,0,1,0,0). Obviously, the third 2(4+2)−(1+1) design contains a WP factor 𝐶 with
he best I WLP, and the second 2(4+2)−(1+1) design contains two SP factors 𝑝 and 𝑞 with the best I WLP. From the table, we can find
w s
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Algorithm 1 Construction of FFSP designs in Example 1

Step 1: According to the generating relation of the 29−5 FF design, obtain matrix (7). Then write it in the form of a matrix (6) by

column permutation, see matrix (8).

tep 2: By the different dimensions of the zero matrices in the upper right corner of matrix (8), we can get two 𝑂2 matrices and

thus two FFSP designs. The first 𝑂2 is taken to be a 2 × 1 zero matrix, we get 𝑘1 = 2, 𝑘2 = 3, 𝑛2 − 𝑘2 = 1 (𝑛2 = 1 + 3 = 4), and

𝑛1 − 𝑘1 = 3 (𝑛1 = 3 + 2 = 5). Then we obtain a 2(5+4)−(2+3) design, that is Case 1. The second 𝑂2 is taken to be a 1 × 2 zero matrix,

we get 𝑘1 = 1, 𝑘2 = 4, 𝑛2 − 𝑘2 = 2 (𝑛2 = 2 + 4 = 6), and 𝑛1 − 𝑘1 = 2 (𝑛1 = 2 + 1 = 3). Then we have a 2(3+6)−(1+4) design, that is
Case 2.

tep 3: By switching rows and columns of matrix (8), we can make the dimension of the zero matrix in the upper right corner

different from that of Cases 1 and 2. See matrix (11), now we get a 1 × 1 zero matrix in the upper right corner of matrix (11).

Then we have 𝑘1 = 1, 𝑘2 = 4, 𝑛2 −𝑘2 = 1 (𝑛2 = 1 + 4 = 5), and 𝑛1 −𝑘1 = 3 (𝑛1 = 3 + 1 = 4). In this way, we get a 2(4+5)−(1+4) design,

and this is Case 3.

Step 4: In the end, we construct designs with 𝑘1 = 0. By the form of matrix (8), we only construct designs with 𝑘1 = 0, 𝑘2 = 5,

𝑛2 − 𝑘2 = 2 (𝑛2 = 2 + 5 = 7) and 𝑛1 − 𝑘1 = 2 (𝑛1 = 2 + 0 = 2) under the requirement that the resulting matrix must have the

form of 𝑔 = (I2 B3 C2) in matrix (6). Then we construct three 2(2+7)−(0+5) designs, since the WP and SP factors can be arranged

differently, this is Case 4.

the IwWLP of the third design and the IsWLP of the second design that are marked by ‘‘∗’’, respectively. Therefore, when we need
a design that can arrange a potentially important WP factor, we choose the third design. Similarly, when we need a design that
can arrange two potentially important SP factors, we choose the second design. Let us see another example. We can construct four
(5+4)−(2+3) FFSP designs from four 29−5 FF designs. By calculating and comparing the IWLPs of all factors in these four designs, we
et the best IwWLP being (0,1,4,0,1) and the best IsWLP being (1,0,5,0,0). Obviously, the first 2(5+4)−(2+3) design has both the best
wWLP and IsWLP, as marked by ‘‘∗’’ in Table 1 in the Supplementary Material. If we want to arrange a potentially important WP

factor and/or a potentially important SP factor in a 2(5+4)−(2+3) design, we can choose this design for planning the experiment. It is
worth mentioning that some designs are suitable for situations where there are multiple significant factors in it. These designs will
ave greater practical applicability. To facilitate the calculation of IwWLP and IsWLP, we simplify the procedure as Algorithm 2.

Algorithm 2 Calculation of IwWLP and IsWLP

Input: The number of WP factors 𝑛1, the number of SP factors 𝑛2 and 𝑘 independent defining words.

Output: IwWLP for each WP factor and IsWLP for each SP factor.

Step 1: Let 𝑛 = 𝑛1 + 𝑛2. Obtain all 2𝑘 − 1 defining words by 𝑘 independent defining words.

Step 2: For each WP factor 𝛼, find all defining words including 𝛼. Then calculate the values of 𝐴1𝑤
3 (𝛼), 𝐴3𝑤

3 (𝛼), 𝐴2𝑤
4 (𝛼), 𝐴1𝑤

4 (𝛼),

𝐴4𝑤
4 (𝛼), …, 𝐴(𝑛1+𝑛2−2)𝑤

𝑛1+𝑛2
(𝛼), …, 𝐴1𝑤

𝑛1+𝑛2
(𝛼), 𝐴(𝑛1+𝑛2)𝑤

𝑛1+𝑛2
(𝛼) in turn.

tep 3: For each SP factor 𝛽, find all defining words including 𝛽. Then calculate the values of 𝐴1𝑤
3 (𝛽), 𝐴0𝑤

3 (𝛽), 𝐴2𝑤
4 (𝛽), 𝐴1𝑤

4 (𝛽), 𝐴0𝑤
4 (𝛽),

…, 𝐴(𝑛1+𝑛2−2)𝑤
𝑛1+𝑛2

(𝛽), …, 𝐴0𝑤
𝑛1+𝑛2

(𝛽) in turn.

4. Concluding remarks

In this paper, we use generating matrix to construct FFSP designs with different parameters as many as possible from a given
FF design, and provide optimal designs with different numbers of significant factors. The advantage of the resulting designs is that
when practitioners already know the number of significant factors in advance, they can choose an appropriate design to carry out
he experiment according to the actual situation. It should be mentioned that the construction methods presented in this paper are
6 
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all algebraic methods without any computer search, so it is of great value to explore more complex FFSP designs from higher-level
or mixed-level FF designs. The methods can be easily generalized to two-level regular designs with more runs, e.g. 32 runs, 64
runs and so on. The resulting FFSP designs will be more numerous and more complex. But the calculation process is the same as
he process for choosing the 16-run designs. If we want a two-level effective design with more than 16 runs, we can perform the

calculations in the same way as in this paper, and then choose the appropriate design. If we want a two-level optimal 16-run design,
but cannot find it in Table 1 in the Supplementary Material, further calculations can be made according to the criteria of CwWLP
and CsWLP proposed by Han et al. (2022) to obtain the optimal design.

The difficulty with this work is that not all of the FFSP designs can be constructed through FF designs, so the ‘optimal’ design
mentioned here is only the best design selected from those that can be constructed. Further work is needed in this area. For simplicity,
we focus on two-level designs. And for higher-level and mixed-level designs, we leave for future research.
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